CHAPTER

3

Spectrum Analysis

The autocorrelation function is a time-domain description of the second-order statistics of
a stochastic process. The frequency-domain description of the second-order statistics of
such a process is the power spectral density, which is also commonly referred to as the
power spectrum or simply spectrum. Indeed, the power spectral density of a stochastic
process is firmly established as the most useful description of the time series commonly
encountered in engineering and physical sciences.

This chapter is devoted in part to the definition of the power spectral density of a
wide-sense stationary discrete-time stochastic process, the properties of power spectral
density, and methods for its estimation. We begin the discussion by establishing a mathe-
matical definition of the power spectral density of a stationary process in terms of the Fou-
rier transform of a single realization of the process.

3.1 POWER SPECTRAL DENSITY

136

Consider an infinitely long time series u(n), n = 0, =1, =2, .. ., that represents a single
realization of a wide-sense stationary discrete-time stochastic process. For convenience of
presentation, we assume that the process has zero mean. Initially, we focus our attention
on a windowed portion of this time series, wrilten as

u(n), n=0,1....N—-1

ld"’(n)={0, n>Nn<0 @.1)
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where N is the total length (duration) of the window. By definition, the discrete-time
Fourier transform of the windowed time series u,(n) is given by

N—-t

Up(w) = > uy(nye ™" (3.2)
n=0
where w is the angular frequency, lying in the interval (=, ). In general, Uy(w) is com-
plex valued; specifically, its complex conjugate is given by
N-1
Ul () = ;’ ujy () et (3.3)

where the asterisk denotes complex conjugation. In Eq. (3.3) we have used the variable &
to denote discrete time for reasons that will become apparent immediately. In particular,
we may multiply Eq. (3.2) by (3.3) to express the squared magnitude of Up(n) as follows:
N-1 N-1
Uy ()* = D 2 uy(yug (kyeotnb (3.4)
n=0 k=0
Each realization Up(n) produces such a result. The expected result is obtained by taking
the statistical expectation of both sides of Eq. (3.4), and interchanging the order of expec-

tation and double summation:
’ N-1N-1
E[|Uy(w)) = Z ;}E[uﬂ(n)uﬁ(k)]e'f‘“‘"‘” (3.5)
n=0 k=

We now recognize that for the wide-sense stationary discrete-time stochastic process
under discussion, the autocorrelation function of u,(n) for lag n — kis

ryn = k) = Elupy(muyk)] (3.6)
which may be rewritten as follows, in light of the defining equation (3.1):
Elu(n)u*(k)] = rin — k) for0=(nk)=N-1

rn — k) ={ 0 otherwise 3.7)
Accordingly, Eq. (3.6) takes on the form
N-1 N-1
E[[UN(w)F] = Z Z r(n—k)e-jon=H (3.8)
n=0 k=0 ‘
Let | = n — k, and so rewrite Eq. (3.8) as follows:
N-1 n
ll‘-'{|UJ.\;(00)|2] = Z (l *W)’(l)e—j‘“‘ (3.9
N I=—N+1

Equation (3.9) may be interpreted as the discrete-time Fourier transform of the product of
\wo time functions: the autocorrelation function r\/(/) for lag I, and a triangular window
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wg(D) known as the Barlett window. The latter function is defined by

{1 - L/IT" =N-1
wg(l) = 0, m =N 3.10)

As N approaches infinity, the Barlett window wy(J) approaches unity for all /. Correspond-
ingly, we may write
i _1. 21 = 3 _j“"’

Jim © B[ Uy(a)f? ’;:(l)e G.11)
where (!} is the autocorrelation function of the original time series u(rn), assumed to have
infinite length. The quantity U{(w) is the discrete-time Fourier transform of a rectangular
windowed portion of this time series that has length N,

Equation (3.11) leads us to define the quantity

S(@) = im & E[|Uy(@)f] (.12)

where the quantity |U{w)|*/N is called the periodogram of the windowed time series
up(n). Note that the order of expectation and limiting operations indicated in Eq. (3.12)
cannot be changed. Note also that the periodogram converges to S{w) only in the mean
value, but not in mean square or any other meaningful way.

When the limit in Eq. (3.12) exists, the quantity S{w) has the following interpreta-
tion (Priestley, 1981}:

S(w) do = average of the contribution to the total power from components
of a wide-sense stationary stochastic process with angular (3.13)
frequencies located between v and w + dw; the average is
taken over all possible realizations of the process

Accordingly, the quantity S(w) is the "spectral density of expected power," which is
abbreviated as the power spectral density of the process. Thus, equipped with the defini-
tion of power spectral density given in Eq. (3.12), we may now rewrite Eq. (3.11) as

S(w) = Z r(heJjwl (3.14)

l=—-=

In summary, Eq. (3.12) gives a basic definition of the power spectral density of a wide-
sense stationary stochastic process, and Eq. (3.14) defines the mathematical relationship
between the autocorrelation function and the power spectral density of such a process.

3.2 PROPERTIES OF POWER SPECTRAL DENSITY

Property 1. The autocorrelation function and power spectral density of a
wide-sense stationary stochastic process form a Fourier transform pair.
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Consider a wide-sense stationary stochastic process represented by the time series
u(n), assumed to be of infinite length. Let n({) denote the autocorrelation function of such a
process for lag /, and let S(w) denote its power spectral density. According to Property 1,
these two quantities are related by the pair of relations:

S{w) = Z r(e/, —n<o=T (3.15)
and wee
n
r(d) = %r I—“ S(w)e/*duw, I=0, l, *+2,... (3.16)

Equation (3.15) states that the power spectral density is the discrete-time Fourier trans-
form of the autocorrelation function. On the other hand, Eq. (3.16) states that the autocor-
relation function is the inverse discrete-time Fourier transform of the power spectral
density. This fundamental pair of equations constitutes the Einstein—Wiener—Khinichine
relations.

In a way, we already have a proof of this property. Specifically, Eq. (3.15) is merely
a restatement of Eq. (3.14), previously established in Sestion 3.1. Equation (3.16) follows
directly from this result by invoking the formula for the inverse discrete-time Fourier

transform.

Property 2.  The frequency support of the power spectral density S(w) is the
Nyquist interval —m < o =T. _
Outside this interval, S(w) is periodic as shown by

S(w + 2km) = S(w) for integer k (.17

Property 3. The power spectral density of a stationary discrete-time stochastic

process is real. :
To prove this property, we rewrite Eq. (3.13) as

o -1
S(w) = r()+ Z r{ke 7 + Z r(k)e ™
k=1 k=-=
Replacing k with —k in the third term on the right-hand side of this equation, and recog-
nizing that r{—k) = r*(k), we get

oo

S(w) =r(0) + Z [k)e ™ + r*(k)e™]
= (.18)

=r(0) + 2 ZRe[r(k)e'f'"’*]
k=1

where Re denotes the real part operator. Equation (3.18) shows that the power spectral
density S(w) is a real-valued function of w. Itis because of this property that we have used
the notation S(w) rather than S(¢*) for the power spectral density.
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Property 4. The power spectral density of a real-valued stationary discrete-
time stochastic process is even (i.e., symmetric); if the process is complex-valued, its
power spectral density is not necessarily even. )

For a real-valued stochastic process, we find that S5(—w) = S(w), indicating that
S(w) is an even function of w; that is, it is symmetric about the origin. If, however, the pro-
cess is complex-valued, then {—k) = r*(k), in which case we find that S(—w) # §(w), and
Siw) is not an even function of w.

Property 5. The mean-square value of a stationary discrete-time stochastic
process equals, except for the scaling factor 1/27, the area under the power spectral den-
sity curve for —n < w = 7.

This property follows directly from Eq. (3.16), evaluated for [ = 0. For this condi-
tion, we may thus write '

r(Q) = QITJ_“ S(w) dw (3.19)

Since r(0) equals the mean-square value of the process, we see that Eq. (3.19) is a mathe-
matical description of Property 5. The mean-square value of a process is equal to the
expected power of the process developed across a load resistor of | ohm. On this basis, the
terms "expected power" and ‘mean-square value" are used interchangeably in what fol-
lows.

Property 6.  The power spectral density of a stationary discrete-time stochastic

process is nonnegative.
That is,

S(w) =0 for all w (3.20)

This property follows directly from the basic formula of Eq. (3.12), reproduced here for
convenience of presentation:

Stw) = Jim ﬁ El|U @)

We first note that |U(w) 2, representing the squared magnitude of the discrete-time Fou-
rier transform of a windowed portion of the time series u(n), is nonnegative for all w. The
expectation E[|U,{w)|] is also nonnegative for all w. Thus, using the basic definition of
S(w) in terms of U\{w), the property described by Eq. (3.20) follows immediately.

3.3 TRANSMISSION OF A STATIONARY PROCESS THROUGH A LINEAR FILTER

Consider a discrete-time filter that is linear, time invariant, and stable. Let the filter be
characterized by the discrete transfer function H(z), defined as the ratio of the z-transform
of the filter output to the :-transform of the filter input. Suppose that we feed the filter with
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Figure 3.1 Transmission of stationary process through a discrete-time linear filter.

a stationary discrete-time stochastic process of power spectral density S(w), as in Fig. 3.1.
Let §,{w) denote the power spectral density of the filter output. We may then write

5,(w) = |Hie")|’S(w) (3.21)

where H(e") is the frequency response of the filter. The frequency response H(e™) equals
the discrete transfer function H(z) evaluated on the unit circle in the z-plane. The impor-
tant feature of this result is that the value of the output spectral density at angular fre-
quency o depends purely on the squared amplitude response of the filter and the input
power spectral density at the same angular frequency w.

Equation (3.21) is a fundamental relation in stochastic process theory. To prove it,
we may proceed as follows. Let the time series y(n) denote the filter output in Fig. 3.1,
produced in response to the time series #(n) applied to the fiiter input. Assuming that u(n)
represents a single realization of a wide-sense stationary discrete-time stochastic process,
we find that y(n) also represents a single realization of a wide-sense stationary discrete-
time stochastic process modified by the filtering operation. Thus, given that the autocorre-
lation function of the filter input u(n) is written as

rdD) = Elu(myu*(n — 1)]

we may express the autocorrelation function of the filter output y(n) in a corresponding
way as

r() = Ely(n)y*(n — D] (3.22)
where y(n) is related to u(n) by the convolution sum
y(m) = 2 h(u(n—i) (3.23)
Similarly, we may write o
yn—0)= Z R (k)u"(n—1—k) (3.24)
k=—=

Substituting Egs. (3.23) and (3.24) in (3.22), and interchanging the orders of expectation
and summations, we find that the autocorrelation functions r)_(l) and r (D), for lag [, are
related as follows:;

r, () = DD R@R Ry (ki) (3.25)

ji=—xk=-x
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Finally, taking the discrete-time Fourier transforms of both sides of Eq. (3.25), and invok-
ing Property 1 of the power spectral density and the fact that the transfer function of a lin-
ear filter is equal to the Fourier transform of its impulse response, we get the result
described in Eq. (3.21).

Power Spectrum Analyzer

Suppose that the discrete-time linear filter in Fig. 3.1 is designed to have a bandpass char-
acteristic. That is, the amplitude response of the filter is defined by
, |o-ol/=<Ae

|H(e™)| ={

0, remainder of the interval ~r < w < (3.26)
This amplitude response is depicted in Fig. 3.2. We assume that the angular bandwidth of
the filter, 2Aw, is small enough for the spectrum inside this bandwidth to be essentially

constant, Then using Eq. (3.21) we may write

Sw), |o-wol=Aw
(@)= 10,  remainder of the interval — < w = (327
Next, using Properties 4 and 5 of the power spectral density, we may express the mean-
square value of the filter output resulting from a real-valued stochastic input as

1

_1 [
P = 3 _ﬂSD(m)dm

20w Yoo,
= %—S(wc) + T“—S( mc)

=28%5(0,)  for real data

Equivalently, we may write

P,
S(w,) = e (3.28)
where Aw/w is that fraction of the Nyquist interval that corresponds to the passband of the
filter. Equation (3.28) states that the value of the power spectral density of the filter input
u(n), measured at the center frequency o, of the filter, is equal to the mean-square value P,
of the filter output, scaled by a constant factor. We may thus use Eq. (3.28) as the mathe-
matical basis for building a power spectrum analyzer, as depicted in Fig. 3.3. Ideally, the
discrete-time bandpass filter employed here should satisfy two requirements: fixed band-
width and adjustable center frequency. Clearly, in a practical filter design, we can only
approximate these two ideal requirements. Note also that the reading of the average power
meter at the output end of Fig. 3.3 approximates |{for finite averaging time) the expected
power of an ergodic process y(n).
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Figure 3.2 [deal bandpass characteristic.

Example 1: White Noise
A stochastic process of zero mean is said to be white if its power spectral density S(w)
is constant for all frequencies, as shown by
Swy=0" for—m<w=Mm

where o is the variance of a sample taken from the process. Suppose that this process is
passed through a discrete-time bandpass filter, characterized as in Fig. 3.2. Hence, from Eq.
(3.28), we find that the mean-square value of the filter output is

202Aw
o~ g

White noise has the property that any two of its samples are uncorrelated, as shown by the
autocorrelation function

(1) = 0’8,
where 8_, is the Kronecker delta:

Time series
re;p{::_semmg »| Discrete-time ) POWEr
8 e::ary bandpass filter meter Figure 3.3 Power spectrum analyzer.



144 Chap. 3 Spectrum Analysis

3.4 CRAMER SPECTRAL REPRESENTATION FOR A STATIONARY PROCESS

Equation (3.12) provides one way of defining the power spectral density of a wide-sense
stationary process. Another way of defining the power spectral density is to use the
Cramér spectral representation for a stationary process. According to this representation,
a sample u(n) of a discrete-time stochastic process is written as an inverse Fourier trans-
form (Thomson, 1982, 1988):

u(n) = zlw J_"ei“"'dl(m) (3.29)

If the process represented by the time series u(n) is wide-sense stationary with no periodic
components, then the increment process dZ{(w) has the following three properties:

1. The mean of the increment process dZ(w) is zero; that is,

EldZw)}=0  forallw (3.30)
2. The energy of the increment process dZ(w) at different frequencies is uncorre-
lated; that is,
EldZ(v)dZ*(v)] = 0 forv # w (3.31)
3. The expected value of |dZ(w)|’ defines the spectrum S(w) dw; that is,
El|ldZ(w)|*] = S(w) do (3.32)

In other words, for a wide-sense stationary discrete-time stochastic process represented by
the time series u(n), the increment process dZ(w) defined by Eq. (3.29) is a zero-mean
orthogonal process. More precisely, dZ(w) may be viewed as a "white process” described
in the frequency domain in a manner similar to the time-domain description of ordinary
white noise.

Equation (3.32), in conjunction with Eq. (3.31), provides another basic definition
for the power spectral density S(w). Complex-conjugating both sides of Eq. (3.29) and
using v in place of w, we get

T
u'(n) = ZLTJ_.., e~ rdZ'(v) (3.33)
Hence, multiplying Eq. (3.29) by (3.33), we may express the squared magnitude of u(n) as
1 I J jrt{—v)
2= 3.34
p(mf = 5 53) )& U@ dZtW) (3.34)

Next, taking the statistical expectation of Eq. (3.34), and interchanging the order of expec-
tation and double integration, we get

Ellu(m)}? = (2—;~)—2L J_we‘"‘"‘"’E[dzm) 4z+(w)] (3:35)



Sec. 3.4 Cramer Spectral Representation for a Stationary Process 145

If we now use the two basic properties of the increment process dZ(w) described by Eqs.
(3.31) and (3.32), we may simplify Eq. (3.35) into the form
313

Ellu(mfY = zi“f S(w) do (336)

The expectation E[|u(n)|’] on the left-hand side of Eq. (3.36) is recognized as the mean-
square value of the complex sample u(n). The right-hand side of this equation equals the
total area under the curve of the power spectral density S(w), scaled by the factor 1/27.

Accordingly, Eq. (3.36) is merely a restatement of Property 5 of the power spectral density
S(w), described by Eq. (3.19).

The Fundamental Equation

Consider the time series u(0), u(1), ..., #(N — 1), consis‘ling of N observations (samples)
of a wide-sense stationary stochastic process. The discrete-time Fourier transform of this
time series is given by

N-1

Uyw) = Z u(n)e Jjor (337

n=0
According to the Cramér spectral representation of the process, the observation u(n) is
given by Eq. (3.29). Hence, using the dummy variable v in place of @ in Eq: (3.29), and
then substituting the result in Eq. (3.37), we get

® N-i
Gt = k| . ez (338)
TWi-m p=p
where we have interchanged the order of summation and integration. Define
N-1
K,w) = 2 eion (339)
n=0

which is known as the Dirichlet kernel. The kernel X(w) represents a geometric series
with a first term of unity, a common ratio of ¢ 7, and a total number of terms equal to N.
Summing this series, we may redefine the kemel Kj{w) as follows: '
1-e ¥
T e (3.40)
_ sin (Nw/2) [_1. _ ] '
=S en) P WD
Note that K(0) = N. Returning to Eq. (3.38), we may use the definition of the Dirichlet
kemel K,(w) given in Eq. (3.39) to rewrite U {w) as follows:
n

Uy(w) = ZLTJ_" K, (0 —v)dZ(¥) (341)
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The integral equation (3.41) is a linear relation, referred to as the fundamental equation of
power spectrum analysis.

An integral equation is one that involves an unkrown function under the integral
sign. In the context of power spectrum analysis as described by Eq. (3.41), the increment
variable dZ(w) is the unknown function, and U,(w) is known. Accordingly, Eq. (3.41)
may be viewed as an example of a Fredholm integral equation of the first kind (Morse and
Feshbach, 1953; Whittaker and Watson, 1965 ).

Note that {/{w) may be inverse Fourier transformed to recover the original data. It
follows therefore that U, {w) is a sufficient statistic of the power spectral density. This
property makes the use of Eq. (3.41) for spectrum analysis all the more important.

3.5 POWER SPECTRUM ESTIMATION

An issue of practical importance is how to estimate the power spectral density of a wide-
sense stationary process. Unfortunately, this issue is complicated by the fact that there is a
bewildering array of power spectrum estimation procedures, with each procedure pur-
ported to have or to show some optimum property. The situation is made worse by the fact
that unless care is taken in the selection of the right method, we may end up with mislead-
ing conclusions.

Two philosophically different families of power spectrum estimation methods may
be identified in the literature: parametric meikods and nonparametric methods. The basic
ideas behind these methods are discussed in the sequel.

Parametric Methods

In parametric methods of spectrum estimation we begin by postulating a stochastic model
for the situation at hand. Depending on the specific form of stochastic model adopted, we
may identify three different parametric approaches for spectrum estimation.

L. Model identification procedures. In this class of parametric methods, a rational
function or a polynomial in ¢™* is assumed for the transfer function of the model.

and a white-noise source is used to drive the model. as depicted in Fig. 3.4. The

power spectrum of the resulting model output provides the desired spectrum esti-

mate. Depending on the application of interest, we may adopt one of the follow-

ing models (Kay and Marple, 1981, Marple, 1987; Kay, 1988):

(i) Autoregressive (AR) mode! with an all-pole transfer function,
(ii) Moving average (MA) model with an all-zero transfer function.
(i) Awtoregressive-moving average (ARMA) model with pole-zero transfer
function.

The resulting power spectra measured at the outputs of these models are referred

to as AR, MA, and ARMA spectra, respectively. With reference to the input-out-

put relation of Eq. (3.2]). let the power spectrum S{w) of the model input be put
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White noise process Stochastic model of ]
of zero méar?;nd — | processufn), Parameterized process
variance o2 characterizad by > with a rational power
transfer function H(e'®) spedryrr; equal to
oZ{H(E™)N

Figure 3.4 Rationale of model identification procedure for power spectrum estimation.

equal to the white noise variance o”. We then find that the power spectrum S, ()
of the model output is equal to the squared amplitude response {H(e™)|? of the
model, multiplied by . The problem thus becomes one of estimating the model
parameters [i.e., parametrizing the transfer function H(€™)] such that the process
produced at the model output provides an acceptable representation (in some sta-
tistical sense) of the stochastic process under study. Such an approach to power
spectrum estimation may indeed be viewed as a problem in model (system) iden-
tification.

Among the model-dependent spectra defined herein, the AR spectrum is by
far the most popular. The reason for this popularity is twofold: (1) the linear form
of the system of simultaneous equations involving the unknown AR model
parameters, and (2) the availability of efficient algorithms for computing the
solution.

. Minimum variance distortionless response method. To describe this second para-

metric approach for power spectrum estimation, consider the situation depicted
in Fig. 3.5. The process u(n) is applied to a transversal filter (i.e., discrete-time
filter with an all-zero transfer function). In the minimum variance distortionless
response (MVDR) method, the filter coefficients are chosen so as to minimize the
variance (which is the same as expected power for a zero-mean process) of the
filter cutput, subject to the constraint that the frequency response of the filter is
equal 10 unity at some angular frequency w,. Under this constraint, the process
u(n) is passed through the filter with no distortion at the angular frequency w,.
Moreover, signals at angular frequencies other than w, tend to be attenuated.

Eigendecomposition-based methods. In this final class of parametric spectrum
estimation methods, the eigendecomposition of the ensemble-averaged correla-

Optimized transversal fitter, Residual process with
. - subject to a distortionless a power spectrum equal
3:;chast|c P ’ response constraint at to the MVDR spectrum
some angular frequency oy of the process uin)

Figure 3.5 Rationale of MVDR procedure for power spectrum estimation.
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tion matrix R of the process u(n) is used to define two disjoint subspaces: signal
subspace and noise subspace. This form of partitioning is then exploited to
derive an appropriate algorithm for estimating the power spectrum (Schmidt,
1979, 1981). Eigenanalysis and the notion of subspace decomposition are dis-
cussed in the next chapter.

Nonparametric Methods

In nonparametric methods of power spectrum estimation, on the other hand, no assump-
tions are made with respect to the stochastic process under study. The starting point in the
discussion is the fundamental equation (3.41). Depending on the way in which this equa-
tion is interpreted, we may distinguish two different nonparametric approaches:

1. Periodogram-based methods. Traditionally, the fundamental equation (3.41) is
treated as a convolution of two frequency functions. One frequency function,
U(w), represents the discrete-time Fourier transform of an infinitely long time
series, u(n); this function arises from the definition of the increment variable
dZ(w) as the product of U(w) and the frequency increment dw. The other fre-
quency function is the kernel X,{(w), defined by Eq. (3.40). This approach leads
us to consider Eq. (3.12) as the basic definition of the power spectral density
S(w), and therefore the periodogram |U,{w)|IN as the starting point for the data
analysis. However, the periodogram suffers from a serious limitation in the sense
that it is not a sufficient statistic for the power spectral density. This implies that
the phase information ignored in the use of the periodogram is essentiai. Conse-
quently, the statistical insufficiency of the periodogram is inherited by any esti-
mate that is based on or equivalent to the periodogram.

2. Multiple-window method. A more constructive nonparametric approach is to
treat the fundamental equation (3.41) as a Fredholm integral equation of the first
kind for the increment variable dZ(w); the goal here is to obtain an approximate
solution for the equation with statistical properties that are close to those of
dZ(w) in some sense (Thomson, 1982). The key to the attainment of this impor-
tant goal is the use of windows defined by a set of special sequences known as
Slepian sequences' or discrete prolate spheroidal sequences, which are funda-
mental to the study of time- and frequency-limited systems. The remarkable
property of this family of windows is that their energy distributions add up in a
very special way that collectively defines an ideal (ideal in the sense of the toial
in-bin versus out-of-bin energy concentration) rectangular frequency bin. This
property, in tum, allows us to trade spectral resolution for improved spectral
properties (i.e., reduced variance of the spectral estimate).

'Detailed information on Slepian sequences is given in Slepian (1978). A method for computing them,
for large data fength, is given in the appendix of the paper by Thomson {1982}. For additional information, see
the references listed in Thomscn's paper. Muilis and Scharf (1991) also present an informative discussion of the
role of Slepian sequences in spectrum analysis.



Sec. 3.6 Other Statistical Characteristics of a Stochastic Process 149

In general, a discrete-time stochastic process u(n) has a mixed spectrum, in that its
power spectrum contains two components: a deterministic component and a continuous
component. The deterministic component represents the first moment of the increment
process dZ(w); it is explicitly given by

EldZ{w)]) = Zakﬁ(w —a,) do (3.42)
X

where 3(w) is the Dirac. delta function defined in the frequency domain. The w, are the
angular frequencies of periodic or line components contained in the process u(n), and the
a, are their amplitudes. The continuous component, on the other hand, represents the sec-
ond central moment of the increment process dZ(w), as shown by

E[|dZ(w) — EldZ(w)][*] = S(w) do (3.43)

It is important that the distinction between the first and second moments is carefully noted.
Spectra computed using the parametric methods tend to have sharper peaks and
higher resolution than those obtained from the nonparametric (classical) methods. The
application of these parametric methods is therefore well suited for estimating the deter-
ministic component and, in particular, for locating the frequencies of periodic components
in additive white noise when the signal-to-noise ratio is high. Another well-proven tech-
nique for estimating the deterministic component is the classical method of maximum
likelihood, which is discussed in Appendix D. Of course, if the physical laws governing
the generation of a process match a stochastic model (e.g., AR model) in an exact manner
or approximately in some statistical sense, then the parametric method corresponding to
that model may be used to estimate the power spectrum of the process. If, however, the
stochastic process of interest has a purely continuous power spectrum, and the underlying
physical mechanism responsible for the generation of the process is unknown, then the
recommended procedure is the non-parametric method of multiple windows.

In this book, we confine our attention to classes 1 and 2 of parametric methods of
spectrum estimation, as their theory fits naturally under the umbrella of adaptive filters.
For a comprehensive discussion of the other methods of spectrum analysis, the reader is
referred to the books by Gardner (1987), Marple (1987), and Kay (1988), the paper by
Thomson (1982), and a chapter contribution by Mullis and Scharf (1991).

3.6 OTHER STATISTICAL CHARACTERISTICS OF A STOCHASTIC PROCESS

In the material presented in the previous chapter and up to this point in the present chapter,
we have focused our attention on a partial characterization of a discrete-time stochastic
process. According to this particular characterization, we only need to specify the mean as
the first moment of the process and its autocorrelation function as the second moment.
Since the autocorrelation function and power spectral density form a Fourier-transform
pair, we may equally well specify the power spectral density in place of the autocorrela-
tion function. The use of second-order statistics as described herein is adequate for the
study of linear zdaptive filters. However, when we move on later in the book to consider
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difficult applications (e.g., blind deconvolution) that are beyond the reach of linear adap-
tive filters, we will have to resort to the use of other statistical properties of a stochastic

Two particular statistical properties that bring in additional information about a sto-
chastic process, which can prove useful in practice, are as follows:

1. High-order statistics. An obvious way of expanding the characterization of a sta-

tionary stochastic process is to include higher-order statistics (HOS) of the pro-
cess. This is done by invoking the use of cumulants and their Fourier transforms,
known as pelyspectra. Indeed, cumulants and polyspectra of a zero-mean sto-
chastic process may be viewed as generalizations of the autocorrelation function
and power spectral density, respectively. It is important to note that higher-order
statistics are only meaningful in the context of non-Gaussian processes. Further-
more, to exploit them, we need to use some form of nonlinear filtering.

. Cyclostationarity. In an important class of stochastic processes commonly

encountered in practice, the mean and autocorrelation function of the process
exhibit periodicity, as in

w1, + ) = uit) (3.44)
P+ T+ D =riy.ty) (3.45)

for all ¢, and ¢,. Both 7, and ¢, represent values of the continuous-time variable 1,
and T denotes period. A stochastic process satisfying Eqs. (3.44) and (3.45) is
said to be cyclostationary in the wide sense (Franks, 1969; Gardner and Franks,
1975; Gardner, 1994). Modeling a stochastic process. as cyciostationary adds a
new dimension, namely, the period 7, to the partial description of the process.
Examples of cyclostationary processes include a modulated process obtained by
varying the amplitude, phase, or frequency of a sinusoidal carrier. Note that,
unlike higher-order statistics, cyclostationarity can be exploited by means of lin-
ear filtering.

In the sequel, we will discuss these two specific aspects of stochastic processes under the
section headings “polyspectra” and "spectral-correlation density.” As already mentioned,
polyspectra provide a frequency-domain description of the higher-order statistics of a sta-
tionary stochastic process. By the same token, spectral-correlation density provides a fre-
quency-domain description of a cyclostationary stochastic process.

3.7 POLYSPECTRA

Consider a stationary stochastic process u(n) with zero mean; that is,

Elu(n)] =0 forall n
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Let u(n), u(n + 1)), ..., u(n + 7,_,) denote the random variables obtained by observing
this stochastic process at times n, n + 7, ..., n + T,_,, respectively. These random vari-
ables form the k-by-1 vector:

u=[un), uin + 1), ..., um+ 1)) (3.46)
Correspondingly, define a k-by-1 vector:
z=(z,2 ... 2] (3.47)

We may then define the kth-order cumulant of the stochastic process u(n), denoted by
ety oy o ., T4 y)s as the coefficient of the vector z in the Taylor expansion of the cumu-
lant-generating function (Priestley, 1981; Swami and Mendel, 1990; Gardner, 1994):

K(z) = In E[exp(z’u)} (3.48)

The kth-order cumulant of the process u(n) is thus defined in terms of its joint moments of
orders up to &; to simplify the presentation in this section, we assume that w(n) is real
valued. Specifically, the second-, third-, and fourth-order cumulants are given, respec-
tively, by

¢5(1) = Elu(n)u(n + 7)1 (3.49)
c5(7y, T,) = Elu(mu(n + 1))u(n + 1,)] (3.50)
and
(T}, Ty, T3) = Elu(n)ue(n + 7 Ju(n + 1)uln + )]
— Elu(mu(n + 7)]E[u(n +1)u(n + 1,)) (3.51)
~ Elu{mu(n + t))E{uln + 7,)u(n + 1))
— Elu(nu(n + 73)1Ele(n +7))u(n + 1,)]
From the definitions given in Eqgs. (3.49) to (3.51), we note the following:

1. The second-order cumulant ¢,(t) is the same as the autocorgelation function r(t).

2. The third-order cumulant c,(t,, 7,) is the same as the third-order moment
Elu(mu(n + tDu(n + 7).

3. The fourth-order cumulant c(7,, T,, T5) is different from the fourth-order moment
Elu(ru(n + t)u(n + 1)u(n + 75)]. In order to generate the fourth-order cumu-
tant, we need to know the fourth-order moment and six different values of the
autocorrelation function.

Note that the kth-order cumulant c¢(T,, 7, - . . , T,_,) does not depend on time ». For
this to be valid, however, the process u(n) has to be stationary up to order k. A process
u(n) is said to be stationary up to order k if, for any admissible (n,, ny, . . ., n,} all the
joint moments up to order k of {u(n,), u(n,), . . . , u(n,)} exist and equal the corresponding
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Jjoint moments up to order k of {u(n, + 1), u(n, + 1), .. ., u(n, + 1)} where {n, + 1,
ny +1,...,n, + v} is an admissible set too (Priestley, 1981).

Consider next a linear time-invariant system, characterized by the impulse response
h,. Let the system be excited by a process x(n) consisting of independent and identically
distributed (iid) random variables. Let u(n) denote the resulting system output. The kth-
order cumulant of u(n) is given by

T Ty ey Ty) = Yki;m hl'h;'+1'|“'h1'+1'*_[ (3.52)

where <y, is the kth-order cumulant of the input process x(n). Note that the summation term
on the right-hand side of Eq. (3.52) has a form similar to that of a kth-order moment,
except that the expectation operator has been replaced by a summation.

The kth-order polyspectrum (or kth-order cumulant spectrumy is defined by (Priest-
ley, 1981; Nikias and Raghuveer, 1987):

= o
Ck(wl'wZ’ ",,mk_]) = z Z Ck(Tl’T2"“’Tk—l)
R 75 e

cexpl—jlom, + o+ @ T) (3.53)

A sufficient condition for the existence of the polyspectrum Cy(w,, w,, . . ., w,_,) is
that the associated kth-order cumulant ¢,(T;, 7, . . ., 7,_,) be absolutely summable, as
shown by

Z Z 'C*(T,,Tz,. o Ty <@ (3.54)

The power spectrum, bzspectrum, and trispectrum are special cases of the kth-order
polyspectrum defined in Eq. (3.53). Specifically, we may state the following:

1. For k = 2, we have the ordinary power spectrum:

Cow) = D cy(7) exp (= jeoy7,) (3.559
1y=—
which is a restatement of the Einstein-Wiener—Khintchine relation, namely, Eq.
(3.15).
2. For k = 3, we have the bispectrum, defined by

Clonw)= D > cfn, 1) exp{—~jtr, + o)) (3.56)

Tl:—m Ta==—00

2
3. For k = 4, we have the trispectrum, defined by

Ciw;, 0, wy) = Z Z Z Ty, T2 T3 €Xp [—j(0, 7, + 0,1+ wyTy))

‘rlz—w 12=—-°c 13=—°° (3'57)
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An outstanding property of polyspectrum is that all potyspectra of order higher than
the second vanish when the process u(n} is Gaussian. This property is a direct conse-
quence of the fact that all joint camulants of order higher than the second are zero for mul-
tivariate Gaussian distributions. Accordingly, the bispectrum, trispectrum, and all higher-
order polyspectra are identically zero if the process u(m) is Gaussian. Thus, higher-order
spectra provide measures of the departure of a stochastic process from Gaussianity
(Priestley, 1981; Nikias and Raghuveer, 1987).

The kth-order curnulant ¢, (T, 7, . . . , T;,—;) and the kth-order polyspectrum
Cyw,, vy, - . . , w,_,) form a pair of multidimensional Fourier transforms. Specifically, the
polyspectrum Cy(w,, ®,, . . . , w,_,), is the multidimensional discrete-time Fourier trans-
formof ¢, (v, 75, . . ., Tyo)), and ¢ (T), T, - . ., Ty—y) is the inverse multidimensional dis-
crete-time Fourier transform of C(w;, &, ..., @ _)).

For example, given the bispectrum C;(w;, ®,), we may determine the third-order
cumulant ¢,(7,, 7,) by using the inverse two-dimensional discrete-time Fourier transform:

T ) = (ﬁﬂ [ Cy(wy, wy) exp (w1, + 1)) doyde,  (3.58)

We may use this relation to develop an alternative definition of the bispectrum as follows.
According to the Cramér spectral representation, we have

w

u(n) = 2lﬂ Jﬂwej"’"dZ(m) for all (3.59)

Hence, using Eq. (3.59) in (3.50), we get

k3 ' v
e3{1, T = (%)] J I I exp(jr(w, + 0, tw,)]
W) J—nd—m/—=
- expli(w,T, + ©,7,)1EldZ(w,) dZ(w,) dZ(w,)] (3.60)
Comparing the right-hand sides of Egs. (3.58) and (3.60), we deduce the following result:

Ciw, w)dw,do, o +w,+w,=0

EldZ(w,) dZ(w,) dZ(w,)] = {0, (3.61)

otherwise
It is apparent from Eq. (3.61) that the bispectrum C,(w,, w,) represents the contribution to
the mean product of three Fourier components whose individual frequencies add up to
zero. This is an extension of the interpretation developed for the ordinary power spectrum
in Section 3.3. In a similar manner we may develop an interpretation of the trispectrum.

In general, the polyspectum Cy@,, w,, . . . , @,_) is complex for order k higher
than two, as shown by

Clwd)) @y . .., ) = [Cltny, @y, ..., 0, ) | explibley, @y ... @y ))] (3.62)

where we note that |C(w,, ®,, . . .., @_,) is the magnitude of the polyspectrum, and
$ 0, @y, . . ., w,_,)is the phase. Moreover, the polyspectrum is a periodic function with
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period 2, that is,
Clw, g, ..., 0 ) = Clwy + 2m o, + 27, ..., 0, , + 27) (3.63)

Whereas the power spectral density of a stationary stochastic process is phase blind, the
polyspectra of the process are phase sensitive. More specifically, the power spectral den-
sity is real-valued; referring to the input—output relation of Eq. (3.21), we clearly see that
in passing a stationary stochastic process through a linear system, information about the
phase response of the system is completely destroyed in the power spectrum of the output.
In contrast, the polyspectrum is complex-valued, with the result that in a similar situation
the polyspectrum of the output signal preserves information about the phase response of
the system. It is for this reason that polyspectra provide a useful tool for the "blind" identi-
fication of an unknown system, where we only have access to the output signal and some
additional information in the form of a probabilistic model of the input signal. We will
have more to say on this issue in Chapter 18.

3.8 SPECTRAL-CORRELATION DENSITY

Polyspectra preserve phase information about a stochastic process by invoking higher-
order statistics of the process, which is feasible only if the process is non-Gaussian. The
preservation of phase information is also possible if the process is cyclostationary in the
wide sense, as defined in Eqgs. (3.44) and {3.45). This latter approach has two important
advantages over the higher-order statistics approach:

» The phase information is contained in second-order cyclostationary statistics of
the process; hence, the phase information can be exploited in a computationally
efficient manner that avoids the use of higher-order statistics.

* Preservation of the phase information holds, irespective of Gaussianity.

Consider then a discrete-time stochastic process u(n) that is cyclostationary in the
wide sense. Without foss of generality, the process is assumed to have zero mean. The -
ensemble-average autocorrelation function of the process u(n) is defined in the usnal way
by Eq. (2.6), reproduced here for convenience of presentation:

r(n,n — k) = E{u(n)u*(n — k)] (3.64)
Under the condition of cyclostationarity, the autocorrelation function r(n,n — k) is peni-
odic in n for every £ Keeping in mind the discrete-time nature of the process w(n), we may
expand the autocorrelation function r(n, n — k) into a complex Fourier series as follows
{Gardner, 1994);

rinn=k =Y eI (3.65)

{a}
where both n and & take on only integer values, and the set {a} inciudes all values of o for
which the corresponding Fourier coefficient r*(k) is not zero. The Fourier coefficient r*(k)
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is itself defined by

N—1
PR = g D rin,n—kye T (3.66)
n=0

where the number of samples N denotes the period. Equivalently, in light of Eq. (3.64), we
may define (k) as

N-1
k) = %,{ > Elu(nyu* (n—k)e~2men) }ef’"'* (3.67)
n=0

The quantity r*(k) is called the cyclic autocorrelation function, which has the following
properties:

1. The cyclic autocorrelation function 7*(k) is periodic in o with period two.
2. For any a, we have from Eq. (3.67):

PR = (-1 k) (3.68)
3. For the special case of a = 0, Eq. (3.67) reduces to
Pk = rk) (3.69)

where r(k) is the ordinary autocorrelation function of a stationary process.

According to the Einstein~Wiener—Khintchine relations of Egs. (3.15) and (3.16),
the ordinary versions of the autocorrelation function and power spectral density of a wide-
sense stationary stochastic process form a Fourier-transform pair. In a corresponding way,
we may define the discrete-time Fourier transform of the cyclic autocorrelation function
(k) as follows (Gardner, 1994):

5%(w) = Z Pe . —m<wesm (3.70)
k=—
The new quantity S*(w) is called the spectral-correlation density, which is complex val-
ued for e # 0. Note that for the special case of a = 0, Eq. (3.70) reduces to

S%w) = S(w) (3.71)

where S(w) is the ordinary power spectral density.

In light of the defining equations (3.67) and (3.70), we may set up the block diagram
of Fig. 3.6 for measuring the spectral-correlation density 5%(w). For this measurement, it is
assumed that the process u(n) is cycloergodic (Gardner, 1994), which means that time
averages may be substituted for ensemble averages "with samples taken once per period.”
According to the instrumentation described here, $%w) is the bandwidth-normalized ver-
sion of the cross-correlation narrow-band spectral components contained in the time series
u(n) at the angular frequencies @ + amand @ — o, in the limit as the bandwidth of these
spectral components is permitted to approach zero (Gardner, 1994). Note that the two nar-
sow-band filters in Fig. 3.6 are identical, both having a mid-band (angular) frequercy w
and a bandwidth Aw that is small compared to w, but large compared to the reciprocal of
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the averaging time used in the cross-correlator at the output end in Fig. 3.6. In one channel
of this scheme the input u(n) is multiplied by exp(—jman), and in the other channel it is
multiplied by exp(jmran); the resulting filtered signals are then applied to the cross-cor-
relator. It is these two multiplications {prior to correlation) that provide the spectral-corre-
lation density S®(w) with a phase-preserving property for nonzero values of a.

3.9 SUMMARY AND DISCUSSION

In this chapter we discussed various aspects of spectrum analysis pertaining to a discrete-
time stochastic process. In particular, we identified three distinct spectral parameters,
depending on the statistical characterization of the process, as summarized here:

1. Power spectral density, S(w), defined as the discrete-time Fourier transform of
the ordinary autocorrelation function of a wide-sense stationary process. For such
a process, the autocorrelation function is Hermitian, which makes the power
spectral densily S(w) a real-valued quantity. Accordingly, S(w) destroys phase
information about the process. Despite this limitation, the power spectral density
is commonly accepted as a useful parameter for displaying the correlation prop-
erties of a wide-sense stationary process.

2. Polyspectra, C{w,, w,, . . . , w,_;), defined as the multidimensional Fourier
transform of the cumulants of a stationary process. For second-order statistics,
k = 2, and C,(w,) reduces to the ordinary power spectral density S(w). For
higher-crder statistics, k > 2, and the polyspectra Cy(w, @y, . . ., &;_,) take on
complex forms. It is this property of polyspectra that makes them a useful tool for
dealing with situations where knowledge of phase is a necessary requirement.
However, for polyspectra to be meaningful, the process has to be non-Gaussian,
and the exploitation of phase information contained in polyspectra requires the
use of nonlinear filtering.

3. 'Spectral-carrelation density, §°(w), defined as the discrete-time Fourier trans-
form of the cyclic autocorrelation function of a process that is cyclostationary in
the wide sense. For a # 0, §%(@) is complex valued; for a = 0, it reduces to S(w).
The useful feature of S$%w) is that it preserves phase information, which can be
exploited by means of linear filtering.

The different properties of the ordinary power spectral density, polyspectra, and spectral-
correlation density give these statistical parameters their own individual areas of applica-
tion.

One last comment is in order. The theories of second-order cyclostationary pro-
cesses and conventiona! polyspectra have been brought together under the umbrella of
cyclic polyspectra. Simply stated, cyclic polyspectra are spectral cumulants, in which the
individual frequencies involved can add up to any cycle frequency a, whereas they must
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add up to zero for conventional polyspectra. For a detailed treatment of cyclic polyspectra,

the interested reader is referred to (Gardner and Spooner, 1994; Spooner and Gardner.
1994).

PROBLEMS

L.

7.

Consider the definition given in Exg. (3.12) for the power spectral density. s it permissible to
interchange the operation of taking the limit and that of the expectation in this equation? Justfy
YOUT answer.

In deriving Eq. (3.25), we invoked the notion that if a wide-sense stationary process is applied
to a linear, time-invariant, and stable filter, the stochastic pracess produced at the filter output is
wide-sense stationary too. Show that, in general,

r{n, m} = Z Z h(DR*(kyr,(n—i,m—k)

i=—-x k=—x

which includes the result of Eq. (3.25) as a special case.

. The mean-square value of the filter output in Eq. (3.28) assumes that the bandwidth of the filter

is small compared to its midband frequency. Is this assumption necessary for the corresponding
result obtained in Example 1 for a white-noise process? Justify your answer.

. A white-noise process with a variance of 0.1 V squared is applied to a low-pass discrete-time

filter whose bandwidth is 1 Hz. The process is real.

(a) Calculate the variance of the filter output.

{(b) Assuming that the input is Gaussian, determine the probability density function of the filter
output.

. Justify the fact that the expectation of |dZ(m)|2 has the physical significance of power.
. Show that the third- and higher-order cumulants of a Gaussian process are all identically zero.

Develop a physical interpretation of the trispectrum Cy(®,, @,,05) of a stationary stochastic
process w(n); assume that u(n) is real valued.

. Consider a linear time-invariant system whose transfer function is H(z). The system is excited

by a real-valued sequence x(n) of independently and identically distributed (iid) random

variables with zero mean and unit variance. The probability distribution of x(n) is

nonsymmetric.

(a) Evaluate the third-order cumuiant and bispectrum of the system output u(r).

(b) Show that the phase component of the bispectrum of u(n) is related to the phase response of
the system transfer function H(z) as follows:

arg(Cy(w,, wy)] = arg[H(¢*)] + arg [ H(e®?)] — arg[H(&“'**D)]

. Equation (3.52) gives the kth-order cumulant of the output of a linear time-invariant system of

impulse response h, that is driven by a sequence x(n) of independent and identically distributed
random variables. Prove the validity of this equation.
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10, Show that for a stochastic process u(n) that is cyclostationary in the wide sense, the cyclic
autocorrelation function r°(k) satisfies the property

r(—k) = r"¥k)

where the asterisk denotes complex conjugation,

11. Figure 3.6 describes a method for ineasuring the spectral-correlation density of a time series
u(n) that is representative of a,cyclostationary process in the wide sense. Foro = 0, show that
Fig. 3.6 reduces to the simpler form shown in Fig. 3.3.



