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CHAPTER

7

- Kalman Filters

In this chapter we complete our study of linear optimum filters by developing the basic
ideas of Kalman filtering. A distinctive feature of a Kalman filter is that its mathematical
formulation is described in terms of state-space concepts. Another novel feature of a
Kalman filter is that its solution is computed recursively. In particular, each updated esti-
mate of the state is computed from the previous estimate and the new input data, so only
the previous estimate requires storage. In addition to eliminating the need for storing the
entire past observed data, a Kalman filter is computationally more efficient than comput-
ing the estimate directly from the entire past observed data at each step of the filtering
process. The Kalman filter is thus ideally suited for implementation on a digital computer.
Most importantly, it has been applied successfully to many practical problems in diverse
fields, particularly in aecrospace and acronautical applications.

Qur interest in the Kalman filter is motivated by the fact that it provides a unifying
framework for the derivation of an important family of adaptive filters known as recursive
least-squares filters, as demonstrated in subsequent chapters of the book. To pave the way
for the development of the Kalman filter, we begin by solving the recursive minimum
mean-squared estimation problem for the simple case of scalar random variables. For this
solution, we use the innovations approach that exploits the correlation properties of a spe-
cial stochastic process known as the innovations process (Kailath, 1968, 1970).
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7.1 RECURSIVE MINIMUM MEAN-SQUARE ESTIMATION FOR
SCALAR RANDOM VARIABLES

Let us assume that, based on a complete set of observed random variables y(1), ¥(2), . . .,
y(n — 1), starting with the first observation at time 1 and extending up to and including
time n — 1, we have found the minimum mean-square estimate £(n — 1|%,_,) of a related
zero-mean random variable x(n — 1). We are assuming that the observation at (or before)
n = 0 is zero. The space spanned by the observations y{(1), . . . , ¥(n — 1) is denoted by
%, _,. Suppose that we now have an additional observation y(n) at time n, and the require-
ment is to compute an apdated estimate f(nf@n) of the related random variable x(n), where
%, denotes the space spanned by y(1), .. . , ¥(n). We may do this computation by storing
the past observations, y(1), ¥2), .. ., y(n — 1), and then redoing the whole problem with
the available data y(1), ¥(2), . . . , ¥(n = 1), y(n), including the new observation. Compu-
tationally, however, it is much more efficient to use a recursive estimation procedure. In
this procedure we store the previous estimate £(n — 1/%,,_,) and exploit it to compute the
updated estimate £(n|%,) in light of the new observation y(n). There are several ways of
developing the algorithm to do this recursive estimation. We will use the notion of inno-
vations (Kailath, 1968, 1970), the origin of which may be traced back to Kolmogorov
(1941). ‘
Define thé forward prediction error

frooiny =y(n) = $(n|¥.—y), n=12,... (7.1)

where )‘r(nl‘fy,l_ 1) is the one-step prediction of the observed random variable y(n) at time n,
using all past observations available up o and including time n — 1. The past obscrvations
used in this estimation are y(1), y(2), . . . , ¥(n — 1), so the order of the prediction equals
n — 1. We may view f,_,(n) as the output of a forward prediction-error filter of order
n — 1, and with the filter input fed by the time series y(1), W(2), . . ., ¥(r). Note that the
prediction order n — 1 increases linearly with n. According to the principle of orthogo-
nality, the prediction error f,—,(n) is orthogonal to all past observations (1), ¥(2), .. -,
y(n — 1) and may therefore be regarded as a measure of the new information in the ran-
dom variable y(r) observed at time n, hence the name “innovation.” The fact is that the
observation y(n) does not itself convey completely new information, since the predictable -
part, %(n|%,,..,), is already completely determined by the past observations (1), ¥(2),. . .,
y(n — 1). Rather, the part of the observation y(n) that is really new is contained in the for-
ward prediction error f,(n). We may therefore refer to this prediction error as the inno-
vation, and for simplicity of notation write

a(n) = fo_i(m), n=1,2,... (7.2)
The innovation a(r) has several important properties, as described here.
Property 1. The innovation o(n), associated with the observed random variable
y(n), is orthogonal to the past observations w(1), y2), . .., yn — 1), as shown by
Hamy*(®)] =0, 1<k=n-1 (7.3)



304

Chap. 7 Kaiman Filters

This is simply a restatement of the principle of orthogonality.

Property 2. The innovations a(l), a(2), . . ., aln) are orthogonal to each other,
as shown by

El(m)a*(k)] =0, 1 =k=n-1 (7.4)
This is a restatement of the fact that [see part (e) of Problem 20, Chapter 6):
Elf,o(m)fi- (0] =0, 1=k=n~—1

Equation (7.4), in effect, states that the innovation process c(n), described by Eqs. (7.1)
and (7.2), is white.

Property 3. There is a one-to-one correspondence between the observed dala
{¥(1), (2), ..., ¥(n)} and the innovations {a(1), a(2), . . ., c(n)}, in that the one sequence
may be obtained from the other by means of a causal and causally invertible filter without
any loss of information. We may thus write

(M), ¥2), .. ..y} = (1), (2), ..., a(n)}. (1.5)

To prove this property, we use a form of the Gram-Schmidt orthogonalization procedure
(described in Chapter 6). The procedure assumes that the observations y(1), ¥(2), . . . , y(n)
are linearly independent in an algebraic sense. We first put

all) = y(1) (7.6)
where it is assumed that $(1|%,) is zero. Next we put
a(2) = W2) + a1 (D) a7

The coefficient a, , is chosen such that the innovations a(1) and c(2) are orthogonal, as
shown by

Ela(Qa*(1}} =0 (7.8}
This requirement is satisfied by choosing

a, = - Eb@y*()} (1.9)
Ely(1)y*(1)]
Except for the minus sign, a, , is a partial correlation coefficient in that it equals the cross-
correlation between the observations y(2) and y(1), normalized with respect to the mean-
square value of y(l). :
Next, we put

a(3) = y(3) + a1 (2) + ax¥(1) (7.10)

where the coefficients a5 ; and ag‘z are chosen such that a(f'S) is orthogonal to both a(1)
and a(2), and so on. Thus, in general, we may express the transformation of the observed
data y(1), ¥(2), . . . , ¥(n) into the innovations a(1), a(2), . . ., a(n) by writing
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fa()] [ 0 see 07 YD)

o2) an 1 N IREY)
. = | . . . - (7.11)

Lor(n) LOp—10n—) Ap—14a-2 *** 12 L)’(n)f

The nonzero elements of row k of the lower triangular transformation matrix on the right-
hand side of Eq. (7.11) are deliberately denoted as ay— 14—y, Gk—105—2 . - -, 1, where k = 1,
2, ..., n. These elements represent the coefficients of a forward prediction-error filter of
order k — 1. Note that a; o = 1 for all k. Accordingly, given the observed data y(1), »(2),
..., y(n), we may compute the innovations a(1), a(2), . . ., a(n). There is no loss of infor-
mation in the course of this transformation, since we may recover the original observed
data y(1), ¥2), .. ., y(n) from the innovations a(1), a(2), . . ., a(n). This we do by pre-
multiplying both sides of Eq. (7.11) by the inverse of the lower triangular transformation
matrix. This matrix is nonsingular, since its determinant equals 1 for all n. The transfor-
mation is therefore reversible.
Using Eq. (7.5), we may thus write

#(n|¥,) = minimum mean-square estimate of x()
given the observed data y(1), ¥(2), .. ., y(n)

or, equivalently,

#n|¥,) = minimum mean-square estimate of x(n)
given the innovations a(1), a(2), . . ., a(n)

Define the estimate (n|%,) as a linear combination of the innovations a(1), a(2), . . .,

a(n);

3l = > biatk) (7.12)
k=1
where the b, are to be determined. With the innovations a(1), a(2), . . . , a(n) orthogonal

to each other, and the &, chosen to minimize the mean-square value of the estimation error
x(n) — X(n|%,,), we find that
*
, = Bxnat®) ) g, (1.13)
Efa(k)a* (k)]
We rewrite Eq. (7.12) in the form

n—1

$nl%,) = D bak) + buan) (7.14)
k=0
where
p, = Flxtma*(a)] a15)

Ela(n)a*(n)]
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However, by definition, the summation term on the right-hand side of Eq. (7.14) equals the
previous estimate (n — 1|%,,_,). We may thus express the recursive estimation algorithm
that we are secking as

#nl%,) = i(n — 1%, _,) + b,a(n) (7.16)

where b, is defined by Eq. (7.15). Thus, by adding a correction term b,a(n) to the previ-
ous estimate i(n — 1|%,,,), with the correction being proportional to the innovation a(n),
we get the updated estimate $(n|%Y,,). ‘ '

The simpte formulas of Eq. (7.15) and (7.16) are the basis of all recursive linear esti-
mation schemes. Equipped with these simple and yet powerful ideas, we are now ready to
study the more general Kalman filtering problem.

7.2 STATEMENT OF THE KALMAN FILTERING PROBLEM

Consider a linear, discrete-time dynamical system described by the signal-flow graph
shown in Fig. 7.1, The time-domain description of the system presented here offers the fol-
lowing advantages (Gelb, 1974):

* Mathematical and notational convenience
* Close relationship to physical reality
* Useful basis for accounting for statistical behavior of the system

The notation of state plays a key role in this formulation. The state vector, denoted by x(n)
in Fig. 7.1, is defined as any set of quantities that would be sufficient to uniquely describe
the unforced dynamical behavior of the system. Typically, the state vector x(n), assumed
to be of dimension M, is unknown. To estimate it, we use a set of observed data, denoted
by the vector y(n) in Fig. 7.1. The observation vector y(n) is assumed to be of dimen-
sion N,

v, (n) ' yn)
; Cn)

V()

Figure 7.1 Signai-flow graph representation of a linzar, discrete-time dynamical system.
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In mathematical terms, the signal-flow graph of Fig. 7.1 embodies the following pair
of equations:

1. A process equation
x(n + 1) =F@n + 1, n)x(n) + vy(n) (7.17)

where F(n + 1, n) is a known M-by-M state transition matrix relating the state of
the system at times n + 1 and n. The M-by-1 vector v,(n) represents process
noise. The vector v,{n) is modeled as a zero-mean, white-noise process whose
correlation matrix is defined by

. n=k |
Evi(mvi)] ={8_‘(") ek (7.18)

2. A measurement equation, describing the observation vector as
y(n) = C(mx(n) + va(n) (7.19)

where C(n) is a known N-by-M measurement matrix. The N-by-1 vector va(n) is
called measurement noise. It is modeled as a zero-mean, white-noise process
whose correlation matrix is

s n=k
E[vy(mv'3(k)] = [gf(") "k (7.20)

It is assumed that x(0), the initial value of the state, is uncorrelated with both
v,(n) and v,(») for n = 0. The noise vectors v,(n) and v(n) are statistically inde-
pendent, so we may wrile

Elvi(n) Vi) =0  foralinand k 7.2

The Kalman filtering problem may now be formally stated as follows: Use the entire
observed data, consisting of the vectors y(1), ¥(2), - - -, y(n), to find for each n = 1 the
minimum mean-square estimates of the components of the state x(i). The problem is called
the filtering problem if i = n, the prediction problem if i > n, and the smoothing problem
if 1 < i < n. In this chapter we will only be concered with the filtering and prediction
problems, which are closely related. As remarked earlier in the introduction, we will solve
the Kalman filtering problem by using the innovations approach (Kailath, 1968, 1970,
1981; Tretter, 1976).

7.3 THE INNOVATIONS PROCESS
Let the vector $(n|%¥,.—,) denote the minimum mean-square estimate of the observed data

y(n) at time n, given all the past values of the observed data starting at time n = 1 and
extending up to and including time n — 1. These past values are represented by the vec-
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tors y(1), y(n), . . ., y(n — 1), which span the vector space ¥,,_,. We define the innova-
tions process associated with y(n) as

a(n) = y(n) = §(n|Y,—1), n=1,2,... (7.22)

The M-by-1 vector a(n) represents the new information in the observed data y(n).
Generalizing the results of Eqgs. (7.3), (7.4) and (7.5), we find that the innovations
process a(n) has the following properties:

1. The innovations process an), associated with the observed data y(n) at time n,
is orthogonal to all past observations y(1), ¥(2), . . ., y(n — 1) as shown by

Ele(ny' )] =0, l=k=<n-1 (7.23)

2. The innovations process consists of a sequence of vector random variables that
are orthogonal to each other, as shown by

Elama®)] =0, 1 =k=n-1 (7.24)

3. There is a one-to-one correspondence between the sequence of vector random
variables (¥(1), ¥(2), . . ., ¥(n)} representing the observed data and the sequence
of vector random variables {e(1), a(2), . . ., at(n)} representing the innovations
process, in that the one sequence may be obtained from the other by means of lin-
ear stable operators without loss of information. Thus, we may state that

(y(1), ¥(2), ..., ¥(m)) = {a(]), &A2), ..., an)} (725)

To form the sequence of vector random variables defining the innovations process, e may
use a Gram—Schmidt orthogonalization procedure similar to that described in Section 7.1,
except that the procedure is now formulated in terms of vectors and matrices (see Prob-
lem 1).

Correlation Matrix of the Innovations Process

To determine the correlation matrix of the innovations process a(n), we first solve the state

equation (7.17) recursively to obtain
k—1

x(k) = F(k, 0x(0) + > Fik, i + Dv(D) (7.26)
i=1
where we have made use of the following assumptions and properties:

1. The initial value of the state vector x(0).

2. As previously assumed, the observed data [and therefore the noise vector v (n)}
are zero for n < 0.
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3. ‘The state transition matrix has the properties
Flk k— DFk— 1, k—2)... Fi+1,)=Fki)
and
Ftk )=1

where I is the identity matrix. Note that for a imé-invanant system we have
Fin + 1, n) = Fn+ 1 - n) =F(1) = constant.

Equation (7.26) shows that x(k) is a linear combination of x(0) and #,(1), ¥,(2), . . .,
"'l(k - l)

By hypothesis, the measurement noise vector v,(n) is uncorrelated with both the ini-
tial state vector x(0) and the process noise vector v,(r). Accordingly, premultiplying both
sides of Eq. (7.26) by v/i(n), and taking expectations, we deduce that

Elx(k)y3(m)] =0, kn=0 (1.27)
Correspondingly, we deduce from the measurement equati;)n (7.19) that
Eppovim] =0, O0=k=n-1 (7.28)
Moreover, we may write
Elytvim)] =0, O0=k=n (7.29)

Given the past observations y(1), . . ., y(n — 1) that span the space Y, , we also
find from the measurement equation (7.19) that the minimum mean-square estimate of the
present value y(n) of the observation vector equals

§([Y._ 1) = CRM Fy) + 9201 Ypy)

However, the estimate ¥2(n|%,—,) of the measurement noise vector is zero since vy(n) is
orthogonal to the past observations y(1), . .., y(n — 1); see Eq. (7.28). Hence, we may
simply write

§(n|¥,—1) = CMR(n|Ynz1) (7.30)

Therefore, using Eqs. (7.22) and (7.30), we may express the innovations process in the
form

a(n) = y(n) — C(mMR(n [Y,-1) (7.31)
Substituting the measurement equation (7.19) in (7.31), we get
a(n) = C(n)e(n, n — 1) + va(n) (7.32)

where €(n, n — 1) is the predicted state-error vector at time n, using data up to time
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n — 1. That is, €(n, n — 1) is the difference between the stale vector X(n) and the one-step
prediction vector &(n |%,,_.,), as shown by

€n n— 1) =x(m — x(n|Y,_) (7.33)

Nate that the predicted state-error vector is orthogonral to both the process noise vector
v,(n) and the measurement noise vector vy{n); see Problem 2.
The correlation matrix of the innovations process a(n} is defined by

Rin) = Ela(nya’(n)] (7.34)

Therefore, substituting Eq. (7.32) in (7.34), expanding the pertinent terms, and then using
the fact that the vectors €(n, n — 1) and v,(n) are orthogonal, we obtain the result:

R(n) = C()K(n, n — DC(n) + Qu(n) (7.35)

where Q,(n) is the correlation matrix of the noise vector v,(n). The M-by-M matrix
K(n, n — 1) is called the predicted state-error correlation matrix; it is defined by

K(n, n— 1) = Ele(n, n — De(n, n — 1] (7.36)

where €(n, n — 1) is the predicted state-error vector. The matrix K(n, n — 1) is used as the
statistical description of the error in the predicted estimate X(n|%,,_ ).

7.4 ESTIMATION OF THE STATE USING THE INNOVATIONS PROCESS

Consider next the problem of deriving the minimum mean-square estimate of the state x(i)
from the innovaticns process. From the discussion presented in Section 7.1, we deduce
that this estimate may be expressed as a linear combination of the sequence of innovations
processes a(l), a(2), . .., a(n) [see Eq. (7.12) for comparison):

n

R(ilY,) = Y Bba®) (7.37)
k=1

where B(k), k = 1, 2, ..., n, is a set of M-by-N matrices to be determined. According to
the principle of orthogonality, the predicted state-error vector is orthogonal to the innova-
tion process, as shown by

Efe(i, ma(m)] = E{{X(}) — R(i|%,)]e(m))
= 0, m=12,....,n

Substituting Eq. (7.37) in (7.38) and using the orthog(mahty property of the innovations
process, namely, Eq. (7.24), we get

Elx(da’(m)] = B{m)E{a(m)a"(m)]
= B(m)R(m)

(7.38)

(7.39)
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Hence, postmultiplying both sides of Eq. (7.39) by the inverse matrix R~ (m), we find that
B:m) is given by

B{m) = E{x()a"(m)] R™'(m) (7.40)
Finally, substituting Eq. (7.40) in (7.37), we get the minimum mean-square estimate

RGY,) = O Ex@e @] R™ ®ak)
k=1
n—1

- Z E[x(Da(k)] R™' (k) a(k)
k=1

+ E[x()a(m)] R~ (m)a(n)
For i = n + 1, we may therefore write
n—1
Kn + 1) = > Elx(r + Do) R (Rak)
k=1 : (7.41)
+ E[x(n + De"(n)] R™'(m)a(n)

Hdwever. the state X(n + 1) at time n + 1 is related to the state x(n) at time n by Eq. (7.17).
Therefore, using this relation, we may write for 0 < k < n;

Elx(n + Dafi(k)] = E{[F(n + 1, n)x(n) + v,(m}a”(k)}
= F(n + 1, n)E[x(n)ec"(k)}

where we have made use of the fact that a(k) depends only on the observed data
y(1),. .., y(k), and therefore from Eq. (7.29) we see that y(n) and a(k) are orthogonal for
0 < k =< n. We may thus rewrite the summation term on the right-hand side of Eq. (7.41)
as follows:

n—1 n—1

Z Elx(n + 1)a (W) R~ (Wa(k) = Fin + 1, n) Z E[x(ma (k)] R~ (kalk)
k=1 k=1

(7.42)

= Fin + 1, &(n[Y,_) (7.43)

To proceed further, we introduce some basic definitions, as described next.

Kalman Gain

Define the M-by-N matrix: .
G(n) = Elx(n + Dan)) R™'(n) (7.44)

Then, using this definition and the result of Eq. (7.43), we may rewrite Eq. (7.41) as
follows:

g+ 1¥)=F@n+ 1, n&(n%Y,_,) + G{na(n) (7.45)
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Equation (7.45) is of fundamental significance. It shows that we may compute the mini-
mum mean-square estimate X(n + 1|®,) of the state of a linear dynamical system by
adding to the previous estimate X(n[%,,_,), which is premuitiplied by the state transition
matrix F(n + 1, n), a correction term equal to G(n)a(n). The correction term equals the
innovations process a(n) premultiplied by the matrix G(n). Accordingly, and in recogni-
tion of the pioneering work by Kalman, the matrix G(r} is called the Kalman gain.

There now remains only the problem of expressing the Kalman gain G(n) in a form
convenient for computation. To do this, we first use Eqs. (7.32) and (7.42) to express the
expectation of the product of x(n + 1) and a’’(n) as follows:

E[x(n + De”(n)] = F(n + 1, mE[x(ma(n)]
= F(n + 1, mEX(MYCn)eln, n — 1) + vo(n))]
=F(n + 1, n)Efx(nye"(n,n — HIC"m) (7.46)

where we have used the fact that the state x(n) and noise vector v,(n) are uncorrelated [see
Eq. (7.27)]. We further note that the predicted state-error vector €(n, n — 1) is orthogonal
to the estimate &(n|¥,,_. ). Therefore, the expectation of the product of x(n|%,,_,) and e(n,
n — 1)is zero, and so we may rewrite Eq. (7.46) by replacing the multiplying factor x(n)
by the predicted state-error vector €(n, n — 1) as follows:

Elx(n + Da®(n)] = F(n + L. mE[e(n, n — D, n — DICH(m)  (147)

From Eq. (7.36), we see that the expectation on the right-hand side of Eq. (7.47) equals the
predicted state-error correlation matrix. Hence, we may rewrite Eq. {7.47) as follows:

Eix(n + Da(m] = F(n + 1,mK(n, n — HC(n) (7.48)

We may now redefine the Kalman gain. In particular, substituting Eq. (7.48) in (7.44),
we get '

Gin) = F(n + 1, K n - DCH¥mR™(n) (7.49)

where the correlation matrix R(#n) is itself defined in Eq. (7.35).

The block diagram of Fig. 7.2 shows the signal-flow graph representation of Eq.
(7.49) for computing the Kalman gain G(n). Having computed the Kalman gain G(n), we
may then use Eq. (7.45) to update the one-step prediction, that is, to compute &(n + 1Y,
given its old value X(n|%,_,), as illustrated in Fig. 7.3. In this figure we have also used Eq.
(7.31) for the innovations process o).

Riccati Equation

As it stands, the formula of Eq. (7.49) is not particularly useful for computing the Kalman
gain G(n), since it requires that the predicted state-error correlation matrix K(n, n — 1) be
known. To overcome this difficulty, we derive a formula for the recursive computation of
K{n,n— 1)
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Postmuitiply
CHin)

Premuitiply
Cin)

Figure 72 Kalman gain computer.

The predicted state-error vector €(n + 1, n) equals the difference between the state
X(n + 1) and the one-step prediction &(n + 1|¥,)[see Eq. (7.33)]:
en+Ln=x(r+1)-Rn+1/%,) (7.50)

Substituting Egs. (7.17) and (7.45) in (7.50), and using Eq. (7.31) for the innovations
process a(n), we get
€n+ 1,n =F@n+ 1, n)xn) — knY,-)]

— G(n) [y(n)—~ CBR(MY, )] + vi(n)
Next, using the measurement equation (7.19) to eliminate y(n) in Eq. (7.51), we get the fol-
lowing difference equation for recursive computation of the predicted state-error vector:

€rn+ 1,n) =[F(n+ 1,n) — Gn)C(n)] €(n, n — 1)
. + vi(n) — G(n) vo(n)

The correlation matrix of the predicted state-error vector €(n + 1,n) equals [see

Eq. (7.36)]

(7.51)

(7.52)

K@+ 1,n) = E[e(n + 1, n)e’(n + 1, n)] (7.53)

Substituting Eq. (7.52) in (7.53), and recognizing that the error vector €(n, n — 1) and the
noise vectors v,(n) and v,(n) are mutually uncorrelated, we may express the predicted
state-error correlation matrix as follows:

Kin+1,n=[Fn+1,n-GnCmWKmnn—1D[Fn+ln - G(n)C(n)]H
+ Qu(n) + G(n)Qun)G(n) (1.54)

where Q,(n) and Q(n) are the correlation matrices of v,(n) and va(n), respectively. By
expanding the right-hand side of Eq. (7.54), and then using Egs. (7.49) and (7.35) for the
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Kalman gain, we get the Riccati difference equation' for the recursive computation of the
predicted state-error correlation matrix:

K@z + 1,5 = F@n + 1, DK@F(n + 1, m) + Qi(m) (7.55)
The M-by-M matrix K(n) is described by the recursion:
K@n) =K, n— 1) — F(n, n + 1)G(n)C(m)K(n, n — 1) (7.56)
Here we have used the property
Fn+ 1a)Fnn+1)=1 (757

where I is the identity matrix. This property follows from the definition of the transition
matrix. The mathematical significance of the matrix K(n) in Eq. (7.56) will be explained
later in Section 7.5.

Figure 7.4 is a signal-flow graph representation of Egs. (7.56) and (7.55), in that
order. This diagram may be viewed as a representation of the Riccati equation solver in
that, given K(n, n — 1), it computes the updated value K(n + 1, n).

Equations (7.49), (7.35), (7.31), (7.45), (7.56), and (7.55), in that order, define
Kalman'’s one-step prediction algorithm.

Comments

The,process applied to the input of the Kalman filter consists of the observed data y(1),
¥(2), . . ., y(n) that span the space ¥,,. The resulting filter output equals the predicted state
vector &(n + 1|%,,). Given that the matrices F(n + 1, n), C(n), Q,(n), and Q,(n) are all
known quantities, we find from Egs. (7.44), (7.55), and (7.56) that the predicted state-error
correlation matrix K(n + 1, n) is actually independent of the input y(n), which it has to be.
The Kalman gain G(n) is also independent of the input y(n). Consequently, the predicted
state-error correlation matrix K(n + 1, n) and the Kalman gain G(n) may be com-
puted before the Kalman filter is actually put into operation. With the correlation matrix
K(n + 1, n) providing a statistical description of the error in the predicted state vector
%(n + 1|%(n)), we may examine this matrix before actually using the Kalman filter to pro-
duce a realization of a physical system of interest; in this way, we may determine whether
the solution supplied by the Kalman filter is indeed satisfactory.

As already mentioned, the Kalman filter theory assumes knowledge of the matrices
F(n + 1,n), C(n), Qy(n) and Q,(n). However, the theory may be generalized to include a
situation where one or more of these matrices may assume values that depend on the input
y(n). In such a situation, we find that although &(n + 1|%,,) and K(n + 1, n) are still given
by Egs. (7.45) and (7.55), respectively, the Kalman gain G(n) and the predicted state-error
correlation matrix K(n + 1, n) are not precomputable (Anderson and Moore, 1979).

"The Riccati difference equation is named in honor of Count Jacopo Francisco Riccati. This equation has
become of particular importance in control theory.
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Rather, they both now depend on the dnput y(n). This means that K(n + 1, n) is a condi-
tional error-correlation matrix, conditional on the input y(n). '

7.5 FILTERING

The next signal-processing operation we wish to consider is that of filtering. In particular,
we wish to compute the filtered estimate %(n|%,) by using the one-step prediction algo-
rithm described previously.

We first note that the state x(z) and the noise vector v,(n) are independent of each
other. Hence, from the state equation (7.17) we find that the minimum mean-square esti-
mate of the state x(# + 1) at time n + 1, given the observed data up to and including time
n [i.e., given y(1), . . ., y¥(n}}, equals

R(n + 1|¥,) = F(n + 1, nR(7|Y,) + vi(nlY,) (7.58)
Since the noise vector v,(n) is independent of the observed data y(1), . . ., y(n), it follows
that the corresponding minimum mean-square estimate ¥1(n|%,,) is zero. Accordingly, Eq.
(7.58) simplifies to

&n + 1[M,) = Fn + 1, n) (n|Y,) (7.59)

To find the filtered estimate %(n|¥,,), we premuitiply both sides of Eq. (7.59) by the
inverse of the transition matrix F(n + 1, n), and thus write '

R(n|¥,) =F '(n + 1, nk(n + 1|9,) (7.60)
Using the property of the state transition matrix given in Eq. (7.57), we have
F'n+1,m=Fnn+1 (7.61)
We may therefore rewrite Eq. (7.60) in the equivélcnt form:
$lY,) = Fn, n + DiGn + 1]9,) (7.62)

This shows that knowing the solution to the one-step prediction problem, that is, the min-
imum mean-square estimate X(n + 1/%,), we may determine the corresponding filtered
estimate &(n/%,) simply by multiplying k(n + 1/%,) by the state transition matrix
F(n,n + 1).

Filtered Estimation Error and Conversion Factor

In a filtering framework, it is natural that we define a filtered estimation error vector in
terms of the filtered estimate of the state as follows:

e(n) = y(n) — CR(n |Y,) (7.63)
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This definition is similar to that of Eq. (7.31) for the innovations vector a(n), except that
we have substituted the filtered estimate %(n|%,) for the predicted estimate &(n|%,,_,).
Using Eqgs. (7.45) and (7.62) in (7.63), we get

e(n) = y(n) — C(mR(n |Y,.,) — C)F(n, n + 1)G(n)a(n)
= a(n) — C(n)F(n, n + 1) G(n)a(n) (7.64)
= [1 - C(n)F(n, n + 1YG(n)]a(n)

The matrix-valued quantity inside the square brackets in Eq. (7.64) is called the conver-
sion factor, which provides a formula for converting the innovations vector a(n) into the
filtered estimation error vector e(rn). Using Eq. (7.49) to eliminate the Kalman gain G(r)
from this definition and camceling common terms, we may rewrite Eq. (7.64) in the equiv-
alent form:

e(n) = Qa(n) R™'(n)a(n) (7.65)

where (J,(n) is the correlation matrix of the measurement noise process v,(n), and the
matrix R(n) is itself defined in Eq. (7.35) as the correlation matrix of the innovations
process a(n). Thus, except for a premultiplication by Q,(rn), Eq. (7.65) shows that the
inverse matrix R !(n) plays the role of a conversion factor in the Kalman filter theory.
Indeed, for the special case of Q,(n) equal to the identity matrix, the inverse matrix R~
is exactly the conversion factor defined herein.

Filtered State-Error Correlation Matrix

Earlier we introduced the M-by-M matrix K(n) in the formulation of the Riccati difference
equation (7.55). We conclude our present discussion of the standard Kalman filter theory
" by showing that this matrix equals the correlation matrix of the error inherent in the fil-
tered estimate £(n|%,,).
Define the filtered state-error vector €(n) as the difference between the state x(n) and «
the filtered estimate &(n|%,,), as shown by

e(n) = x(n) — X(n|¥,) (766

Substituting Egs. (7.45) and (7.62) in (7.66), and recognizing that the product of
Fin, n + 1) and F(n + 1, n) equals the identity matrix, we get

€(n) = x(n) — X(n|Y,_,) — Fn, n + 1) G(n) ()
=enn—1)—Fn n+ DGO a(n)

(1.67)

where €(n, n, — 1) is the predicted state-error vector at time n, using data up to time
n — 1, and a(n) is the innovations process.

By definition, the correlation matrix of the filtered state-error vector €(n) equals the
expectation Ele(n)e(n)). Hence, using Eq. (7.67), we may express this expectation as
follows:
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Ele(n)e™(n)} = Ele(n, n — 1) €*(n, n - 1)]
+ F(n, n + 1) G(n) Ela(ma”(n)) G(n) Fi(n, n + 1) (7.68)
— 2Ele(n, n — Do (n)] G"(n) Ftn, n + 1)

Examining the right-hand side of Eq. (7.68), we find that the three expectations contained
in it may be interpreted individually as follows:
1. The first expectation equals the predicted state-error correlation matrix:
K(n. n—1) = Ele(n, n — 1) €'l(n, n — 1)]

2. The expectation in the second term equals the correlation matrix of the innova-
tions process a(n):

R(») = Eja(ma’(n)
3. The expectation in the third term may be expressed as follows:
Eletn, n — 1) &"(m)] = El(x(n) — &(n|Y,,-)ec"(m)]
= E[x(n) o"(n)]

where, in the last line, we have used the fact that the estimate &(n|%,,_;) is orthog-
onal to the innovations process a(n) acting as input. Next, from Eq. (7.42) we
see, by putting k¥ = n and then premultiplying both sides by the inverse matrix
F '(n+ 1,n =Fn n+ 1), that

Elx(n) a¥(n)} = F(n, n + 1) E[x(n + Dal(n)]
= F(n, n + 1)G{(n) R(n)
where, in the last line, we have made use of Eq. (7.44). Hence,

Ele(n,n — 1) u‘f’(n)]= F(n, n + 1) G(n) R(n)

We may now use these results in Eq. (7.68), and so obtain
Ele(n)em] =K(n, n — 1) — Fin, n + 1) G(n) R@G (M) Fl(n,n + 1)  (1.69)
We may further simplify this result by noting that [see Eq. (7.49)]
G(n) R(n) = F(n + 1, n) K(n, n = 1) C*(n) {71.70)

Accordingly, using Egs. (7.69) and (7.70), and recognizing that the product of F(n, n + 1)
and F(n + 1, n) equals the identity matrix, we get the desired result for the filtered state-
error correlation matrix:

Ele(ne”(m)] = K, n — 1) — K(n, n = NC*n) G )F(n, n + 1)

Equivalently, using the Hermitian property of Ele(n)e"(n)] and that of K(n, n — 1), we
may write
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Ele(e ] =K n— 1) —Fn, n+ DG(n) C(r) K(n, n — 1) (7.7
Comparing Eq. (7.71) with (7.56), we readily see that
Ele(n) €”(n)] = K(n)

This shows that the matrix K(n) used in the Riccati difference equation (7.55) is in fact the
filtered state-error correlation matrix. The matrix K(n) is used as the statistical descrip-
tion of the error in the filtered estimate %(2|%Y,,).

7.6 INITIAL CONDITIONS

To operate the one-step prediction and filtering algorithms described in Sections 7.4 and
7.5, we obviously need to specify the inifial conditions. We now address this issue.

The initial state of the process equation (7.17) is not known precisely. Rather, it is
usually described by its mean and correlation matrix. In the absence of any observed data
attime n = (, we may choose the initial predicted estimate as

#(1/%o) = E[x(1)] (1.72)
and its correlation matrix
K(1,0) = Ef(x(1) — Elx()}}x(1) — Elx()D"]
(7.73)
= 1,

This choice for the initial conditions is not only intuitively satisfying but also has the
advantage of yielding a filtered estimate of the state £(n{%,) that is unbiased (see Problem
10). Assuming that the state vector X(n) has zero mean, we may simplify Eqs. (7.72) and
(7.73) by setting

X(1|%Yp) = 0
and

K(1,0) = E[x(1) x"(1)] = [I,

7.7 SUMMARY OF THE KALMAN FILTER

Table 7.1 presents a summary of the variables used to formulate the solution to the Kaiman
filtering problem. The input of the filter is the vector process y(n), represented by the vec-
tor space Y, and the output is the filtered estimate X(n|%,) of the state vector. In Table
7.2, we present a summary of the Kalman filter (including initial conditions) based on the
one-step prediction algorithm.
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TABLE 7.1 SUMMARY OF THE KALMAN VARIABLES

Variable Definition Dimension
x(n) State vector at time n M-by-1
y(n) _ Observation vector at time n N-by-1
Fin+1,n) State transition matrix from ttmenton + 1 M-by-M
C(n) Measurement matrix at time n N-by-M
Qy(n) Correlation matnix of process noise vector v,(a) M-by-M
Qz(n) Correlation matrix of measurement noise vector va(n) N-by-N
f(n + 1|, Predicted estimate of the state vector at time n + 1, given M-by-1

the observation vectors y(1), ¥(2), . .., ¥(m)
K(n|Y,) Filtered estimate of the state vector at time n, given the M-by-1
observation vectors (1), y(2),. . ., ¥(n)
G(n) Kalman gain at time n M-by-N
aln) Innovations vector at time n N-by-1
R(n) Correlation matrix of the innovations vector e(n) N-by-N
Kin+1,n Correlation matrix of the emor in&(n + 1|%,) M-by-M
K(m Correlation matrix of the error in&(n|%,) M-by-M

TABLE 7.2 SUMMARY OF THE KALMAN FILTER BASED ON ONE-STEP PREDICTION

Input vector process
Observations = {y(1), ¥(2), . . .. y(n}}
Known parameters
State transttion matrix = F(n + 1, r)
Measurement matrix = C(n)
Correlation matrix of process noise vector = Q,(n)
Correlation matrix of measurement noise vector = Q(n)
Computation: n =1, 2,3, . ..
G(n) = F(n + 1, nK(n, n — DCHm)[Cm)K(n, n — 1)CH(n) + Qu(n)] ™
a(n) = y(n) — C(nR(n|Y, )
&(n + 11%,) = F(n + 1, nR(2|¥,-,) + Gln)e(n)
Kin)=Kmn n~1)—F@n n+ DGHCHK@nR n—1)
Kin + 1.n) = F(n + 1, K@F(n + 1, n) + Qu(n)
Initial conditions:
R(1|Yp) = E[x(1)]
K(1, 0) = E[(x(1) — Elx(DD)(x(1) —Elx(DD"] =T,

A block diagram representation of the Kalman filter is given in Fig. 7.5, which is
based on three functional blocks:

» Kaliman gain computer, described in Fig. 7.2
 One-step predictor, described in Fig. 7.3.
» Riccati equation solver, described in Fig. 7.4
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Initial condition
&1 %)

Observation Filtered

estimate
Fin.n+1) R(nly,)

Kin.n-1) Kalman gain

computer

Riccati
equation
solver

K{n+1,n)

Initial
condition
K(1.0)

Figure 7.5 Black diagram of the Kalman filter based on one-step prediction.

7.8 VARIANTS OF THE KALMAN FILTER

As mentioned in the introductory remarks to this chapter, the main reason for our mterest
in Kalman filter theory in this book is that it provides a general framework for the deriva-
tion of certain adaptive filtering algorithms known collectively as the family of recursive
lesi-squares (RLS) algorithms.

The application of Kalman filter theory to adaptive filtering was apparently first
reported in the literature by Lawrence and Kaufman (1971); see Problem 8. This was fol-
lowed by Godard (1974), who used an approach different from that of Lawrence and Kauf-
man. In particular, Godard formulated the adaptive filtering problem (using a tap-
delay-line structure) as the estimation of a state vector in Gaussian noise, which represents
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a classical Kalman filtering problem. Godard’s paper prompted many other investigators
to explore the application of Kalman filter theory to adaptive filtering problems.

However, we had to await the paper by Sayed and Kailath (1994) to discover how
indeed the Riccati-based Kalman filtering algorithm and its variants can be correctly
framed into one-to-one correspondences with all the known algorithms in the RLS family.
We will take up the details of this unifying framework later in the book. For now, we will
focus our attention on a special dynamical model that befits our future needs.

Special Case: Unforced Dynamics
Consider a linear dynamical system whose state-space model is described by the follow-
ing pair of state equations (Sayed and Kailath, 1994):

x(n + 1) = A\ x(n) (71.74)

y(n) = wP(n)x(n) + v(n) (1.75)

where \ is a positive real scalar. According to this model, the process noise is zero, and the
measurement noise, denoted by the scalar v(z), is a zero-mean white noise process with
unit variance, as shown by

1, n=k
E[v(n)v*(k)]-——{o‘ : 2 (1.76)

Thus, comparing this model with the general model described by Eqgs. (7.17) to (7.21), we
note the following: _

F(n + 1,m) = A" (1.77)
Qin) =0 (1.78)
C(m = ufn) (7.79)
Qxn) = 1 (1.80)

The state-space model described by Egs. (7.74) to (7.76) is referred to as an unforced
dynamical model by virtue of the fact that the process equation (7.74) is free of an exter-
nal force. Most importantly, the state transition matrix of the model is equal to the identity
matrix I scaled by the constant A~ "2, Consequently, the predicted state-error correlation
matrix K(n + 1, n) and the filtered state-error correlation matrix K(n) assume a common
value; see Problem 9.

This special unforced dynamical model holds the key to the formulation of a general
framework for deriving the RLS family of adaptive filtering algorithms. As we shall see
iater in the book, the constant X has a significant role in the operation of these algorithms.
For now we content ourselves by considering variants of the Kalman filtering algorithm
based on this model.
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TABLE 7.3 SUMMARY OF THE COVARIANCE (KALMAN) FILTERING ALGORITHM FOR THE
SPECIAL UNFORCED DYNAMICAL MODEL

Input scalar process:
Observations: y(1), ¥(2), .. . y(n)
Known parameters: -

state transition matrix ="', I = identity matrix
measurement matrix =u"(n)

. variance of measurement noise v(n) = |

Initial conditions:

%(1 |%o) = E[x(1)]
K(1,0) = E[(x(1) ~ E[x(D)])(x(1} - E[x(D])?] = I,
Computation: n = 1,2,3,...

A 2K (n ~ Du(n)
v(mKn — Dun) + 1

a(n) = y(n) — w(n&n |Y,-)
R(n + 1%, =N8R4 |¥,-) + gmaln)
K = A 'K = 1) = A g (0K — 1)

gln} =

Covariance (Kalman) Filtering Algorithm

The Kalman filtering algorithm summarized in Table 7.2 is designed to propagate the cor-
relation (covariance) matrix K{n + 1, n) that refers to the error in the state’s estimate
&(n + 1|%,,). This algorithm is therefore commonly referred to as the covariance (Kalman)
filtering algorithm. For the unforced dynamical model at hand, we find that substituting
Eqs. (7.77) to (7.80) in Table 7.2 yields the simplified covariance filtering algorithm sum-
marized in Table 7.3. In this table we have used g(n) to denote the Kalman gain, as it takes
the form of a vector here.

Information Filtering Algorithm

The Kalman filter may also be implemented by propagating the inverse matrix K™ (n)
which accentuates the recursive least-squares nature of the filtering process. The inverse
state-error correlation matrix, K™'(n), is related to Fisher's information matrix®, which
permits an interpretation of filter performance in information-theoretic terms. For this rea-
son, an implementation of the Kalman filtering algorithm based on K™ '(n) is termed the
information filtering algorithm (Fraser, 1967).

For the derivation of the information filtering algorithm, we may proceed in the
manner described next.

Step 1. We start with the Riccati difference equation which, for the special
unforced dynamical model, has the form (see the last line of the algorithm in Table 7.3):

?Fisher’s information matrix is discussed in Appendix D.
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Km) = A""K(@n - 1) — A\ "2g(myu(n)K(n — 1) (7.81)
Solving this equation for the matrix product g(myu”(n)K(n—1), we get
gmu(mK@n—1) = A\"2Kn — 1) - A\?K@) (7.82)

Next, from the first line of the algorithm in Table 7.3, the Kalman gain for the unforced
dynamical model of interest is defined by

A 12K (n— Du(n)

B(n) = u (K- Dun) + 1 (7.83)
Cross-multiplying and rearranging terms, we may rewrite Eq. (7.83) as
g(n) = A~ K(n—u(r) — @mu’n)Kn-1))un) (7.84)

Substituting Eq. (7.82) in (7.84), and then canceling common terms, we get a new defini-
tion for the Kalman gain:

g(n) = A'PK(mu(n) (1.85)

_ Next, eliminating g(n) between Eqs. (7.82) and (7.85), and multiplying the result by A2,
we get

K(n—1) = AK(mu(mu(n)K(n—1) + AK(n) (7.86)

Premultiplying Eq. (7.86) by the inverse matrix K™'(n) and postmultiplying it by
K~ '(n—1), we get the first recursion of the information filtering algorithm:

K™ '(n) = AK™'(n—1) + Au(n)ul(n) (7.87)

Step 2. From the second and third lines of the algorithm summarized in Table 7.3,
we have, respectively,

a(r) = y(n) — w(nR(n | Y, (7.88)
and
R+1|Y,) = A""%(n Y, + gnan) (7.89)
Therefore, substituting Eq. (7.85) in (7.89), we get
&(n+11%,) = A% ¥, ) + N 7Kmu(n)a(n) (7.90)

Next, eliminating a(n) between Egs. (7.88) and (7.90) yields
£(n + 114, = (" PI-AKmuu(m] & [Y,-) + A 2K(munyy(n)  (7.91)
But, from Eq. (7.86), we readily deduce the following relation:
A2 — A 2K (mu(nu(n) = NPK@K ™' (n—1) (7.92)
Accordingly, we may simplify Eq. (7.91) as follows:
f(n+1|%,) = N ZK@K (1= DR(n |[¥.-1) + A Kmun)y(n)



326

Chap.7 Kalman Filters

Premultiplying this equation by the inverse matrix K~ !(n), we get the second recursion of
the information filtering algorithm:

K {n&n+1|%,) = N K '(n—-1DR@n | Y,_)) + u(m)y(n)] (793)

Note that in Eq. (7.93) the algorithm propagates the product K™'(n — 1)R(n|%¥,_,) rather
than the estimate &(n| %,_,) by itself.

Step 3. Finally, the updated value of the state’s estimate is computed by combin-
ing the results of steps 1 and 2 as follows:

&(n + 1]9,) = K(n) (K™ '(m&(n + 1|Y,) (7.94)
= [K™'(m)]" (K™ ' (mx(n + 1|%,))

Equations (7.87), (7.93), and (7.94), in that order, constitute the information-filtering algo-
rithm for the unforced dynamical model of Egs. (7.74) to (7.76). A summary of the algo-
rithm is presented in Table 7.4.

Although the covariance and information implementations of the Kalman filter, as
described herein, are algebraically equivalent, the numerical properties of these two algo-
rithms may differ substantially from each other (Kaminski et al., 1971). However, both
algorithms require the same number of algebraic operations (i.e., multplications and addi-
tions), which, for the special model at hand, is O(M®), where M is the state dimension.

Square-root Filtering
The covariance implementation of the Kalman filter, summarized in Table 7.2, is the opti-

mal solution to the linear filtering problem posed in Section 7.2. However, this algorithm
is prone to serious numerical difficulties that are well documented in the literature (Kamin-

TABLE 7.4 SUMMARY OF THE INFORMATION-FILTERING ALGORITHM FOR THE SPECIAL
UNFORCED DYNAMICAL MODEL

Input scalar process:

observations = ¥(1), ¥(2),.. ., ¥(n)

Known parameters:
state transition matnx =277, I = identity matrix
measurement matrix = ufl(n)

variance of measurement noise v(n) = 1
Initial conditions:

R(1 [Yo) = Efx(1)]

K(1,0) = E((x(1) — EIx(D)IHx(1) — Elx(1)D"] = II
Computation: n =1, 2,3 ...

K~ '(n) = MK '(n—=1) + u(n)u"(n)]
K™ '(m&(n + 1 |%,) = N2K ™ (n—1R(n| .- 1) + u(m)p(n)]
&(n +1|%,) = K '@ 'K™'(mR(n + 1Y)
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ski et al,, 1971; Bierman and Thomton, 1977). For example, according to Eq. (7.56) the
matrix K(n) is defined as the difference between two nonnegative definite matrices; hence,
unless the numerical accuracy employed at every iteration of the algorithm is high enough,
the matrix K(n) resulting from this computation may not be nonnegative definite. Such a
situation is clearly unacceptable, because K(n) represents a correlation matrix. The unsta-
ble behavior of the Kalman filter, which results from numerical inaccuracies due to the use
of finite wordlength arithmetic, is called the divergence phenomenon.

This problem may be overcome by using numerically stable unitary transformations
at every iteration of the Kalman filtering algorithm (Potter, 1963; Kaminski et al., 1971;
Morf and Kailath, 1975). In particular, the matrix K(#) is propagated in a square-root form
by using the Cholesky factorization®:

K@) = K*?(n)K"(n) (7.95)

where K!/%(n) is reserved for a lower triangular matrix, and K" is its Hermitian trans-
pose. In linear algebra, the Cholesky factor K'?(n) is commonly referred to as the square
root of the matrix K(n). Accordingly, any variant of the Kalman filtering algorithm based
on the Cholesky factorization is referred to as square-root filtering. The important point to
note here is that the matrix product K'”(n)K#(n) is much less likely to become indefi-
nite, because the product of any square matrix and its Hermitian transpose is always pos-
itive definite. Indeed, even in the presence of roundoff errors, the numerical conditioning
of the Cholesky factor K'2(n) is generally much better than that of K(n) itself; see Prob-
lem 12.

The information filtering algorithm may also be implemented in a square-root form
of its own by propagating the square root K~ '(n) rather than the inverse matrix K™'(n)
itself (Kaminski et al., 1971; Bierman, 1977). In this variant of the Kalman filter, the
Cholesky factorization is used to express the inverse matrix K~ '(n) as follows:

K-'(n) = K"K~y (1.96)

where K™~ "Xn) is a lower triangular matrix, and K™#? is its Hermitian transpose.

UD-factorization

The square-root implementation of a Kalman filter requires more computation than the
conventional Kalman filter. This problem of computational efficiency led to the develop-
ment of a modified version of the square-root filtering algorithm known as the UD-
factorization algorithm (Bierman, 1977). In this second approach, the filtered state-error
correlation matrix K(n) is factored into an upper triangular matrix U(n) with 1’s along its
main diagonal and a real diagonal matrix IXn), as shown by

K@) = Un)D(n)U"(n) (7.97)

Mhe Cholesky factorization was also discussed in Section 6.7 in the context of linear prediction.
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L)
Equivalently, the factorization may be written as

K(n) = (UmD'*(n)) (UmD"n))¥ (7.98)

where D'2(n) is the square-root of D(n). The nonnegative definiteness of the computed
matrix K(n) is guaranteed by updating the factors U{z) and D(n) instead of K(») itself.
However, a Kalman filter based on the UD-factorization does not possess the numerical
advantage of a standard square-root Kalman filter. Mereover, a Kalman filter using UD-
factorization may suffer from serious overflow/underflow problems (Stewart and Chap-
man, 1990). When an arithmetic operation produces a resultant number with too large or
too small a charactenistic, it is said to suffer from overflow or underflow, respectively.

One final comment is in order. With the ever-increasing improvements in digital
technology, the old argument that square roots are expensive and awkward to calculate is
no longer as compelling as it used to be. Accordingly, to avoid the divergence of a Kaiman
filter, we will only pursue a detailed discussion of square-root filtering in this book. This
we do in Chapter 14, after equipping ourselves with certain unitary transformations in
Chapter 12.

7.9 THE EXTENDED KALMAN FILTER

The Kalman filtering problem considered up to this point in the discussion has addressed
the estimation of a state vector in a linear model of a dynamical system. If, however, the
model is nonlinear, we may extend the use of Kalman filtering through a linearization pro-
cedure. The resulting filter is naturally referred to as the extended Kalman filter (EKF).
Such an extension is feasible by virtue of the fact that the Kalman filter is described in
terms of differential equations (in the case of continuous-time systems) or differerice equa-
tions (in the case of discrete-time systems). This is in contrast to the Wiener filter that is
limited to linear systems, since the notion of an impulse response (on which the Wiener
filter is based) is meaningful only in the context of linear systems. Here is another impor-
tant advantage of the Kalman filter over the Wiener filter.

To set the stage for a development of the extended Kalman filter in the discrete-time
domain, consider first the standard linear state-space model that we studied in the earlier
part of this chapter [Egs. (7.17) and (7.19)], reproduced here for convenience of presenta-
tion:

X(n + 1) =F(n + 1, n)x(n) + v(n) (7.99)

y(n) = C{n)x(n) + va(n) (7.100)

where v,(n) and v,(n) are uncorrelated zero-mean white-noise processes with correlation
matrices Q,(n) and Q,(n), respectively, as defined in Eqgs. (7.18), (7.20), and (7.21). The
corresponding Kalman filter equations are summarized in Table 7.2. In this section, how-
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ever, we will rewrite these equations in a slightly modified form that is more convenient
for our present discussion. Specifically, the update of the state estimate is performed in two
steps. The first step updates &(n|%Y,) to X(n + 1|%,); this update equation is simply (7.59).
The second step updates &(n|%,,_,) to &(r|%,) and is obtained by substituting Eq. (7.45)
into Eq. (7.60), and by defining a new gain matrix:

Gin) =F '(n + 1, n)Gn): (7.101)

We may thus write
&(n + 1Y) = F(n + 1, n)k(n|%,,) (7.102)
R(n|Y,) = &(n|Y.-1) + GLn)a(n) (7.103)
a(n) = y(n) — Cn)x(n|%,_,) (7.104)
GAn) = K(n, n — DCHMICmK(n, n = YT (n) + Qa(n)] ™" (7.165)
K(n + 1,n) = F(n + 1, DK®F"( + 1, n) + Q(n) (7.106)
K(n) = [I - GAn)Cm)IK(n, n — 1) (7.107)

We next make the following observation. Suppose that instead of the state equations (7.99)
and (7.100), we are given the alternative state-space model

xX(n + 1) = Fn + 1, n)x(n) + vi(n} + d{n) {7.108)

y(n) = C(n)x(n} + v(n) (7.109)

where d(n) is a known (i.e., nonrandom) vector. In this case, it is easily verified that the
same Kalman equations (7.103) through (7.107) apply except for a modification in the first
equation (7.102), which now reads as follows:

f(n + 1|%,) = F(n + 1, nk(n|Y,) + d(n) (7.110)

This modification arises in the derivation of the extended Kalman filter, as discussed in the

sequel.
As mentioned previously, the extended Kalman filter (EKF) is an approximate solu-

tion that allows us to extend the Kalman filtering idea to nonlinear state-space models
(Jazwinski, 1970; Maybeck, 1982; Ljung and Soderstrom, 1983). In particular, the non-
linear model considered here has the following form:

x(n + 1) = F(n,x(n)) + v(n) (7.111)

y(n) = C(nx(n)) + v2(n) (7.112)

where, as before, v,(r) and v(n) are uncorrelated zero-mean white-noise processes with
correlation matrices Q,(n) and Q,(n), respectively. Here, however, the functional
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F(n,x(n)) denotes a nonlinear transition matrix function that is possibly time-variant. In the
linear case,we simply have

F(nx(n)) = Fin + 1. n)x(n)

But in a general nonlinear setting, the entries of the state vector x(n) may be combined
nonlinearly by the action of the functional F(n,x(n)). Moreover, this nonlinear operation
may vary with time. Likewise, the functional C(n,x(n)) denotes a nonlinear measurement
matrix that may be time-variant too.

As an example, consider the following two-dimensional nonlinear state-space
model;

[xl(nfl)]z[ xi(n) + x3(n) }+[vl..(n)]

xn+ 1) nx (n) — x(n)xz(n) vi.2(n)

¥(n) = x(n)x3(n) + voln)

In this example, we have

F(n,x(n)) — 1:nxxl(n) + x%!(") ]

1(n) = xi(m)xy(n)
and

C(nx(n)) = x;(n)x3(n)

The basic idea of the extended Kalman filter is to linearize the state-space model of
Egs. (7.111} and (7.112) at each time instant around the most recent state estimate, which
is taken to be either (n|%,) or (n|¥,_,), depending on which particular functional is
being considered. Once a linear model is obtained, the standard Kalman filter equations
are applied.

More explicitly, the approximation proceeds in two stages.

Stage 1. The following two matrices are constructed

Fin + 1my= ZOX| (7.113)
ox
and
Clny = 3CX) (7.114)
ox x=2%(r|¥n—1) .

That is, the ijth entry of F(n + 1,n) is equal to the partial derivative of the ith component
of F(n,X) with respect to the jih component of x. Likewise, the ijth entry of C(n) is equal
to the partial derivative of the ith component of C(n,x) with respect to the jth component
of x. In the former case, the derivatives are evaluated at %(n|%¥,), while in the latter case
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the derivatives are eyaluated at £(n|%,, _,). The entries of the matrices F(n + 1,n) and C(n)
are all known (i.e., computable), since &(n|¥,) and &(n|%,_;) are made available as
described later.

Applying the definitions of Egs. (7.113) and (7.114) to the previous example, we get
aF (ﬂ, X) = [ 1 2132 ]

ox n—Xx3 ~x

_aC(ar;, x) =[x 2%

which leads to

_ 1 285(n|%Y,)
Fin+ 1,n)= [n - .fz(ﬂ\byn) ‘-izl(nloyﬂ)]

and

Cn) = [33(nl¥,—y)  28(n{W¥n1) 220 Y0 1)]

Stage 2. Once the matrices F(n + 1,n) and C(n) are evaluated, they are then
employed in a first-order Taylor approximation of the nonlinear functionals F(n.x(n)) and
C(n,x(n)) around &(n|%,) and %(n|¥,-,). respectively. Specificaily, F(n.x(n)) and
C(n,x(n)) are approximated as follows, respectively:

F(nx(n) = F(n, &(n|%,)) + F(n + 1,n) [x(n) — &(n|¥Y,)] (7.115)

C(n, X(n)) = C(n, X(n|Y,_,)) + Cn)x(n) — X(n|¥,_1)] (7.116)

With the above approximate expressions at hand, we may now proceed to approxi-
mate the nonlinear state-equations (7.111) and (7.112) as shown by, respectively,

x(n + 1) = F(n + 1, n)x(n) + v,(n)+ d(n) @.117)
§(n) = C(r)x(n + va(n) (7.118)
where we have introduced two new quantities:
() = y(n) — [C(ri &Y, 1)) — CRk@|Y,-1)] (7.119)
and
d(n) = Fak(n|¥,)) — F(n + 1,0k(n|Y,) (7.120)

The entries in the term §(n) are all known at time 7, and, therefore, §(n) can be regarded as
an observation vector at time n. Likewise, the entries in the term d(n) are all known at
time n.
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aln) | x(nly,) X(r+1ly,)
Premuttiply
Gdn)

i(""l"n-‘l)

Figure 7.6  One-step predictor for the extended Kalman filter.

The approximate state-space model of Eqgs. (7.117) and (7.118) is a linear model of
the same mathematical form as that described in Egs. (7.108) and (7.109); indeed, it is with
this objective in mind that earlier on we formulated the state-space model of Egs. (7.108)
and (7.109). The extended Kalman filter equations simply correspond to applying the stan-
dard Kalman equations (7.103) through (7.109) and (7.110) to the above linear model. This
leads to the following set of equations:

f(n + 1|%,) = F(n + 1Lnk(n!%,) + d(n)
=F(n + Lnk(n|%,) + (F(nix|¥,)) — F(z + 1,nRk(#|Y,)]
= F(nk(n|%Y,)) (7.121)
R(n|Y,) =R(n|Y,_)) + Gin)a(n)
aln) =§(n) - CnRn|Y,_))
=y(n) — CR(n|Y,-1) + CR(|Y,_ 1) — Cnk(n|Y, )
=y(n) — Cri@|Y,_1) (7.122)

On the basis of Eqgs. (7.121) and (7.122), we may formulate the signal-flow graph of
Fig. 7.6 for updating the one-step prediction in the extended Kalman filter.

In Table 7.5 we present a summary of the extended Kalman filtering algorithm,
where the linearized matrices F(n + 1, n) and C(n) are computed from their respective
nonlinear counterparts using Egs. (7.113) and (7.114). Given a nonlinear state-space model
of the form described in Egs. (7.111) and (7.112), we may thus use this algorithm to com-
pute state estimates recursively. Comparing the equations of the extended Kalman fiiter
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TABLE 7.5 SUMMARY OF THE EXTENDED KALMAN FILTER

Input vector process
Observations = {y(1), ¥(2), ..., y(n)}
Known parameters
Nonlinear state transition matrix = F(n, x(n))
Nonlinear measurement matrix = C(n, X(n))
Corrélation matrix of process noise vector = Q,(n)
Correlation matrix of measurement noise vector = Q,(n)
Computation: n = 1,2,3,. ...
' G4n) = K(n, n — DCHmMICK(n, n = 1)CH(n) + Qu(m)) ™!

o(n) = y(n) ~ C(nR(n|Y, -)
K(n|Y,,) = &(n|Y,.-1) + GAn)ae(n)
%(n + 119,) = Fai(|y,)
K@) = [1 - Gm)Cr)IK(n, n — 1)
K + Ln) = F(n + 1L)KmF(n + Ln) + Qy(m)

Note: The linearized matrices F(n + 1,n) and C(n) are computed from their nonlinear counter-
parts F(n,x(n)) and C(nx(n)} using Eqgs. (7.113) and (7.114), respectively.
Initial conditions
£(1{%%) = Elx(1)]
K(1,0) = E[(x(1) — E[x(D)Xx(1) — E[x(1))"] = II,

summarized herein with those of the standard Kalman filter given in Eqs. (7.102) through
(7.107), we see that the only differences between them arise in the computations of the
innovations vector au(n) and the updated estimate &(n + 1|%,). Specifically, the linear
terms F(n + 1,nR(n|Y,) and C(n}&(n|%,_) in the standard Kalman filter are replaced by
the approximate terms F(n&(n|%¥,)) and C(nR(n|%,_,)), respectively, in the extended
Kalman filter. These differences also show up in comparing the signal-flow graph of Fig.
7.3 for one-step prediction in the standard Kalman filter with that of Fig. 7.6 for one-step
prediction in the extended Kalman filter.

7.10 SUMMARY AND DISCUSSION

The Kalman filter is a linear, discrete-time, finite-dimensional systery, the implementation
of which is well suited for a digital computer. A key property of the Kalman filter is that
it leads to minimization of the trace of the filtered state error correlation matrix K(n). This,
in turn, means that the Kalman filter is the linear minimum variance estimator of the state
vector x(n) (Anderson and Moore, 1979; Goodwin and Sin, 1984),

The Kalman filter has been successfully applied to solve many real-world problems
as can be seen in the literature on control systems (Sorenson, 1985). Moreover, the Kalman
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filter provides the general framework for deriving all of the known algorithms that con-
stitute the recursive least-squares family of adaptive filters (Sayed and Kailath, 1994). In
the intervening two decades between the paper by Sayed and Kailath and the seminal
paper by Godard in 1974, many attempts were made to incorporate this important family
of adaptive filtering algorithms into the framework of Kalman filter theory. However,
some annoying discrepancies always remained, thereby hindering the full application of
the extensive control literature on Kalman filters to adaptive filtering problems. For the
first time, the paper by Sayed and Kailath has shown us how to devise a state-space model
for the adaptive filtering problem that is a perfect match for the application of Kalman fil-
ter theory. It has been said by many that many of the problems encountered in signal pro-
cessing and control theory are mathematically equivalent. The link between Kalman filter
theory and adaptive filter theory demonstrated in the paper by Sayed and Kailath is further
testimony 1o the validity of this mathematical equivalence.

PROBLEMS

1. The Gram-Schmidt orthogenalization procedure enables the set of observation vectors y(1),
¥(2), . . ., ¥(m) to be transformed into the set of innovations processes a(1), a(2), . . ., a(n)
without loss of information, and vice versa, Hlustrate this procedure for # = 2, and cominent on
the procedure for n > 2.

2. The predicted state-error vector is defined by
€nn—1)=x(n - xn|%,_)

where &(n|¥,,_ ;) is the minimum mean-square estimate of the state x(»), given the space Y, _,
that is spanned by the observed data y(1), .. ., ¥(n — 1). Let v,(n) and v,(n) denote the process
noise and measurement noise vectors, respectively. Show that €(n. n — 1) is orthogonal to both
v;(n) and v,(n); that is,

Ele(n, n — DVi(n)] = 0
and
Elen, n — i) =0

3. Consider a set of scalar observations y(n) of zero mean, which is transformed into the corre-
sponding set of innovations a{n) of zero mean and variance o2(n). Let the estimate of the state
vector x(i), given this set of data, be expressed as

RV, = D bikek)
k=1

where Y, is the space spanned by (1), ..., yin), and bgk), k = 1,2, ..., n,is a set of vectors
to be determined. The requirement is to choose the by(k) so as to minimize the expected value
of the squared norm of the estimated state-error vector

€(i|,) = x(i) — %(|Y,)
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Show that this minimization yields the result
R[Y,) = > E(D*(R10)
k=1

where ¢(k) is the normalized innovation

a(k)
ou(k)

This result may be viewed as a special case of Eqs. (7.37) and (7.40).

d(k) =

. The Kalman gain G(n) defined in Eq. (7.49) involves the inverse matrix R~ '(n). The matrix

R(n) is itself defined in Eq. (7.35), reproduced here for convenience:
R(n) = C(m)K(n, n = 1)CH(n) + Qu(n)

The matrix C(n) is nonnegative definite but not necessarily nonsingular.

(a) Why is R(n) nonnegative definite?

(b) What prior condition would you impose on the matrix Q,(n) to ensure that the inverse
matrix R™(n) exists?

. In many cases the predicted state-error correlation matrix K(r + 1, n) converges to the steady-

state value K as the number of iterations n approaches infinity. Show that the limiting value K
satisfies the algebraic Riccati equation

KCHCKC" +Q)™'CK-Q, =0

where it is assumed that the state transition matrix equals the identity matrix, and the matrices
C, Q,, and Q, are the limiting values of C(n), Q,{(n), and Qy(n), respectively.

6. Consider a stochastic process y(n) represented by an autoregressive-moving average (ARMA)

model of order (1, 1):
¥n) + ay(n — 1) = v(n) + bvin — 1)

where a and b are the ARMA parameters and v{n) is a zero-mean white-noise process of vari-
ance o”. o
(a) Show that a state-space representation of this model is

-a 1 1 '
xn+1)= [ 0 O}X(n) + [b]v(n + 1)

yey = [l Olx(n)
where x(n) is a 2-by-1 state vector.
(b) Assume the applicability of the algebraic Riccati equation described in Problem 5. Hence,
show that the solution of this equation is

- 21+C b
o3

wherse c is a scalar that satisfies the second-order equation

b—a - ac)

PP S S
c=(b=-ay+ac 1o
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What are the two values of ¢ that satisfy this equation? Determine the corresponding values of
the matrix X,
() Show that the Kalman gain is

_b=a-—ac 1]
G= 1+¢ [0

Determine the values of G that comrespond to the solutions for the scalar ¢ found in part (b).

. In this problem we consider the general case of time-varying real-valued ARMA process y(n)

described by the difference equation:

M N
M)+ D amyin = k)= D ayaimvin — B + ()
k=1 k=1
where a,(n), axXn), . .., ayln), aps (1), Qags2(n), . . ., ppendn) are the ARMA coefficients, the

process v(n) is the input, and process y(n) is the output. The process () is a white Gaussian
neise process of zero mean and variance o”. The ARMA coefficients are subject to random fluc-
tuations, as shown in the model

aln+ 1)=aim) +wln), k=1,,... M+ N

where wy(n) is a zero-mean, white Gaussian noise process that is independent of win) for
j # k, and also independent of v(n). The issue of interest is to provide a technique based on the
Kalman filter for identifying the coefficients of the ARMA process. To do this, we define an
(M + N)-dimensional state vector:

x(n) = fay(n), ..., axdn), . .., argan(m)}’

We also define the measurement matrix (actualily, a row vector):
Cm=[-yin—1),...,~¥n—~M,vin—-1,...,vn ~N)]

On this basis, do the following;

(a) Formulate the state-space equations for the ARMA process.

{b) Find an algorithm for computing the predicted value of the state vector x(n + 1), given the
observation y(n}.

(¢) How would you initialize the algorithm in part (b)?

. Consider a communication channel modeled as an FIR filter of known impulse response, The

channel output y(n) is defined by
yin) = h'x(n) + w(n)

where h is an M-by-1 vector representing the channel impulse response, x(n) is an M-by-1 vec-
tor representing the present value u(n) of the channel input and (M — 1) previous transmissions,
and win) is a white Gaussian noise process of zero mean and variance o2. At time n, the chan-
nel input u(n) consists of a coded binary sequence of zeros and ones, statistically independent
of w(n}. This model suggests that we may view x(n) as a state vector, in which case the state
equation is written as

x(n + 1) = Ax(n) + bv(n)

*“This problem is adapted from Lawrence and Kaufman (1971).
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where v (n) is 2 white Gaussian noise process of zero mean and variance o,2 which is indepen-
dent of w(n). The matrix A is an M-by-M matrix whose /jth element is defined by

a = b i=j+1
Y0, otherwise

The vector b is an M-by-1 vector whose ith element is defined by

I, i=1
b, =
' [0, i=2,....M

‘We may now state the problem: Given the foregoing channel model and 2 sequence y(n) of noisy
measurements made at the channel output, use the Kalman filter to construct an equalizer that
yields a good estimate of the channel input w(n) at some delayed time (» + D), where
0 =D=M — 1. Show that the equalizer so constructed is an IIR filter where coefficients are
determined by twe distinct sets of parameters: (a) the M-by-1 channel impulse response vector,
and (b) the Kalman gain, which (in this problem) is an M-by-1 vector.

For the case when the transition matrix F(r + 1, n) is the identity matrix and the state noise vec-
tor is zerc, show that the predicted state-errar correlation matrix K(r + 1, n) and the filtered
state-error correlation matrix K(n) are equal.

Using the initial conditions described in Eqgs. (7.72) and (7.73), show that the resulting filtered
estimate &(n |¥,,) produced by the Kalman filter is unbiased; that is,

EiR(n) {¥(m)] = x(n)

In the UD-factorization algorithm, the filtered state-error correlation matrix K(n) is expressed
as follows

K@) = UmbBmU”(n)

where U(n) is an upper triangular matrix with 1's along its main diagonal, and:D(n) is a real
diagonal matrix. Let Apex and A denote the maximum and minimum eigenvalues of the
matrix K(n). Show that the condition number of the diagonal matrix D(n) is governed by

A
x(D) = =22 = x(K)
Amin
Let x(K) denote the condition number of the filtered state-error correlation matrix K(n), defined
as the ratio of the largest eigenvalue A, to the smaliest eigenvalue Ay, Show that

x(K) = (x(K'™%)?

where K"%(n) is the square-root of K(n). What is the computational implication of this relation?

Consider the state-space model described in Egs. (7.108) and (7.109). Show that the one-step

prediction x(n + 1|%,) of the state vector in this model is given by Eq. (7.1 10).

(a) Figures 7.3 and 7.6 are signal-flow graph representations, of the one-step predictor for the
standard Kalman filter and extended Kalman filter, respectively. Show that for a linear
model of a dynamical system, these two representations are equivalent.

(b) Figure 7.5 shows a block diagram representation of the standard Kalmaui filter. How is this
block diagram modified for representation of the extended Kalman filter?



