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Introduction

1. THE FILTERING PROBLEM

The term filter is often used to describe a device in the form of a piece of physical hard-
ware or software that is applied to a set of noisy data in order to extract information about
a prescribed quantity of interest. The noise may arise from a variety of sources. For exam-
ple, the data may have been derived by means of noisy sensors or may represent a useful
signal component that has been corrupted by transmission through a communication chan-
nel. In any event, we may use a filter to perform three basic information-processing tasks:

1.

2.

Filtering, which means the extraction of information about a quantity of interest
at time ¢ by using data measured up to and including time r.

Smoothing, which differs from filtering in that information about the quantity of
interest need not be available at time ¢, and data measured later than time ¢ can be
used in obtaining this information. This means that in the case of smoothing there
is a delay in producing the result of interest. Since in the smoothing process
we are able to use data obtained not only up to time ¢ but also data obtained
after time ¢, we would expect smoothing to be more accurate in some sense than
filtering.

. Prediction, which is the forecasting side of information processing. The aim here

is to derive information about what the quantity of interest will be like at some
time 7 + 7 in the future, for some 7 > 0, by using data measured up to and includ-
ing time ¢.

We may classify filters into linear and nonlinear. A filter is said to be linear if the
filtered, smoothed, or predicted quantity at the output of the device is a linear function of
the observations applied to the filter input. Otherwise, the filter is nonlinear.
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In the statistical approach to the solution of the linear filtering problem as classified
above, we assume the availability of certain statistical parameters (i.e., mean and correla-
tion functions) of the useful signal and unwanted additive noise, and the requirement is to
design a linear filter with the noisy data as input so as to minimize the effects of noise at
the filter output according to some statistical criterion. A useful approach to this filter-
optimization problem is to minimize the mean-square value of the error signal that is
defined as the difference between some desired response and the actual filter output. For
stationary inputs, the resulting solution is commonly known as the Wiener filter, which
is said 10 be optimum in the mean-square sense. A plot of the mean-square value of the
error signal versus the adjustable parameters of a linear filter is referred to as the error-
performance surface. The minimum point of this surface represents the Wiener solution.

The Wiener filter is inadequate for dealing with sitvations in which nonstationarity
of the signal and/or noise is intrinsic to the problem. In such situations, the optimum filter
has to assume a rime-varving form. A highly successful solution to this more difficult
problem is found in the Kalman filter, a powerful device with a wide variety of engineer-
ing applications.

Linear filter theory, encompassing both Wiener and Kalman filters, has been devel-
oped fully in the literature for continuous-time as well as discrete-time signals. However,
for technical reasons influenced by the wide availability of digital computers and the ever-
increasing use of digital signal-processing devices, we find in practice that the discrete-
time representation is often the preferred method. Accordingly, in subsequent chapters, we
only consider the discrete-time version of Wiener and Kalman filters. In this method of
representation, the input and output signals, as well as the characteristics of the filters
themselves, are all defined at discrete instants of time. In any case, a continuous-time sig-
nal may always be represented by a sequence of samples that are derived by observing the
signal at uniformly spaced instants of time. No loss of information is incurred during this
conversion process provided, of course, we satisfy the well-known sampling theorem,
according to which the sampling rate has to be greater than twice the highest frequency
component of the continuous-time signal. We may thus represent a continuous-time signal
u(#) by the sequence u(n),n = 0, £1, = £2, ..., where for convenience we have normal-
ized the sampling period to unity, a practice that we follow throughout the book.

2. ADAPTIVE FILTERS

The design of a Wiener filter requires a priori information about the statistics of the data
to be processed. The filter is optimum only when the statistical characteristics of the input
data match the a priori information on which the design of the filter is based. When this
information is not known completely, however, it may not be possible to design the
Wiener filter or else the design may no longer be optimum. A straightforward approach
that we may use in such situations is the “‘estimate and plug” procedure. This is a two-
stage process whereby the filter first “estimates”™ the statistical parameters of the relevant
signals and then “pilugs” the results so obtained into a nonrecursive formula for computing
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the filter parameters. For real-time operation, this procedure has the disadvantage of
requiring excessively elaborate and costly hardware. A more efficient method is to use an
adaptive filter. By such a device we mean one that is self-designing in that the adaptive fil-
ter relies for its operation on a recursive algorithm, which makes it possible for the filter to
perform satisfactorily in an environment where complete knowledge of the relevant signal
characteristics is not available. The algorithm starts from some predetermined set of initial
conditions, representing whatever we know about the environment. Yet, in a stationary
environment, we find that after successive iterations of the algorithm it converges to the
optimum Wiener solution in some statistical sense. In a nonstationary environment, the
algorithm offers a tracking capability, in that it can track time variations in the statistics of
the input data, provided that the variations are sufficiently slow.

As a direct consequence of the application of a recursive algorithm whereby the
parameters of an adaptive filter are updated from one iteration to the next, the parameters
become data dependent. This, therefore, means that an adaptive filter is in reality a nonlin-
ear device, in the sense that it does not obey the principle of superposition. Notwithstand-
ing this property, adaptive filters are commonly classified as linear or nonlinear. An
adaptive filter is said to be linear if the estimate of a quantity of interest is computed adap-
tively (al the output of the filter) as a linear combination of the available set of observa-
tions applied to the filter input. Otherwise, the adaptive filter is said to be nonlinear.

A wide variety of recursive algorithms have been developed in the literature for the
operation of linear adaptive filters. In the final analysis, the choice of one algorithm over
another is determined by one or more of the following factors:

* Rate of convergence. This is defined as the number of iterations required for the
algorithm, in response to stationary inputs, to converge “close enough” to the opti-
mum Wiener solution in the mean-square sense. A fast rate of convergence allows
the algorithm to adapt rapidly to a stationary environment of unknown statistics.

e Misadjustment. For an algorithm of interest, this parameter provides a quantitative
measure of the amount by which the final value of the mean-squared error, aver-
aged over an ensemble of adaptive filters, deviates from the minimum mean-
squared error that is produced by the Wiener filter.

» Tracking. When an adaptive filtering. algorithm operates in a nonstationary envi-
ronment, the algorithm is required to rrack statistical variations in the environ-
ment. The tracking performance of the algorithm, however, is influenced by two
contradictory features: (1) rate of convergence, and (b) steady-state fluctuation
due to algorithm noise.

« Robustness. For an adaptive filter to be robust, small disturbances (i.e., distur-
bances with small energy) can only result in small estimation errors. The distur-
bances may arise from a variety of factors, internal or external to the filter.

« Computational requirements. Here the issues of concern include (a) the number of
operations (i.e., multiplications, divisions, and additions/subtractions) required to
make one complete iteration of the algorithm, (b) the size of memory locations
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required to store the data and the program, and (¢) the investment required to pro-
gram the algorithm on a computer.

* Structure. This refers to the structure of information flow in the algorithm, deter-
mining the manner in which it is implemented in hardware form. For example, an
algorithm whose structure exhibits high modularity, parallelism, or concurrency is
well suited for implementation using very large-scale integration (VLSI).'

* Numerical properties. When an algorithm is implemented numericaily, inaccura-
cies are produced due to quantization errors. The quantization errors are due to
analog-to-digital conversion of the input data and digital representation of internal
calculations. Ordinarily, it is the latter source of quantization errors that poses a
serious design problem. In particular, there are two basic issues of concern:
numerical stability and numerical accuracy. Numerical stability is an inherent
characteristic of an adaptive filtering algorithm. Numerical accuracy, on the other
hand, is determined By the number of bits (i.e., binary digits) used in the numeri-
cal representation of data samples and filter coefficients, An adaptive filtering
algorithm is said to be numerically robust when it is insensitive to variations in the
wordlength used in its digital implementation.

These factors, in their own ways. also enter into the design of nonlinear adaptive fil-
ters, except for the fact that we now no longer have a well-defined frame of reference in
the form of a Wiener filter. Rather, we speak of a nonlinear filtering algorithm that may
converge to a local minimum or, hopefully, a globai minimum on the error-performance
surface.

In the sections that follow, we shall first discuss various aspects of linear adaptive
filters. Discussion of nonlinear adaptive filters is deferred to a later section in the chapter.

3. LINEAR FILTER STRUCTURES

The operation of a linear adaptive filtering algorithm involves two basic processes: (1) a
filtering process designed to produce an output in response to a sequence of input data,
and (2) an adaptive process, the purpose of which is to provide a mechanism for the adap-
tive control of an adjustable set of parameters used in the filtering process. These two pro-
cesses work interactively with each other. Naturally, the choice of a structure for the
filtering process has a profound effect on the operation of the algorithm as a whole.

'WLSI technology favors the implementation of algorithms that possess high modularity, paralielism, or
concurrency. We say that a structure is modular when it consists of similar stages connected in cascade. By par-
allelism we mean a large number of operations being performed side by side. By concurrency we mean a large
number of similar computations being performed at the same time.

For a discussion of VLSI implementation of adaptive filters, see Shanbhag and Parhi (1994). This book
emphasizes the use of pipelining, an architectural technique used for increasing the throughput of an adaptive fil-
tering algorithm.
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Figure I Transversal filter.

There are three types of filter structures that distinguish themselves in the context of
an adaptive filter with finite memory or, equivalently, finite-duration impulse response.
The three filter structures are as follows:

1. Transversal filter. The transversal filter,® also referred to as a tapped-delay line
filter, consists of three basic elements, as depicted in Fig. 1: (a) unit-delay element, (b)
multiplier, and (c) adder. The number of delay elements used in the filter determines the
finite duration of its impulse response. The number of delay elements, shownas M — 1 in
Fig. 1, is commonly referred to as the filter order. In this figure, the delay elements are
each identified by the unit-delay operator z~'. In particular, when z~' operates on the
input u(n), the resulting output is u(n — 1). The role of each multiplier in the filter is to
multiply the tap input (to which it is connected) by a filter coefficient referred to as a tap
weight. Thus a multiplier connected to the kth tap input u(n — k) produces the.scalar ver-
sion of the inner product, w¥ u(n — k), where w, is the respective tap weightand £ = 0, 1,

.. M — 1. The asterisk denotes complex conjugation, which assumes that the tap inputs
and therefore the tap weights are all complex valued. The combined role of the adders in
the filter is to sum the individual multiplier outputs and produce an overall filter output.
For the transversal filter described in Fig. 1, the filter output is given by

m-1
y(n) = ZW?H("—’C) (1
k=0

*The transversal filter was first described by Kallmann as a continuous-time device whose output is
formed as a linear combination of voltages taken from uniformly spaced taps in a nondispersive delay line (Kall-
mann, 1940}. In recent years, the transversal filter has been implemented vsing digital circuitry, chargecoupled
devices, or surface-acoustic wave devices. Owing to its versatility and ease of implementation, the transversal
filter has emerged as an essential signal-processing structure in a wide variety of applications.
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Equation (1) is called a finite convolution sum in the sense that it convolves the finite-
duration impulse response of the filter, w’, with the filter input u(n) to produce the filter
output y(n).

2. Lautice predictor. A lattice ,mea‘icmr3 is modular in structure in that it consists of
a number of individual stages, each of which has the appearance of a lattice, hence the
name “lattice” as a structural descriptor. Figure 2 depicts a lattice predictor consisting of
M — 1 stages; the number M — | is referred to as the predictor order. The mth stage of the
lattice predictor in Fig. 2 is described by the pair of input—output relations (assuming the
use of complex-valued, wide-sense stationary input data):

[ = fu () + x%b, (n = 1) 2)
b (n)=b,_(n—1)+«,f,_n (3)
wherem =1,2,....M — 1,and M — 1 is the final predictor order. The variable £, (n) is

the mth forward prediction error, and b, (n) is the mth backward prediction error. The
coefficient k,, is called the mth refleciion coefficient. The forward prediction error £, (n) is
defined as the difference between the input u(n) and its one-step predicted value; the latter
is based on the set of m past inputs u(n — 1), . .., u(n — m). Correspondingly, the back-
ward prediction error b, (n) is defined as the difference between the input u(n — m) and its
“backward” prediction based on the set of m “future” inputs u(n), ... , u(n — m + 1). Con-
sidering the conditions at the input of stage 1 in Fig. 2, we have

fon) = b (n) = u(n) 4
where u(n) is the lattice predictor input at time . Thus, starting with the initial conditions
of Eq. (4) and given the set of reflection coefficients ,, Ky, . . ., Ky_,, We may determine

the final pair of outputs f,,_,(n) and b,,_,(n) by moving through the lattice predictor, stage
by stage.

For a correlated inpat sequence u(n), u(n — 1), ..., u(n — M + 1) drawn from a sta-
tionary process, the backward prediction errors by, b,(n), . . . , by,_,(n) form a sequence of
uncorrelated random variables. Moreover, there is a one-to-one correspondence between
these two sequences of random variables in the sense that if we are given one of them, we
may uniquely determine the other, and vice versa. Accordingly, a linear combination of
the backward prediction errors by(n), b,(n), . . . , by..,(n) may be used to provide an esti-
mate of some desired response d(n), as depicted in the lower half of Fig. 2. The arithmetic
difference between d(n) and the estimate so produced represents the estimation error e(n).
The process described herein is referred to as a joint-process estimation. Naturally, we
may use the original input sequence u(n), u(n — 1), . .., u(n — M + 1) to produce an esti-
mate of the desired response d(n) directly. The indirect method depicted in Fig. 2, how-
ever, has the advantage of simplifying the computation of the tap weights Ay, h,, . .., by,

3The development of the lattice predictor is credited to Itakura and Saito (1972).
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Figure 3 Two basic cells of a systolic array; (a) boundary cell; (b} internal cell.

by exploiting the uncorrelated nature of the comresponding backward prediction errors
used in the estimation.

3. Systolic array. A systolic array® represents a parallel computing network ideally
sutted for mapping a number of important linear algebra computations, such as marrix
multiplication, triangularization, and back substitution. Two basic types of processing
elements may be distinguished in a systolic array: boundary cells and internal cells. Their
functions are depicted in Figs. 3(a) and 3(b), respectively. In each case, the parameter r
represents a value stored within the cell. The function of the boundary cell is to produce an
output equal to the input « divided by the number r stored in the cell. The function of the
internal cell is twofold: (a) to multiply the input z (coming in from the top) by the number
r stored in the cell, subtract the product rz from the second input (coming in from the left),
and thereby produce the difference u — rz as an output from the right-hand side of the cell,
and (b) to transmit the first input z downward without alteration.

Consider, for example, the 3-by-3 triangular array shown in Fig. 4. This systolic
array involves a combination of boundary and internal cells. In this case, the triangular
array compute§ an output vector y related to the input vector u as follows:

y=Ru (5)

where the R™7 is the inverse of the transposed matrix R”. The elements of R’ are the
respective cell contents of the triangular array. The zeros added to the inputs of the array
in Fig. 4 are intended to provide the delays necessary for pipelining the computation
deseribed in Eq. (5).

A systolic array’ architecture, as described herein, offers the desirable features of
modulariry, local interconnections, and highly pipelined and svrchronized parallel pro-
cessing; the synchronization is achieved by means of a global clock.

We note that the transversal filter of Fig. 1, the joint-process estimator of Fig. 2
based on a lattice predictor, and the triangular systolic array of Fig. 4 have a common

*The systolic array was pioneered by Kung and Leiserson (1978). In particular, the use of systolic arrays
has made it possible to achieve a high throughput. which is required for many advanced signal processing algo-
rithms to operate in real time.

W
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Figure 4 Triangular systolic array.

property: all three of them are characterized by an impulse response of finite duration. In
other words, they are examples of a finite-duration impulse response (FIR) filter, whose
structures contain feedforward paths only. On the other hand, the filter structure shown in
Fig. 5 is an example of an infinite-duration impulse response (IIR) filter. The feature that
distinguishes an IIR filter from an FIR filter is the inclusion of feedback paths. Indeed, it is
the presence of feedback that makes the duration of the impulse response of an IIR filter
infinitely long. Furthermore, the presence of feedback introduces a new problem, namely,
that of stability. In particular, it is possible for an IIR filter to become unstable (i.e., break
into oscillation), unless special precaution is taken in the choice of feedback coefficients.
By contrast, an FIR filter is inherently stable. This explains the reason for the popular use
of FIR filters, in on¢ form or another, as the structural basis for the design of linear adap-
tive filters.

4. APPROACHES TO THE DEVELOPMENT OF LINEAR ADAPTIVE
FILTERING ALGORITHMS

There is no unique solution to the linear adaptive filtering problem. Rather, we have a “kit
of tools” represented by a variety of recursive algorithms, each of which offers desirable
features of its own. The challenge facing the user of adaptive filtering is, first, to under-
stand the capabilities and limitations of various adaptive filtering algorithms and, second,
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to use this understanding in the selection of the appropriate algorithm for the application at
hand.

Basically, we may identify two distinct approaches for deriving recursive algorithms
for the operation of linear adaptive filters, as discussed next.

Stochastic Gradient Approach

Here we may use a tapped-delay line or transversal filter as the siructural basis for imple-
menting the linear adaptive filter. For the case of stationary inputs, the cest function,” also
referred to as the index of performance, is defined as the mean-squared error (.., the
mean-square value of the difference between the desired response and the transversal filter
output). This cost function is precisely a second-order function of the tap weights in the
transversal filter. The dependence of the mean-squared error on the unknown tap weights
may be viewed to be in the form of a multidimensional paraboloid (i.e., punch bowl) with
a uniguely defined bottom or minimum point. As mentioned previously, we refer to this
paraboloid as the error-performance surface; the tap weights corresponding to the mini-
mum point of the surface define the optimum Wiener solution.

To develop a recursive algorithm for updating the tap weights of the adaptive trans-
versal filter, we proceed in two stages. We first modify the system of Wiener—Hopf equa-
tions (i.e., the matrix equation defining the optimum Wiener solution) through the use of
the method of steepest descent, a well-known technique in optimization theory. This mod-
ification requires the use of a gradient vector, the value of which depends on two parame-
ters: the correlation matrix of the tap inputs in the transversal filter, and the cross-
correlation vector between the desired response and the same tap inputs. Next, we use
instantaneous values for these correlations so as to derive an estimate for the gradient vec-
tor, making it assume a stochastic character in general. The resulting algorithm is widely

- known as the least-mean-square (LMS) algorithm, the essence of which may be descnibed
in words as follows for the case of a transversal filter operating on real-valued data:

updated value old value learning- | [ tap- |, -
- wei _wei in .
of tap-weight | — | of tap-weight | ; rate P ( si gnal)
vector vector parameter | | vector

where the error signal is defined as the difference between some desired response and the
actual response of the transversal filter produced by the tap-input vector.

The LMS algorithm is simple and yet capable of achieving satisfactory performance
under the right conditions. Its major limitations are a relatively slow rate of convergence
and a sensitivity to variations in the condition number of the correlation matrix of the tap
inputs; the condition number of a Hermitian matrix is defined as the ratio of its largest

*In the general definition of a function, we speak of a transformation from a vector space into the space of
real (or complex) scalars (Luenberger, 1969; Doy, 1975). A cost function provides a quantitative measure for
assessing the quality of performance; hence the restriction of it to a real scalar.
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eigenvalue to its smallest eigenvalue. Nevertheless, the LMS algorithm is highly popular
and widely used in a variety of applications.

In a nonstationary environment, the orientation of the error-performance surface
varies continuously with time. In this case, the LMS algorithm has the added task of con-
tinually tracking the bottom of the error-performance surface. Indeed, tracking will occur
provided that the input data vary siowly compared tc the learning rate of the LMS algo-
rithm.

The stochastic gradient approach may also be pursued in the context of a lattice
structure. The resulting adaptive filtering algorithm is called the gradient adaptive lattice
(GAL) algorithm. In their own individual ways, the LMS and GAL algorithms are just two
members of the stochastic gradient family of linear adaptive filters, although it must be
said that the LMS algorithm is by far the most popular member of this family.

Least-squares Estimation

The second approach to the development of linear adaptive filtering algorithms is based
on the method of least squares. According to this method we minimize a cost function or
index of performance that is defined as the sum of weighted error squares, where the error
or residual is itself defined as the difference between some desired response and the actual
filter output. The method of least squares may be formulated with block estimation or
recursive estimation in mind. In block estimation the input data stream is arranged in the
form of blocks of equal length (duration), and the filtering of input data proceeds on a
block-by-block basis. In recursive estimation, on the other hand, the estimates of interest
(e.g., tap weights of a transversal filter) are updated on a sample-by-sample basis. Ordi-
narily, a recursive estimator requires less storage than a block estimator, which is the rea-
son for its much wider use in practice.

Recursive least-squares (RLS) estimation may be viewed as a special case of Kal-
man filtering. A distinguishing feature of the Kaiman filter is the notion of state, which
provides a measure of all the inputs applied to the filter up to a specific instant of time.
Thus, at the heart of the Kalman filtering algorithm we have a recursion that may be
described in words as follows:

updated value old value _ ‘
of the of the Kalman ) ( innovation
- +{ gain vector
state state

where the innovation vector represents new information put into the filtering process at
the time of the computation. For the present, it suffices to say that there is indeed a one-to-
one correspondence between the Kalman variables and RLS vanables. This correspon-
dence means that we can tap the vast literature on Kalman filters for the design of linear
adaptive filters based on recursive least-squares estimation. Moreover, we may classify
the recursive least-squares family of linear adaptive filtering algorithms into three distinct
categories, depending on the approach taken:
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Standard RLS algorithm, which assumes the use of a transversal filter as the
structural basis of the linear adaptive filter. Derivation of the standard RLS algo-
rithm relies on a basic result in linear algebra known as the matrix inversion
lemma. Most importantly, it enjoys the same virtues and suffers from the same
limitations as the standard Kalman filtering algorithm. The limitations include
lack of numerical robustness and excessive computational complexity. Indeed, it
is these two limitations that have prompted the development of the other two cat-
egories of RLS algorithms, described next.

. Square-root RLS algorithms, which are based on QR-decomposition of the

incoming data matrix. Two well-known techriques for performing this decompo-
sition are the Householder transformation and the Givens rotation, both of which
are data-adaptive transformations. At this point in the discussion, we need to
merely say that RLS algorithms based on the Householder transformation or Giv-
ens rotation are numerically stable and robust. The resulting linear adaptive fil-
ters are referred 10 as square-root adaptive filters, because in a matrix sense they
represent the square-foot forms of the standard RLS algorithm.

Fast RLS algorithms. The standard RLS algorithm and square-root RLS algo-
rithms have a computational complexity that increases as the square of M, where
M is the number of adjustable weights (i.e., the number of degrees of freedom) in
the algorithm. Such algorithms are often referred to as O(M?) algorithms, where
O(+) denotes “order of.” By contrast, the LMS algorithm is an O(M) algorithm, in
that its computational complexity increases linearly with M. When M is large, the
computational complexity of O(M*) algorithms may become objectionable from
a hardware implementation point of view. There is therefore a strong motivation
to modify the formulation of the RLS algorithm in such a way that the computa-
tional complexity assumes an O(M) form. This objective is indeed achievable, in
the case of temporal processing, first by virtue of the inherent redundancy in the
Toeplitz structure of the input data matrix and, second, by exploiting this redun-
dancy through the use of linear least-squares prediction in both the forward and
backward directions. The resulting algorithms are known collectively as fast RLS
algorithms; they combine the desirable characteristics of recursive linear least-
squares estimation with an O(M) computational complexity. Two types of fast
RLS algorithms may be identified. depending on the filtering structure
employed:

o Order-recursive adaptive filters, which are based on a latticelike structure for
making linear forward and backward predictions.

« Fast transversal filters, in which the linear forward and backward predictions
are performed using separate transversal filters.

Certain (but not all) realizations of order-recursive adaptive filters are known to
be numerically stable, whereas fast transversal filters suffer from a numerical sta-



14

Introduction

bility problem and therefore require some form of stabilization for them to be of
practical use.

An introductory discussion of linear adaptive filters would be incomplete without
saying something about their tracking behavior. In this context, we note that stochastic
gradient algorithms such as the LMS algorithm are model-independent, generally speak-
ing, we would expect them to exhibit good tracking behavior, which indeed they do. In
contrast, RLS algorithms are model-dependent; this, in turn, means that their tracking
behavior may be inferior to that of a member of the stochastic gradient family, unless care
is taken to minimize the mismatch between the mathematical model on which they are
based and the underlying physical process responsible for generating the input data.

How to Choose an Adaptive Filter

Given the wide variety of adaptive filters available to a system designer, how can a choice
be made for an application of interest? Clearly, whatever the choice, it has to be cost-effec-
tive. With this goal in mind, we may identify three important issues that require attention:
computational cost, performance, and robustess. The use of computer simulation pro-
vides a good first step in undertaking a detailed investigation of these issues. We may
begin by using the LMS algorithm as an adaptive filtering tool for the study. The LMS
algorithm is relatively simple to implement. Yet it is powerful enough to evaluate the
practical benefits that may result from the application of adaptivity to the problem at hand.
Moreover, it provides a practical frame of reference for assessing any further improve-
ment that may be attained through the use of more sophisticated adaptive filtering algo-
rithms. Finally, the study must include tests with real-life data, for which there is no
substitute. .

Practical applications of adaptive filiering are very diverse, with each application
having peculiarities of its own. The solution for one application may not be suitable for
another. Nevertheless, to be successful we have to develop a physical understanding of the
environment in which the filter has to operate and thereby relate to the realities of the
application of interest.

5. REAL AND COMPLEX FORMS OF ADAPTIVE FILTERS

In the development of adaptive filtering algorithms, regardless of their origin, it is custom-
ary to assume that the input data are in baseband form. The term *baseband” is used to
designate the band of frequencies representing the original (message) signal as generatéd
by the source of information.

In such applications as communications, radar, and sonar, the information-bearing
signal component of the receiver input typically consists of a message signal modulated
onto a carrier wave. The bandwidth of the message signal is usually small compared to the
carrier frequency, which means that the modulated signal is a narrow-band signal. To
obtain the baseband representation of a narrow-band signal, the signal is translated down

Vi W
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in frequency in such a way that the effect of the carrier wave is completely removed, yet
the information content of the message signal is fully preserved. In general, the baseband

signal so obtained is complex. In other words, a sample w(n)} of the signal may be writ-
ten as

u'(n) = u,(n) + juy(n) (6)

where u,(n) is the in-phase (real) component, and uy(n) is the quadrature (imaginary)
component. Equivalently, we may express u(n} as

u(n) = lu(n)le’*™ 7

where {u(n)l is the magnitude and &{n) is the phase angle.

Accordingly, the theory of adaptive filters (both linear and nonlinear) developed in
subsequent chapters of the book assumes the use of complex signals. An adaptive filtering
algorithm so developed is said to be in complex form. The important virtue of complex
adaptive filters is that they preserve the mathematical formulation and elegant structure of
complex signals encountered in the aforementioned areas of application.

If the signals to be processed are real, we naturally use the real form of the adaptive-
filtering algorithm of interest. Given the complex form of an adaptive filtering algorithm,
it is straightforward to deduce the corresponding real form of the algorithm. Specifically,
we do two things:

1. The operation of complex conjugation, wherever in the algorithm, is simply
removed.

2. The operation of Hermitian transposition (i.e., conjugate transposition) of a
matrix, wherever in the algorithm, is replaced by ordinary transposition.

Simply put, complex adaptive filters include real adaptive filters as special cases.

6. NONLINEAR ADAPTIVE FILTERS

The theory of linear optimum filters is based on the mean-square error criterion. The
Wiener filter that results from the minimization of such a criterion, and which represents
the goal of linear adaptive filtering for a stationary environment, can only relate to second-
order statistics of the input data and no higher. This constraint limits the ability of a linear
adaptive filter to extract information from input data that are non-Gaussian. Despite its
theoretical importance, the existence of Gaussian noise is open to question (Johnson and
Rao, 1990). Moreover, non-Gaussian processes are quite common in many signal process-
ing applications encountered in practice. The use of a Wiener filter or a linear adaptive fil-
ter to extract signals of interest in the presence of such non-Gaussian processes will
therefore yield suboptimal solutions. We may overcome this limitation by incorporating
sorne form of nonlinearity in the structure of the adaptive filter to take care of higher-order
statistics. Although by so doing, we no longer have the Wiener filter as a frame of refer-
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ence and so complicate the mathematical analysis, we would expect to benefit in two sig-
nificant ways: improving leamning efficiency and a broadening of applicaticn areas.
Fundamentally, there are two types of nonlinear adaptive filters, as described next.

Volterra-based Nonlinear Adaptive Filters

In this type of a nonlinear adaptive filter, the nonlinearity is localized at the front end of
the filter. It relies on the use of a Volterra series® that provides an attractive method for
describing the input—output relationship of a nonlinear device with memory. This special
form of a series derives its name from the fact that it was first studied by Vito Voiterra
around 1880 as a generalization of the Taylor series of a function. But Norbert Wiener
(1958) was the first to use the Volterra series to model the input—output relationship of a
nonlinear systern.

Let the time series x,_ denote the input of a nonlinear discrete-time system. We may
then combine these input samples to define a set of discrete Volterra kernels as follows:

H, = zero-order (dc) term

H [x,]1 = first-order (linear) term

:ZhixJ

H,{x,] = second-order (quadratic) term

By

iy

H,[x,] = third-order (cubic) term
= Z Z}: zhukxlxjxk

and so on for higher-order terms. Ordinarily, the nonlinear model coefficients, the &’s, are
fixed by analytical methods. We may thus decompose a nonlinear adaptive filter as fol-
lows:’

* A nonlinear Volterra staie expander that combines the set of input values x,
Xy, .. ., X, to produce a larger set of outputs ug, u,, . . ., i for which g is larger
than n. For example, the extension vector for a (3,2) system has the form

_ 2 2 24T
u = [1, 29, X, Xpy Xg XgXp Xg¥a X Xgs (s X Xgr XaXor XXy, X3 ]

¢ A linear FIR adaptive filter that operates on the i, (i.e., elements of u) as inputs to
produce an estimate d, of some desired response d,,.

*For a discussion of Volterra series, see the book by Schetzen (1981).
"The idea described herein is discussed in Rayner and Lynch (1989) and Lynch and Rayner (1989).
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Figure 6 Volterra-based nonlinear adaptive filter.

The important thing to note here is that by using a scheme similar to that described in
Fig. 6, we may expand the use of linear adaptive filters to include Volterra filters.

Neural Networks

An artificial neural network, or a neural network as it is commonly called, consists of the
interconnection of a large number of nonlinear processing units called neurons; that is, the
nonlinearity is distributed throughout the network. The development of neural networks,
right from their inception, has been motivated by the way the human brain performs its
operations; hence their name.

In this book, we are interested in a particular class of neural networks that learn
about their environment in a supervised manner. In other words, as with the conventional
form of a linear adaptive filter, we have a desired response that provides a target signal,
which the neural network tries to approximate during the learning process. The approxi-
mation is achieved by adjusting a set of free parameters, called synaptic weights, in a sys-
tematic manner. In effect, the synaptic weights provide a mechanism for storing the
information content of the input data.

In the context of adaptive signal processing applications, neural networks offer the
following advantages:

« Nonlinearity, which makes it possible to account for the nonlincar behavior of
physical phenomena responsible for generating the input data

* The ability to approximate any prescribed input-output mapping of a continuous
nature

o Weak statistical assumptions about the environment, in which the network is
embedded

« Learning capability, which is accomplished by undertaking a training session with
input—output examples that are representative of the environment
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« Generalization, which refers to the ability of the neural network to provide a satis-
factory performance in response to test data never seen by the network before

* Fauli tolerance, which means that the network continues to provide an acceptable
performance despite the failure of some neurons in the network

 VLSI implemeniability, which exploits the massive parallelism built into the
design of a neural network.

This is indeed an impressive list of attributes, which accounts for the widespread interest
in the use of neural networks to solve signal-processing tasks that are too difficult for con-
ventional (linear) adaptive filters.

7. APPLICATIONS

The ability of an adaptive filter to operate satisfactorily in an unknown environment and
track time variations of input statistics make the adaptive filter a powerful device for sig-
nal-processing and control applications. Indeed, adaptive filters have been successfully
applied in such diverse fields as communications, radar, sonar, seismology, and biomedi-
cal engineering. Although these applications are indeed quite different in nature, neverthe-
less, they have one basic common feature: an input vector and a desired response are used
to compute an estimation error, which is in turn used to control the values of a set of
adjustable filter coefficients. The adjustable coefficients may take the form of tap weights,
reflection coefficients, rotation parameters, or synaptic weights, depending on the filter
structure employed. However, the essential difference between the various applications of
adaptive filtering arises in the manner in which the desired response is extracted. In this
context, we may distinguish four basic classes of adaptive filtering applications, as
depicted in Fig. 7. For convenience of presentation, the following notations are used in
this figure: '

« = input applied to the adaptive filter
y = output of the adaptive filter
d = desired response
¢ = d — y = estimation error.
The functions of the four basic classes of adaptive filtering applications depicted herein

are as follows:

1. Identification [Fig. 7(a)]. The notion of a mathematical model is fundamental
to sciences and engineering. In the class of applications dealing with identifica-
tion, an adaptive filter is used to provide a linear model that represents the best
fit (in some sense) to an unknown plani. The plant and the adaptive filter are
driven by the same input. The plant output supplies the desired response for the
adaptive filter. If the plant is dynamic in nature, the model will be time varying.



System

/

input

System

input

Random

signal

Primary

signal ~

Reference

Adaptive
fiter
/ Y
b3
+
[d
Plant I\ ff;ﬁ?
(a}
«| Plant Adaptive System
filter output
/ y
z
+
Id
Delay
{b)
_____ —_ System
/ d output 2
+
- Adaptive Ly System
Dela - -
Y filter _ ‘E‘/ output 1
()
/ y
N
Adaptive Yy ¥ e System
filtter =/ output 1

signal

/

{d

Figure 7 Four basic classes of adaptive filtering applications: (a) class I: identification;
(b) class II: inverse modeling; (c) class IIi: prediction; (d) class IV: interference canceling.

Introduction

19



20

Introduction

II. Inverse modeling [Fig. 7(b)]. In this second class of applications, the functien
of the adaptive filter is to provide an inverse model that represents the best fit
(in some sense) to an unknown noisy plani. 1deally. in the case of a linear sys-
tem, the inverse model has a transfer function equal to the reciprocal (inverse)
of the plant’s transfer function, such that the combination of the two constitutes
an ideal transmission medium. A delayed version of the plant (system) input
constitutes the desired response for the adaptive filter. In some applications,
the plant input is used without delay as the desired response.

II1. Prediction [Fig. 7{c)]. Here the function of the adaptive filter is to provide the
best prediction (in some sense) of the present value of a random signal. The
present value of the signal thus serves the purpose of a desired response for the
adaptive filter. Past values of the signal supply the input applied to the adaptive
filter. Depending on the application of interest, the adaptive filter output or the
estimation (prediction) error may serve as the system output. In the first case,
the system operates as a predictor; in the latter case, it operates as a prediction-
error filter. '

IV. Interference canceling [Fig. 7(d)). In this final class of applications, the adap-
tive filter is used to cancel unknown interference contained (alongside an infor-
mation-bearing signal component) in a primary signal, with the cancelation
being optimized in some sense. The primary signal serves as the desired
response for the adaptive filter. A reference (auxiliary) signal is employed as
the input to the adaptive filter. The reference signal is derived from a sensor or
set of sensors located in relation to the sensor(s) supplying the primary signal
in such a way that the information-bearing signal component is weak or essen-
tially undetectable.

In Table 1 we have listed some applications that are illustrative of the four basic
classes of adaptive filtering applications. These applications, totaling twelve, are drawn
from the fields of control systems, seismology, electrocardiography, communications, and
radar. They are described individually in the remainder of this sectton.

System Identification

System identification is the experimental approach to the modeling of a process or a plant
(Goodwin and Payne, 1977; Ljung and Soderstrdm, 1983; Ljung, 1987; Sdderstrom and
Stoica, 1988; Astrom and Wittenmark, 1990). It involves the following steps: experimen-
tal planning, the selection of a model structure, parameter estimation, and model valida-
tion. The procedure of system identification, as pursued in practice, is iterative in nature in
that we may have to go back and forth between these steps until a satisfactory model is
built. Here we discuss briefly the idea of adaptive filtering algorithms for estimating the
parameters of an unknown plant modeled as a transversal filter.

Suppose we have an unknown dynamic plant that is linear and time varying. The
plant is characterized by a real-valued set of discrete-time measurements that describe the
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TABLE 1 APPLICATIONS OF ADAPTIVE FILTERS

Class of adaptive filtering Application

1. Identification System identification
Layered earth modeling

Il. Inverse modeling Predictive deconvolution
Adaptive equalization
Blind equalization

Hi. Prediction Linear predictive coding

Adaptive differential pulse-code modulation
Autoregressive spectrum analysis
Signal detection
IV. Interference canceling Adaptive noise canceling
Echo cancelation
Adaptive beamforming

variation of the plant output in response to a known stationary input. The requirement is o
develop an on-line transversal filter model for this plant, as illustrated in Fig. 8. The
model consists of a finite number of unit-delay elements and a corresponding set of adjust-
able parameters (tap weights).

Let the available input signal at time n be denoted by the set of samples: u(n),
u(n — 1), ..., u(n — M + 1), where M is the number of adjustable parameters in the
model. This input signal is applied simultaneously to the piant and the model. Let their
respective outputs be denoted by d(n) and y(n). The plant output d(n) serves the purpose of
a desired response for the adaptive filtering algorittm employed to adjust the model
parameters. The model output is given by

M-

y(n) = Z W (nyu(n—k) (8)
k=0

where W, (n), W,(n), . . ., and W,,_ (n) are the estimated model parameters. The model
output y(n) is compared with the plant output d(r). The difference between them,
d(n) — y(n), defines the modeling (estimation) error. Let this error be denoted by e{(n).
Typically, at time », the modeling error e(n) is nonzero, implying that the model .
deviates from the plant. In an attempt to account for this deviation, the error e(n) is applied
to an adaptive control algorithm. The samples of the input signal, u(n), u(n — 1), . ..,
u(n — M + 1), are also applied to the algorithm. The combination of the transversal filter
and the adaptive control algorithm constitutes the adaptive filtering algorithm. The algo-
rithm is designed to control the adjustments made in the values of the model parameters.
As a result, the model parameters assume a new set of values for use on the next iteration.
Thus, at time #n + 1, a new mode] output is computed, and with it a new value for the mod-
eling error. The operation described is then repeated. This process is continued for a suffi-
ciently large number of iterations (starting from time n = 0), until the deviation of the
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model from the plant, measured by the magnitude of the modeling error e(n), becomes
sufficiently small in some statistical sense.

When the plant is time varying, the plant output is nonstationary, and so is the
desired response presented to the adaptive filtering algorithm. In such a situation, the
adaptive filtering algorithm has the task of not only keeping the modeling error small but
also continually tracking the time variations in the dynamics of the plant.

Layered Earth Modeling

In exploration seismology, we usually think of a layered model of the earth (Robinson and
Treitel, 1980; Justice, 1985; Mendel, 1986; Robinson and Durrani, 1986). In order to col-
lect (record) seismic data for the purpose of characterizing such a model and thereby
unraveling the complexities of the earth’s surface, it is customary to use the method of
reflection seismology that involves the following:

1. A source of seismic energy (e.g., dynamite, air gun) that is typically activated on
the surface of the earth.
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2. Propagation of the seismic signal away from the source and deep into the earth’s
crust.

3. Reflection of seismic waves from the interfaces between the earth’s geological
layers.

4, Picking up and recording the seismic returns (i.e., reflections of seismic waves
from the interfaces) that carry information about the subsurface structure. On
land, geophones (consisting of small sensors implanted into the earth) are used to
pick up the seismic returns.

The method of reflection seismology, combined with a lot of signal processing, is
capable of supplying a two- or three-dimensional “picture” of the earth’s subsurface,
down to about 20,000 to 30,000 feet and with high enough accuracy and resolution. This
picture is then examined by an “interpreter” to see if it is likely that the part of the earth’s
subsurface (under exploration) contains hydrocarbon (petroleum) reservoirs. Accordingly,
a decision is made whether or not to drill a well, which (in the final analysis) is the only
way of knowing if petroleum is actually present.

A seismic wave is similar in nature to an acoustic wave, except that the earth per-
mits the propagation of shear waves as well as compressional waves. (In an acoustic
medium, only compressional waves are supported.) The earth tends to act like an elastic
medium for the propagation of seismic waves. The property of elasticity means that a fluid
or solid body resists changes in size and shape due to the applications of an external force,
and that the body’is restored to its original size and shape upon removal of the force. It is
this property that permits the propagation of seismic waves through the earth.

An important issue in exploration seismology is the interpretation of seismic returns
from the different geological layers of the earth. This interpretation is fundamental to the
identification of crusted regions such as depth rocks, sand layers, or sedimentary layers.
The sedimentary layers are of particular interest because they may contain hydrocarbon
reservoirs. The idea of a layered earth model plays a key role here.

The layered-earth model is based on the physical fact that seismic-wave motion in
each layer is characterized by two components propagating in opposite directions (Robin-
son and Durrani, 1986). This phenomenon is illustrated in Fig. 9. To understand the inter-
action between downgoing and upgoing waves, we have reproduced a portion of this
diagram in Fig. 10(a), which pertains to the kth interface. The picture shown in Fig. 10(a)
is decomposed into two parts, as depicted in Fig. 10(b) and 10(c). We thus observe the
following:

« Inlayer k, there is an upgoing wave that consists of the superposition of the reflec-
tion of a downgoing wave incident on the kth interface (i.c., boundary) and the
transmission of an upgoing (incident) wave from layer k + 1.

» Inlayer k + 1, there is a downgoing wave that consists of the superposition of the
transmission of a downgoing (incident) wave from layer k and the reflection of an
upgoing wave incident on the kth interface.
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Lattice Model. Let ¢, denote the upward reflection coefficient of the kth inter-
face [sev Fig. 10(b)]. Let dy(n) and wuyfn) denote the downgoing and upgoing waves,
respectivily, at the rop of laver & and let d/(n) and w/(n) denote the downgoing and
upgoing waves, respectively, at the borzom of 1ayer &, as depicted in Fig. 10(a). The index
n denotes discrete time. Ideally, the waves propagate through the medium without distor-
tion, or absorption. Accordingly, we have from Fig. 10(a),

d(n) = d(n — %) (9
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and
uin) =un + 3) (10}

where the trave! time from the top of a layer to its bottom (or vice versa) is assumed to be
one-half of a time unit. The superposition of the pictures depicted in parts (b} and (c) of
Fig. 10 and comparison with that of part (a) yields the following interactions between the
downgoing and upgoing waves:

iy (n) = —c, () + (1 + c)di(n) (1
and
u(m = ¢ d, (n)+ (I = cug,,in) (12)

The upward rransmission coefficient® of the kth interface is defined by [see
Fig. 10(c)]

B=1-r (13)

Thus, using this definition in Eq. (12), and also using this equation to eliminate w, ()
from Eq. (11), we obtain

w(n) = ¢ d;(ny +7/u,,(n) (14)
and

s (&%
@Mm=%¢mv#wm (15)

Using this pair of equations, we may construct a lattice model for layer &, as shown
in Fig. 11(a) {Robinson and Durrani, 1986). Moreover. we may extend this idea to develop
a multistage lartice model, shown in block diagram form in Fig. 11(b), which depicts the
propagation of waves through several layers of the medium. The lattice model for each
layer has the details given in Fig. 11(a). The combined use of these two figures provides a
great deal of physical insight into the interaction of downgoing and upgoing waves as they
propagate from one layer to the next.

Examination of Eq. (14) reveals that the evaluation of u,;(n) at the bottom of layer k
requires knowledge of u,, (n) at the top of layer k -+ 1. But i, (n) is not available until
the layer & + | has been dealt with. The lattice model of Fig. 11 is therefore of limited
practical use. To overcome this limitation, we may use the z-transform to modify this
model. Specifically, applying the z-transform to Egs. (9), (10), (14), and (15) and manipu-
lating them into matrix form, we get the so-called scattering equation:

D, ) _ [ =Dy 06
Uk+1(z) T -C;‘-Z4 11U (2) )

*The prime in the upward transmission coefficient 'rl, 15 used to distinguish it from the downward trans-
mission coefficient [see Fig. 11(a)], given by

T,=14+C
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where ™' is the unit-delay operator. The 2-by-2 matrix on the right-hand side of Eq. (16)
is called the scattering matrix. Thus, on the basis of Eq. (16), we may construct the modi-
fied lattice model for layer k, shown in Fig. 12(a) (Robinson and Durrani, 1986). Corre-
spondingly, the multistage version of the modified lattice model is as shown in Fig. 12(b).

The following points are noteworthy in the context of the modified lattice model of
Fig. 12 for the propagation of compressional seismic waves in the subsurface of the earth:

1. The lattice structure of the model has physical significance, since it follows natu-
rally from the notion of a layered earth.

2. The structure for each layer (state) of the model is symmetric.

3. The reciprocal of the transmission coefficient for each layer merely plays the role
of a scaling factor insofar as input—output relations are concerned. Specifically,
for layer k, we may remove 1/7; from the top path of the model in Fig. [2(a) sim-
ply by absorbing it in D, ,(z). Similarly, we may remove l/r, from the bottom
path by absorbing it in U, (z). Moreover, the values of the transmission coeffi-
cients T|, T3, . . ., T4 - . are determined from the respective values of the reflec-
tion coefficients ¢, ¢,. . . ., ¢, . .. by using Eq. (13).

4. The overall model for layers 1, 2, . .., k, . . . is uniquely determined by the
sequence of reflection coefficients ¢, ¢y . .1 Cpp o0 ™

A case of special interest arises when

W imy =10, k is the deepest layer an

This case corresponds to the case when the final interface [i.e., the (k + 1)th interface] acts
as a perfect absorber. In other words, there is no outgoing wave from the deepest layer, so
Eq. (17) follows. This equation thus represents the boundary condition on the lattice
model of Fig. 11. The corresponding boundary condition for the modified lattice model of
Fig. 12 s

U,.(2) =0, kis the deepest layer (18)

Given this boundary condition and the sequence of reflection coefficients ¢, ¢;, . . .,
€. - ., we may then use the modified lattice model of Fig. 12(b) {(in a stage-by-stage
fashion) to determine Uy(z), the z-transform of the output (outgoing) seismic wave uq(n) at
the earth’s surface, in terms of Dy(z), the z-transform of the input (downgoing) seismic
wave dy(n).

Tapped-Delay-Line (Transversal Model).  Figure 13 depicts a tapped-delay-
line model for a layered earth. It provides a local parameterization of the propagation
(scattering) phenomenon in the earth’s subsurface. According to the alternative model, the
input (downgoing) seismic wave dy(n) and the output (upgoing) seismic wave uy(n) are, in
general, linearly related by the infinite convolution sum

uy(n) = kz_:,)wkdo{n -k (19
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where the infinite sequence of tap weights w, represents the spatial mapping of the
medium’s weighting or the impulse response of the medium. Equation (19) states that the
output uy(n) is an infinite series of time-delayed and scaled replicas of the input dj().

There is a one-to-one correspondence between the impulse response w, that charac-
terizes the tapped-delay-line model of Fig. 13 and the sequence of reflection coefficients
¢, that characterizes the lattice model of Fig. 11: '

fw,} = {c,} (20)

In other words, given the ¢, we may uniquely determine the w,, and vice versa.

In reflection seismology, the model of Fig. 13 is referred to as the convolutional
model, in view of the convolution of the impulse response of the medium with the input.
This model is the starting point of seismic deconvolution (described in the next applica-
tion}. .

Parameter Estimation® The seismic wave dy(n) generated by the source of
energy acts as a “probing” wave that is transmitted into the earth. Correspondingly, the
seismic wave uy(n) is the output evoked by the propagation of dy(n) in the earth’s subsur-
face. A recorded trace of the output u,(n) for varying time n is called a seismogram. Thus,
given digital recordings of the probing wave dy(r) and the resulting seismogram uy(n), we
may apply an adaptive filtering algorithm to estimate the impulse response w, of the lay-
ered earth. This computation is performed off-line, with the probing wave dy(n) used as
input to the adaptive filtering algorithm and the seismogram u(n) serving the role of
desired response for the algorithm. '

Predictive Deconvolution

Convolution is fundamental to the analysis of linear time-invariant systems. Specifically,
the output of a linear time-invariant system is the convolution of the input with the
impulse response of the system. Convolution is commutative. We may therefore also say
that the output of the system is the convolution of the impulse response of the system with
the input. Moreover, convolution is a linear operation; it therefore holds regardless of the
type of signal used as the systern input.

Consider the convolutional model for reflection seismology depicted in Fig. 13. We
may express the input—output relation of this model simply as

uy(n) = w, * dy(n) (21

For a survey of different parameter estimation procedures applicable to reflection seismology, see Men-
del (1986). This paper also discusses other related issues, namely, representation (i.e., how something should be
modeled), measurement (which physical parameters should be measured and how they should be measured), and
validation {i.e., demonstrating confidence in the model). For a deterministic approach applicable to reflection
seismology, see Bruckstein and Kailath (1987). The approach taken here is based on an inverse scattering frame-
work for determining the parareters of a layered wave propagation medium from measurements taken at the

boundary.
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where dj(n) is the input, w, is the impulse response, and iuy(n) is the outpat. The symbol *
is shorthand for convolution. The important point to note here is that given the values of
w, and dy(n) for varying n, we may determine the corresponding values of uy(n).

Deconvolution is a linear operation that removes the effect of some previous convo-
lution performed on a given data record (time series). Suppose that we are given the input
dy(n) and the output uy(n). We may then use deconvolution to determine the impulse
response w,. In symbolic form we may thus write

w, = uy(n) * do_'(n) 22y

where d{{'(n) denotes the inverse of dy(n). Note, however, that d,)_’(n) is not the recipro-
cal of dy(n); rather, the use of the superscript —1 is merely a flag indicating “inverse.”

In seismic deconvolution, we ate given the seismogram ug(n) and the requirement is
to unravel it so as to obtain an estimate of the impulse response w, of a layered earth
model. The problem, however, is complicated by the fact that in the general case of reflec-
tion seismology we do not have an estimate of the input seismic wave (also referred to as
the seismic wavelet) dy(n). To overcome this practical uncertainty, we may use an elegant
statistical procedure known as predictive deconvolution (Robinson, 1954, Robinson and
Durrani, 1986). The term “predictive” arises from the fact that the procedure relies on the
use of linear prediction. The derivation of predictive deconvolution rests on two simplify-
ing hypotheses for seismic wave propagation with normal incidence:

1. The input wave dy(n), generated by the source of seismic energy, is the impulse
response of an all-pole feedback system, and is thus minimum phase.

2. The impulse response ., of the layered earth model has the properties of a white-
noise process.

Condition 1 is referred to as the feedback hypothesis, and condition 2 is referred to as the
random hypothesis. Geophysical experience over three decades has shown that it is indeed
possible to satisfy these two hypotheses (Robinson, 1984). As a result, predictive decaon-
volution is used routinely on all seismic records in every exploration program.

The implication of the feedback hypothesis is that we may express the present value
do(n) of the input wave as a linear combination of the past values. as shown by

M

dy(n) = '-”-}__,akdo(n - k) (
i=1
where the «, are the feedback coefficients. and M is the order of the all-pole feedbick sys-
tem. The order M may be fixed in advance; alternatively. it may be determined by a mean-
SUUATE-CTTO e rion.

According to the random hypothesis, the impulse response w, has the properties of a
white-noise process. We therefore expect the estimate w, produced by the deconvolution
filter in Fig. 14 to have similar properties. In other words, the deconvolution filter acts as a
whitening filter. Furthermore, the deconvolution filter is an all-zero filter with a transfer
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Figure 14 Block diagram illustrating seismic deconvolution.

function equal to the reciprocal of the transfer function of the all-pole feedback system
used to model dy(n). This means that if we express the transfer function of the feedback
system [i.e., the z-transform of dy(n)] as:

1
_l - —_
l+a]z +a,z 2+'--+¢1Mz ud

Dy(2) = (24)

where a,, a,, . . . , ay are the feedback coefficients, and ignore the additive noise v(n) in
the model of Fig. 14, then the transfer function of the deconvolution filter is

=1
Al2) Dy(2)
-1 -2 -M
=l+az +apg t-taqp (25)

To evaluate A(z), we may use a block processing approached based on the aug-
mented matrix form of the Wiener—Hopf equations for linear preduction. This relation
consists of a system of (M + 1) simultaneous equations tha involve the following:

1. A setof (M + 1) known quantities represented by the estimates 7 (0), F(l) ...,
# (M) of the autocorrelation function of the seismogram wy(n) for varying lags 0,
1,...,M, respectively. To get these values, we may use the formula for a biased
estimate of the autocorrelation function:

N
s =L D dmdn-n,  1=0,1,....M 26)
N n=l+1 0
where N is the record length of the seismogram. Typically, N is very large com-
pared to M.
2. A set of (M + 1) unknowns, made up of the feedback coefficients a;, a, . . ., ay
+ and the variance o® of the white-noise process assumed to model w,.

Given the seismogram uy(n), we may therefore uniquely determine the feedback coeffi-
cients a,, a,, - - ., ay and the variance o’ by solving this system of equations.
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From Eq. (25), we see that the impulse response of the deconvolution filter consists

of the sequence a,, k = 1, 2, . . ., M. Accordingly, the convolution of this impulse
response with u,(n) yields the desired estimate w,, as shown by (see Fig. 14)
M
w, = Zakuo(n -k) 27
k=0

where a, = 1. Equation (27) is a description of the deconvolution process. Note, however,
the wave d,(n) generated by the source of seismic energy does not enter this description
directly as in the idealized representation of Eq. (23). Rather, the physical nature of dy(n)
influences the deconvolution process by modeling d,(n) as the impulse response of an all-
pole feedback system.

An alternative procedure for constructing the deconvolution filter is to use an adap-
tive filtering algorithm, as illustrated in Fig. 15. In this application, the present value uy(n)
of the seismic output serves the purpose of a desired response for the algorithm, and the
past values ugn — 1), ug(n — 2), ..., ugln — M) are used as elements of the input vector.
The prediction error controls the adaptation of the M tap weights of the transversal filter
component of the algorithm. When the algorithm has converged, the tap weights of the
transversal filter provide estimates of the feedback coefficients a,, a, . . . , @y,

Adaptive Equalization

In digital communications a considerable effort has been devoted to the study of data-
transmission systems that utilize the available channel bandwidth efficiently. The objec-
tive here is to design a system that accommodates the highest possible rate of data trans-
mission, subject to a specified reliability that is usually measured in terms of the error rate
or average probability of symbol error. The transmission of digital data through a linear
communication channel is limited by two factors:

1. Intersymbol interference (ISI). This is caused by dispersion in the transmit filter,
the transmission medium, and the receive filter.

2. Thermal noise. This is generated by the receiver at its front end.

For bandwidth-limited channels (e.g., voice-grade telephone channels), we usually find
that intersymbol interference is the chief determining factor in the design of high-data-rate
transmission systems.

Figure 16 shows the equivalent baseband model of a binary pulse-amplitude modu-
lation (PAM) system. The signal applied 1o the input of the transmitter part of the system
consists of a binary data sequence b,, in which each symbol consists of 1 or 0. This
sequence is applied to a pulse generator, the output of which is filtered first in the trans-
mitter, then by the medium, and finally in the receiver. Let u(k) denote the sampled output
of the receive filter in Fig. 16; the sampling is performed in synchronism with the pulse
generator in the transmitter. This output is compared to a threshold by means of a decision
device. If the threshold is exceeded, the receiver makes a decision in favor of symbol 1.
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Figure 15 Adaptive filtering scheme for estimating the impulse response of the
deconvolution filter.
Otherwise, it decides in favor of symbo! 0.
Let a scaling factor a, be defined by
a =1t i if the input bit b, consists of symbol 1 28
-1 if the input bit b, consists of symbol 0 (28)
Then, in the absence of thermal noise, we may express w(k) as
u(k) = Za,,p(k —n)
n
(29

=a,p(0) + % a,p(k—n)
n#tk

where p(n) is the sampled version of the impulse response of the cascade connection of the
transmit filter, the transmission medium, and the receive filter. The first term on the right-
hand side of Eq. (29) defines the desired symbol, whereas the remaining series represents
the intersymbol interference caused by the channel (i.e., the combination of the transmit
filter, the medium, and the receive filter). This intersymbol mterference, if left unchecked,
can result in erroneous decisions when the sampled signal at the channel output is com-
pared with some preassigned threshold by means of a decision device.

To overcome the intersymbol interference problem, control of the time-sampled
function p(n) is required. In principle, if the characteristics of the transmission medium are
known precisely, then it is virtually always possible to design a pair of transmit and
receive filters that will make the effect of intersymbol interference (at sampling times)
arbitrarily small. This is achieved by proper shaping of the overall response of the channel
in accordance with Nyquist's classic work on telegraph transmission theory. The overall
frequency response consists of a flat portion and a roll-off portion that has a cosine form
(Haykin, 1994). Correspondingly, the overall impulse response attains its maximum value
at time 7 = O and is zero at all other sampling instants; the intersymbol interference is
therefore zero. In practice we find that the channel is time varying, due to variations in the
transmission medium, which makes the received signal nonstationary. Accordingly, the
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use of a fixed pair of transmit and receive filters, designed on the basis of average channel
characteristics, may not adequately reduce intersymbol interference. This suggests the
need for an adaptive equalizer that provides precise control over the time response of the
channel (Lucky, 1965, 1966; Lucky et al., 1968; Proakis, 1975; Quereshi, 1985).

Among the basic philosophies for equalization of datatransmission systems are pre-
equalization at the transmitter and postequalization at the receiver. Since the former tech-
nique requires the use of a feedback path, we will only consider equalization at the
receiver, where the adaptive equalizer is placed after the receive filter-sampler combina-
tion in Fig. 16. In theory, the effect of intersymbol interference may be made arbitrarily
sma]l by making the number of adjustable coefficients (tap weights) in the adaptive equal-
izer infinitely large.

An adaptive filtering algorithm requires knowledge of the “desired” response so as
to form the error signal needed for the adaptive process to function. In theory, the trans-
mitted sequence (originating at the transmitter output) is the “desired” response for adap-
tive equalization. In practice, however, with the adaptive equalizer located in the receiver,
the equalizer is physicatly separated from the origin of its ideal desired response. There
are two methods in which a replica (facsimile) of the desired response may be generated
locally in the receiver:

1. Training method. In the first method, a replica of the desired response is stored in
the receiver. Naturally, the generator of this stored reference has to be electroni-
cally synchronized with the known transmitted sequence. A widely used fest

(probing) signal consists of a pseudonoise (PN) sequence (also known as a mauxi-
mal-length sequence) with a broad and even power spectrum. The PN sequence
has noiselike properties. Yel it has a deterministic waveform that repeats periodi-
cally. For the generation of a PN sequence, we may use a linear feedback shift
register that consists of a number of consecutive two-state memory stages (flip-
flops) regulated by a single timing clock (Golomb, 1964). A feedback term, con-
sisting of the modulo-2 sum of the outputs of various memory stages, is applied
to the first memory stage of the shift register and thereby prevents it from
emptying.

2. Decision-directed method. Under normal operating conditions, a good facsimile
of the transmitted sequence is being produced at the output of the decision device
in the receiver. Accordingly, if this output were the correct transmitted sequence,
it may be used as the “desired” response for the purpose of adaptive equalization.
Such a method of learning is said to be decision directed, because the receiver
attempts to learn by employing its own decisions {Lucky et al., 1968). If the aver-
age probability of symbol error is small (less than 10 percent, say), the decisions
made by the receiver are correct enough for the estimates of the error signal
(used in the adaptive process) to be accurate most of the time. This means that, in
general, the adaptive equalizer is able to improve the tap-weight settings by vir-
we of the correlation procedure buill into its feedback control loop. The
improved tap-weight settings will, in turn, result in a lower average probability of
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symbol error and therefore more accurate estimates of the error signal for adapta-
tion, and so it goes on. However, it is also possible for the reverse effect to occur,

in which case the tap-weight settings of the equalizer lose acquisition of the
channel.

With a known training sequence, as in the first method, the adaptive filtering algo-
rithm used to adjust the equalizer coefficients corresponds mathematically to searching for
the unique minimum of a quadratic error-performance surface. The unimodal nature of
this surface assures convergence of the algorithm. In the decision-directed method, on the
other hand, the use of estimated and unreliable data modifies the error performance into a
multimodal one, in which case complex behavior may result (Mazo, 1980). Spectifically,
the error performance surface now exhibits two types of local minima:

1. Desired local minima, whose positions correspond to coefficient (tap-weight)
settings that yield the same performance as that obtained with a known training
sequence

2. Undesired (extraneous) local minima, whose positions correspond to coefficient
settings that yield inferior equalizer performance.

A poor choice of the initial coefficient settings may cause the adaptive equalizer to con-
verge to an undesirable local minimum and stay there. The most significant point to note
from this discussion is that, in general, a linear adaptive equalizer must be trained before it
is switched to the decision-directed mode of operation if we are to be sure of delivering
high performance. '

A final comment pertaining to performance evaluation is in order. A popular experi-
mental technique for assessing the performance of a data transmission system involves the
use of an eye pattern. This pattern is obtained by applying (1) the received wave to the
vertical deflection plates of an oscilloscope, and (2) a sawtooth wave at the transmitted
symbol rate to the horizontal deflection plates. The resulting display is called an eye pat-
tern because of its resemblance to the human eye for binary data. Thus, in a system using
adaptive equalization, the equalizer attempts to correct for intersymbol interference in the
system and thereby open the eye pattern as far as possible.

Thus far we have only discussed adaptive equalizers for baseband PAM systems.
However, voice-band data transmission systems employ modulation-demodulation
schemes that are commonly known as modems. Depending on the speed of operation, we
may categorize modems as follows (Qureshi, 1985):

1. Low-speed (2400 to 4800 b/s) modems that use phase-shift keying (PSK); PSK is
a digital modulation scheme in which the phase of a sinusoidal carrier wave is
shifted by 27k/M radians in accordance with the input data, where M is the num-
ber of phase levels used and k = 0, 1,.. ., M — 1. Specific values of M used in
practice are M = 2 and 4, representing binary phase-shift keying (BPSK) and
quadriphase-shift keying (QPSK), respectively.
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2. High-speed (4800 to 16,800 b/s or possibly even higher) modems that use com-
bined amplitude and phase modulation or, equivalently, quadrature amplitude
modulation (QAM).

The important point to rote is that the baseband model for BPSK is real, whereas the base-
band models for QPSK and QAM are complex, involving both in-phase and quadrature
channels. Hence, the baseband adaptive equalizer for data transmission systems using
BPSK (or its variation) is real, whereas the baseband adaptive equalizers for QPSK and
QAM are complex (i.e., the tap weights of the transversal filter are complex). Note also
that-a real equalizer processes real inputs to produce a real equalized output, whereas a
complex equalizer processes complex inputs to produce complex equalized outputs.

Blind Equalization

In the case of a highly nonstationary communications environment (e.g., digital mobile
communications), it is impractical to consider the use of a training sequence. In such a sit-
uation, the adaptive filter has to equalize the communication channel in a self-organized
(unsupervised) manner, and the resulting operation is referred to as blind equalization.
Clearly, the design of a blind equalizer is a more challenging task than a conventional
adaptive equalizer, because it has to make up for the absence of a training sequence by
some practical means. Whereas a conventional adaptive equalizer relies on second-order
statistics of the input data, a blind equalizer relies on additional information about the
environment.
This additional information may take one of two basic forms:

« Higher-order statistics (HOS), the extraction of which is implicitly or explicitly
built into the design of the blind equalizer. For this to be possible, the input data
must be non-Gaussian, and the equalizer must include some form of nonlinearity.

» Cyclostationarity; which arises when the amplitude, phase, or frequency of a sinu-
soidal carrier is varied in accordance with an information-bearing signal. In this
case, design of the blind equalizer is based on second-order cyclostationary statis-
tics of the input data, and the use of nonlinearity is no longer a requirement.

An advantage of the latter type of blind equalizer is that it exhibits better convergence
properties than an HOS-based blind equalizer.

Linear Predictive Coding

The coders used for the digital representation of speech signals fafl into two broad classes:
source coders and waveform coders. Source coders are model dependent, in that they use
a priori knowledge about how the speech signal is generated at the source. Source coders
for speech are generally referred to as vocoders (a contraction of voice coders). They can
operate at low coding rates; however, they provide a synthetic quality, with the speech sig-
nal having lost substantial naturalness. Waveform coders, on the other hand, essentially
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Figure 17 Block diagram of simplified model for the speech production process.

strive for facsimile reproduction of the speech waveform. In principle, these coders are
signal independent. They may be designed to provide telephone-toll quality for speech at
relatively high coding rates. In this subsection we describe a special form of source coder
known as a linear predictive coder. Waveform coders are considered in the next sub-
section.

In the context of speech, linear predictive coding (LPC} strives to produce digitized
voice data at low bit rates (as low as 2.4 kb/s), with two important motivations in mind.
First, the use of linear predictive coding permits the transmission of digitized voice over a
narrow-band channel (having a bandwidth of approximately 3 kHz). Second, the realiza-
tion of a low-bit rate makes the encryption of voice signals easier and more reliable than
would be the case otherwise; encryption is an essential requirement for secure communi-
cations (as in a military environment). Note that a bit rate of 2.4 kb/s is less than 5 percent
of the 64 kb/s used typically for the standard pulse-code moduiation (PCM); see the next
subsection.

Linear predictive coding achieves a low bit rate for the digital representation of
speech by exploiting the special properties of a classical model of the speech production
process, which is described next.

Figure 17 shows a simplified block diagram of the classical model for the speech
production process. It assumes that the sound-generating mechanism (i.e., the source of
excitation) is linearly separable from the intelligence-modulating vocal-tract filter. The
precise form of the excitation depends on whether the speech sound is voiced or unvoiced:
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1. A woiced speech sound (such as'%i/ in eve) is generated from quasi-periodic
vocal-cord sound. In the model of Fig. 17 the impulse-train generator produces a
sequence of impulses (i.¢., very short pulses), which are spaced by a fundamental
period equal to the pitch period. This signal, in turn, excites a linear filter whose
impulse response equals the vocal-cord sound pulse.

2. An unvoiced speech sound (such as /f/ in fish) is generated from random sound
produced by turbulent airflow. In this case the excitation consists simply of a
white (i.e., broad spectrum) noise source. The probability -distribution of the
noise samples does not appear to be critical.

The frequency response of the vocal-tract filter for unvoiced speech or that of the vocat
tract multiplied by the spectrum of the vocal-cord sound pulses determines the short-time
spectral envelope of the speech signal. '

At first sight, it may appear that the speech production model falls under class I of
adaptive filtering application (i.e., identification). In reality, however, this is not so. As
may be seen in Fig. 17, there is no access to the input signal of the vocal tract.

The method of linear predictive coding (LPC) is an example of source coding. This
method is important, because it provides not only a powerfiil technique for the digital
transmission of speech at low bit rates but also accurate estimates of basic speech
parameters. .

The development of LPC relies on the model of Fig. 17 for the speech-production
process. The frequency response of the vocal tract for unvoiced speech or that of the vocal
tract multiplied by the spectrum of the vocal sound pulse for voiced speech is described by

the transfer function
G

M
_ 30
14D gt (30)
k=1

where G is a gain parameter and z ! is the unit-delay operator. The form of excitation
applied to this filter is changed by switching between voiced and unvoiced sounds. Thus,
the filter with transfer function H(z) is excited by a sequence of impulses to generate
voiced sounds or a white-noise sequence to generate unvoiced sounds. In this application,
the input data are real valued; hence the filter coefficients, a,, are likewise real valued.

In linear predictive coding, as the name implies, linear prediction is used to estimate
the speech parameters. Given a set of past samples of a speech signal, u(n —~ 1), u(n — 2),
..., u(n — M), a linear prediction of u(n), the present sample value of the signal, is
defined by

H(z) =

M
i(n) = Zfbku(n —k) . (1)
k=1

1The symbol // is used to denote the phenome, a basic linguistic unit.
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The predictor coefficients, #, W,,..., W, are optimized by minimizing the mean-
square value of the prediction error, e(n), defined as the difference between w(n) and &(n).
The use of the minimum-mean-squared-error criterion for optimizing the predictor may be
justified for two basic reasons:

L. If the speech signal satisfies the model described by Eq. (30) and if the mean-
square value of the error signal e(n) is minimized, then we find that e(n) equals
the excitation u(n) multiplied by the gain parameter G in the model of Fig. 18 and
a, = —w,, k=1,2,..., M Thus, the estimation error e(n) consists of quasi-
periodic pulses in the case of voiced sounds or a white-noise sequence in the case
of unvoiced sounds. In either case, the estimation error e(n) would be small most
of the time. _

2. The use of the minimum-mean-squared-error criterion leads to tractable mathe-
matics.

»

Figure 18 shows the block diagram of an LPC vocoder. It consists of a transmitter and a
receiver. The transmitter first applies a window (typically 10 to 30 ms long) to the input
speech signal, thereby identifying a block of speech samples for processing. This window
is short enough for the vocal-tract shape to be nearly stationary, so the parameters of the
speech-production model in Fig. 18 may be treated as essentially constant for the duration
of the window. The transmitter then analyzes the input speech signal in an adaptive man-
ner, block by block, by performing a linear prediction and pitch detection. Finally, it codes
the parameters made up of (1) the set of predictor coefficients, (2) the pitch period, (3) the
gain parameter, and (4) the voiced—unvoiced parameter, for transmission over the channel.
The receiver performs the inverse operations, by first decoding thé incoming parameters.
In particular, it computes the values of the predictor coefficients, the pitch period, and the
gain parameter, and determines whether the segment of interest represents voiced or
unvoiced sound. Finally, the receiver uses these parameters to synthesize the speech signal
by utilizing the model of Fig. 17.

Adaptive Differential Pulse-Code Modulation

In pulse-code modulation, which is the standard technique for waveform coding, three
basic operation are performed on the speech signal. The three operations are sampling
(time discretization), quantization (amplitude discretization), and coding (digital represen-
tation of discrete amplitudes). The operations of sampling and quantization are designed
to preserve the shape of the speech signal. As for coding, it is merely a method of translat-
ing a discrete sequence of sample values into a more appropriate form of signal represen-
tation. .
The rationale for sampling follows from a basic property of all speech signals: they
are bandlimited. This means that a speech signal can be sampled in time at a finite rate in
accordance with the sampling theorem. For example, commercial telephone networks
designed to transmit speech signals occupy a bandwidth from 200 to 3200 Hz. To satisfy
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Figure 18 Block diagram of LPC vocoder: (a) transmitter, (b) receiver.

the sampling theorem, a conservative sampling rate of 8 kHz is commonly used in
practice.

Quantization is justified on the following grounds. Although a speech signal has a
continuous range of amplitudes (and therefore its samples also have a continuous ampli-
tude range), it is not necessary to transmit the exact amplitudes of the samples. Basically,
the human ear (as ultimate receiver) can only detect finite amplitude differences.

In PCM, as used in telephony, the speech signal (after low-pass filtering) is sampled
at the rate of 8 kHz, nonlinearly (e.g., logarithmically) quantized, and then coded into 8-bit
words; see Fig. 19(a). The result is a good signal-to-quantization-noise ratio over a wide
dynamic range of input signal levels. This method requires a bit rate of 64 kb/s.

Differential pulse-code modulation { DPCM), another example of waveform coding,
involves the use of a predictor as in Fig. 19(b). The predictor is designed to exploit the
correlation that exists between adjacent samples of the speech signal, in order to realize a
reduction in the number of bits required for the transmission of each sample of the speech
signal and yet maintain a prescribed quality of performance. This is achieved by quantiz-
ing and then coding the prediction error that results from the subtraction of the predictor
output from the input signal. If the prediction is optimized, the variance of the prediction
error will be significantly smaller than that of the input signal, so a quantizer with a given

number of levels can be adjusted to produce a quantizing error with a smaller variance

than would be possible if the input signal were quantized directly as in a standard PCM
system. Equivalently, for a quantizing error of prescribed variance, DPCM requires a
smaller number of quantizing levels (and therefore a smaller bit rate) than PCM. Differen-
tial pulse-code modulation uses a fixed quantizer and a fixed predictor. A further reduc-
tion in the transmission rate can be achieved by using an adaptive quantizer together with
an adaptive predictor of sufficiently high order, as in Fig. 19(c). This type of waveform
coding is called adaptive differential pulse-code modulation (ADPCM), where A denotes
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Figure 20 Black box representation of a stochastic model.

adaptation of both quantizer and predictor algorithms. An adaptive predictor is used in
order to account for the nonstationary nature of speech signals. ADPCM can digitize
speech with toll quality (8-bit PCM quality) at 32 kb/s. It can realize this level of quality
with a 4-bit quantizer."

Adaptive Spectrum Estimation

The power spectrum provides a quantitative measure of the second-order statistics of a
discrete-time stochastic process as a function of frequency. In parametric spectrum analy-
sis, we evaluate the power spectrum of the process by assuming a mode! for the process. In
particular, the process is modeled as the output of a linear filter that is excited by a whire-
noise process, as in Fig. 20. By definition, a while-noise process has a constant power
spectrum. A model that is of practical utility is the autoregressive (AR) model, in which
the transfer function of the filter is assumed to consist of poles only. Let this transfer func-
tion be denoted by

1
+ae ™+ tae M

1
=T s (32)

1+ Zahe_ﬂm

k=1

H(™) = 1

where the a, are called the autoregressive (AR} parameters, and M is the model order. Let
o2 denote the constant power spectrum of the white-noise process v(n) applied to the filter
input. Accordingly, the power spectrum of the filter output u(n) equals

Sarw) = o2|H(e™)® (33)

We refer to S,q(w) as the autoregressive (AR) powef spectrum. Equation (32) assumes
that the AR process u(n) is real, in which case the AR parameters themselves assume real

values.

'1'he Tnternational Telephone and Telegraph Consultative Commitiee (CCITT) has adopted the 32-kb/s
ADPCM as an international standard. The adaptive predictor used herein has a transfer function consisting of
two poles and six zeros. A two-pole configuration was chosen, because it permits control of decoder stability in
the presence of transmission errors. Six zeros were combined with the two poles in order to improve perfor-
mance. The eight coefficients of the predictor are adapted by using a simplified version of the LMS algorithm;
for details, see Benvenuto et al. (1986) and Nishitani et al. (1987).
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Figure 21  Adaptive prediction-error filter for real-valued data.

When the AR model is time varying, the model parameters become time dependent,
as shown by a,(n), ay(n), . . ., ay{n). In this case, we express the power spectrum of the
time-varying AR process as

02

v

Sprlwn) = v 3

1+ Zak(n)e~jkm

k=1

(34)

We may determine the AR parameters of the time-varying model by applying u(n)
to an adaptive prediction-error filter, as indicated in Fig. 21. The filier consists of a trans-
versal filter with adjustable tap weights. In the adaptive scheme of Fig. 21, the prediction
error produced at the output of the filter is used to control the adjustments applied to the
tap weights of the filter.

The adaptive AR model provides a practical means for measuring the insiantaneous
frequency of a frequency-modulated process. In particular, we may do this by measuring
the frequency at which the AR power spectrum S,g(w, n) attains its peak value for varying
time A. .

Signal Detection

The detection problem, that is, the problem of detecting an information-bearing signal in
noise, may be viewed as one of hypothesis testing with deep roots in statistical decision
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theory (Van Trees, 1968): In the statistical formulation of hypothesis testing, there are two
criteria of most interest: the Bayes criterion and the Neyman—Pearson criterion. In the .
Bayes test, we minimize the average cost or risk of the experiment of interest, which
incorporates two sets of parameters: (1) a priori probabilities that represent the observer’s
information about the source of information before the experiment is conducted, and (2) a
set of costs assigned to the various possible courses of action. As such, the Bayes criterion
is directly applicable to digital communications. In the Neyman—Pearson test, on the other
hand, we maximize the probability of detection subject to the constraint that the probabil-
ity of false alarm does not exceed some preassigned value. Accordingly, the Neyman-
Pearson criterion is directly applicable to radar or sonar. An idea of fundamental impor-
tance that emerges in hypothesis testing is that, for a Bayes criterion or Neyman—Pearson
criterion, the optimum test consists of two distinct operations: (1) processing the observed
data to compute a test statistic called the likelihood ratio, and (2) computing the likelihood
ratio with a threshold to make a decision in favor of one of the two hypotheses. The choice
of one criterion or the other merely affects the value assigned to the threshold. Let H|
denote the hypothesis that the observed data consist of noise alone, and H, denote the
hypothesis that the data consist of signal plus noise. The likelihood ratio is defined as the
ratio of two maximum likelihood functions, the numerator assuming that hypothesis H, is
true and the denominator assuming that hypothesis H, is true. If the likelihood ratio
exceeds the threshold, the decision is made in favor of hypothesis H,; otherwise, the deci-
sion is made in favor of hypothesis H,.

In simple binary hypothesis testing, it is assumed that the signal is known, and the
noise is both white and Gaussian. In this case, the likelihood ratio test yields a matched fil-
ter (matched in the sense that its impulse response equals the time-reversed version of the
known signal). When the additive noise is a colored Gaussian noise of known mean and
correlation matrix, the likelihood ratio test yields a filter that consists of two sections: a
whitening filter that transforms the colored noise component at the input into a white
Gaussian noise process, and a matched filter that is matched to the new version of the
known signal as modified by the whitening filter.

However, in some important operational environments such as communications,
radar, and active sonar, there may be inadequate information on the signal and noise sta-
tistics to design a fixed optimum detector. For example, in a sonar environment it may be
difficult to develop a precise model for the received sonar signal, one that would account
for the following factors completely:

« Loss in the signal strength of a target echo from an object of interest (e.g., enemy
vessel), due to oceanic propagation effects and reflection loss at the target

« Statistical variations in the additive reverberation component, produced by reflec-
tions of the transmitted signal from scatterers such as the ocean surface, ocean
floor, biologies, and inhomogeneities within the ocean volume

» Potential sources of noise such as biological, shipping, oil drilling, seismic, and
oceanographic phenomena.
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Figure 22 Fixed and adaptive detection schemes: {a) conventional detector. (b) ALE
output detector. (c) ALE weight detecior.

In situations of this kind, the use of adaptivity offers an attractive approach to solve
the target (signal) detection problem. Typically, the design of an adaptive detector pro-
ceeds by exploiting some knowledge of general characteristics of the signal and noise, and
designing the detector in such a way that its internal structure is adjustable in response to
changes in the received signal. In general, the incorporation of this adjustment makes the
performance analysis of an adaptive detector much more difficult to undertake than that of
a fixed detector.

Fixed and adaptive detectors.  Figure 22(a) shows the block diagram of a
conventional detector based on the discrete Fourier transform (DFT) for the detecticn of
narrow-band signals in white Gaussian noise (Williams and Ricker, 1972). The DFT may
be viewed as a bank of nonoverlapping narrow-band filters whose passbands span the fre-
quency range of interest. In the detector of Fig. 22(a) the magnitude of each complex out-
put of the DFT is squared to form a sufficient statistic. This statistic is optimum (in the
Neyman-—Pearson sense) for detecting a sinusoid of known frequency (centered in the per-
tinent passband of the DFT) but unknown phase, and in the presence of white Gaussian
noise. The detector output is compared to a threshold. If the threshold is exceeded, the
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detector decides in favor of the narrow-band signal; otherwise, the detector declares the
signal to be absent.

The performance of this conventional noncoherent detector may be improved by
using an adaptive line enhancer (ALE} as a prefilter (preprocessor) to the detector (Wid-
row et al., 1975b). The ALE is a special form of adaptive noise canceler that is designed to
suppress the wide-band noise component of the input, while passing the narrow-band sig-
nal component with little attenuation. Figure 23 depicts the block diagram of an ALE. It
consists of the interconnection of a delay element and a linear predictor. The predictor out-
put y(n) is subtracted from the input signal u(n) to produce the estimation error e{n). This
estimation error is, in turn, used to adaptively control the tap weights of the predictor. The
predictor input equals u(r — A), where the delay A is equal to or greater than the sampling
period. The main function of the prediction depth A is to remove the correlation between
the noise component in the original input signal u(n) and the delayed predictor input
u(n — A). It is for this reason that the delay A is also called the decorrelation parameter of
the ALE. '

Two types of ALE detection structures have been proposed in the literature (Zeidler,
1990):

1. ALE output detector. In this adaptive detector shown in Fig. 22(b), the output of
an ALE is applied to a DFT. The magnitude of the resulting DFT output is
squared to produce the sufficient statistic for the detector.

2. ALE weight detector. In this second adaptive detector, shown in Fig. 22(c), the
tap-weight vector of an ALE is applied to a DFT. The magnitude of the DFT out- -
put is squared as before to produce the sufficient statistic.

In both cases, the ALE processés N input data points, with the ALE length small compared
to N. The real benefit of the ALE is realized in a nonstationary noise background (Zeidler,
1990).
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The practical value of an ALE as a preprocessor to a conventional matched filter has
been demonstrated by Nielson and Thomas (1988) as a means of improving the petfor-
mance of the detector in the presence of Arctic ocean noise. This type of noise is known to
have highly non-Gaussian and nonstationary characteristics; hence the benefit to be
gained from the use of an ALE.

Adaptive Noise Canceling

As the name implies, adaptive noise canceling relies on the use of noise canceling by sub-
tracting noise from a received signal, an operation controlled in an adapiive manner for
the purpose of improved signal-to-noise ratio. Ordinarily, it is inadvisable to subtract
noise from a received signal, because such an operation could produce disastrous results
by causing an increase in the average power of the output noise. However, when proper
provisions are made, and filtering and subtraction are controlled by an adaptive process, it
is possible to achieve a superior systermn performance compared to direct filtering of the
received signal (Widrow et al., 1975b; Widrow and Stearns, 1985).

Basically, an adaptive noise canceler is a dual-input, closed-loop adaptive feedback
system as illustrated in Fig. 24. The two inputs of the system are derived from a pair of
sensors: a primary sensor and a reference (auxiliary) sensor. Specifically, we have the
following:

1. The primary sensor receives an information-bearing signal s(n) corrupted by
additive noise vy(n), as shown by

d(n) = s(ni + vy(n) (35)

The signal s(rr) and the noise v,(n) are uncorrelated with each other; that is,
E[s(nvyin — k)] =0  forallk (36)

where s(n) and vy(n) are assumed to be real valued.

2. The reference sensor receives a noise v,(n) that is uncorrelated with the signal
s(n) but correlated with the noise vy(n) in the primary sensor output in an
unknown way; that is,

Elsipvi(n—- k)] =0 for all £ (37}

and
Elv(n)vy(n — k)] = p(k) (38)
where, as before, the signals are real valued and p(k) is an unknown cross-corre-

lation for lag k.

The reference signal v,(n) is processed by an adaptive filter to produce the output
signal:
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y(n) = kZO W (n)v (n—k) (39

where the w, (n) are the adjustable (real) tap weigits of the adaptive filter. The filter output
y(n) is subtracted from the primary signal d(n), serving as the “desired” response for the
adaptive filter. The error signal is defined by

e(n) = d(n) — y(n) (40)
Thus, substituting Eq. (35) in (40), we get
e(n) = s(n) + vy(n) — y(n) 41

The error signal is, in turn, used to adjust the tap weights of the adaptive filter, and the
control loop around the operations of filtering and subtraction is thereby closed. Note that
the information-bearing signal s(n) is indeed part of the error signal e(n), as indicated in
Eq. (41).

The error signal e(n) constitutes the overall system output. From Eq. (41) we see that
the noise component in the system output is vy(n) — y(n). Now, the adaptive filter attempts
to minimize the mean-square value (i.e., average power) of the error signal e(n). The
information-bearing signal s(n) is essentially unaffected by the adaptive noise canceler.
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Hence, minimizing the mean-square value of the error signal e(n) is equivalent to mini-
mizing the mean-square value of the output noise vy(n) — y(n). With the signal s(n)
remaining essentially constant, it follows that the minimization of the mean-square value
of the error signal is indeed the same as the maximization of the output signal-to-noise
ratio of the system. : '

The signal-processing operation described herein has two limiting cases that are
noteworthy:

1. The adaptive filtering operation is perfect in the sense that
y(n) = vy(n)

In this case, the system output is noise free and the noise cancelation is perfect.
Correspondingly, the output signal-to-noise ratio is infinitely large.

2. The reference signal v\(n) is completely uncorrelated with both the signal and
noise components of the primary signal d(n); that is,

Eld(nyv,(n — k)] =0 forall k

[n this case, the adaptive filter “switches itself off,” resulting in a zero value for
the output y(rn). Hence, the adaptive noise canceler has no effect on the primary
signal d(n), and the output signal-to-noise ratio remains unaltered.

The effective use of adaptive noise canceling therefore requires that we place the
reference sensor in the noise field of the primary sensor with two specific objectives in
mind. First, the information-bearing signal component of the primary sensor output is
undetectable in the reference sensor output. Second, the reference sensor output is highly
correlated with \iie noise component of the primary sensor output. Moreover, the adapta-
tion of the adjustable filter coefficients must be near optimum.

In the remainder of this subsection, we describe three useful applications of the
adaptive noise-canceling operation:

1. Canceling 60-Hz interference in electrocardiography. In electrocardiography
(ECG), commonly used to monitor beart patients, an electrical discharge radiates energy
through a human tissue and the resulting output is received by an electrode. The electrode
is usually positioned in such a way that the received energy is maximized. Typicaily, how-
ever, the electrical discharge involves very low potentials. Correspondingly, the received
energy is very small. Hence extra care has to be exercised in minimizing signal degrada-
tion due to external interference. By far, the strongest form of interference is that of a 60-
Hz periodic waveform picked up by the receiving electrode (acting like an antenna) from
nearby electrical equipment (Huhta and Webster, 1973). Needless to say, this interference
has undesirable effects in the interpretatior of electrocardiograms. Widrow et al. ((1975b)
have demonstrated the use of adaptive noise canceling (based on the LMS algorithm) as a
method for reducing this form of interference. Specifically, the primary signal is taken
from the ECG preamplifier, and the reference signal is taken from a wall outlet with
proper attenuation. Figure 25 shows a block diagram of the adaptive noise canceler used
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by Widrow et al. (1975b). The adaptive filter has two adjustable weights, wy{n) and
w,(n). One weight, wy(n), is fed directly from the reference point. The second weight,
w\(n), is fed from a 90°-phase-shifted version of the reference input. The sum of the two
weighted versions of the reference signal is then subtracted from the ECG output to pro-
duce an error signal. This error signal together with the weighted inputs are applied to the
LMS algorithm, which, in turn, controls the adjustments applied to the two weights. In this
application, the adaptive noise canceler acts as a variable “notch filter.” The frequency of
the sinusoidal interference in the ECG output is presumably the same as that of the sinu-
soidal reference signal. However, the amplitude and phase of the sinuscidal interference in
the ECG output are unknown. The two weights wy(n) and w,(n) provide the two degrees
of freedom required to control the amplitude and phase of the sinusoidal reference signal
s0 as to cancel the 60-Hz interference contained in the ECG output,

2. Reduction of acoustic noise in speech. At a noisy site (e.g., the cockpit of a mili-
tary aircraft), voice communication is affected by the presence of acoustic noise. This
effect is particularly serious when linear predictive coding (LPC) is used for the digital
representation of voice signals at low bit rates; LPC was discussed earlier. To be specific,
high-frequency acoustic noise severely affects the estimated LPC spectrum in both the
low- and high-frequency regions. Consequently, the intelligibility of digitized speech
using LPC often falls below the minimum acceptable level. Kang and Fransen (1987)
describe the use of an adaptive noise canceler, based on the LMS algorithm, for reducing
acoustic noise in speech. The noise-corrupted speech is used as the primary signal. To pro-
vide the reference signal {noise only), a reference microphone is placed in a location
where there is sufficient isolation from the source of speech (i.e., the known location of
the speaker’s mouth). In the experiments described by Kang and Fransen, a reduction of
10 to 15 dB in the acoustic noise floor is achieved, without degrading voice quality. Such
a level of noise reduction is significant in improving voice quality, which may be unac-
ceptable otherwise.

3. Adaptive speech enhancement. Consider the situation depicted in Fig. 26. The
requirement is to listen to the voice of the desired speaker in the presence of background
noise, which may be satisfied through the use of adaptive noise canceling. Specifically,
reference microphones are added at locations far enough away from the desired speaker
such that their outputs contain orly noise. As indicated in Fig. 26, a weighted sum of the
auxiliary microphone outputs is subtracted from the output of the desired speech-contain-
ing microphone, and an adaptive filtering algorithm (e.g., the LMS algorithm) is used to
adjust the weights so as to minimize the average output power. A useful application of the
idea described herein is in the adaptive noise cancelation for hearing aids’ ? (Chazan et al.,
1988). The so-called “cocktail party effect” severely limits the usefuiness of hearing aids.
The cocktail party phenomenon refers to the ability of a person with normal hearing to
focus on a conversation taking place at 2 distant location in a crowded room. This ability

""This idea is similar to that of adaptive spatial fillering in the context of antennas, which is considered
later in this section.



55

"yoeads Joj 13190urea astou 2andepe ue jo unrdeip yooig 9z iy

wiyyuobiie -
Buueyy -
aandepy
sauoydoloiw
a9
" uelajey
peues
10 - > S A.‘.lhl’ ssiou
punoubyoeq
\ 4O 82UN0S
. - A

euoydossiu Arewd

Introduction



56

Introduction

is lacking in a person who wears hearing aids, because of extreme sensitivity to the pres-
ence of background noise. This sensitivity is attributed to two factors: (a) the loss of direc-
tional cues, and (b) the limited channel capacity of the ear caused by the reduction in both
dynamic range and frequency response. Chazan et al. (1988) describe an adaptive noise
canceling technique aimed at overcoming this problem. The technique involves the use of
an array of microphones that exploit the difference in spatial characteristics between the
desired signal and the noise in a crowded room. The approach taken by Chazan et al. 1s
based on the fact that each microphone output may be viewed as the sum of the signals
produced by the individual speakers engaged in conversations in the room. Each signal
contribution in a particular microphone output is essentially the result of a speaker’s
speech signal having passed through the room filier. In other words, each speaker (includ-
ing the desired speaker) produces a signal at the microphone output that is the sum of the
direct transmission of his or her speech signal and its reflections from the walls of the
room. The requirement is to recons .ruct the desired speaker signal, including its room
reverberations, while canceling cut the source of noise. In general, the transformation
undergone by the speech signal from the desired speaker is not known. Also, the charac-
teristics of the background noise are variable. We thus have a signal-processing problem
for which adaptive noise canceling offers a feasible solution.

Echo Cancelation

Almost all conversations are conducted in the presence of echoes. An echo may be nonno-
ticeable or distinct, depending on the time delay involved. If the delay between the speech
and the echo is short, the echo is not noticeable but perceived as a form of spectral distor-
tion or reverberation. If, on the other hand, the delay exceeds a few tens of milliseconds,
the echo is distinctly noticeable. Distinct echoes are annoying.

Echoes may also be experienced on a telephone circuit (Sondhi and Berkley, 1980).
When a speech signal encounters an impedance mismatch at any point on a telephone cir-
cuit, a portion of that signal is reflected (retuned) as an echo. An echo represents an
impairment that can be annoying subjectively as the more obvious impairments of low
volume and noise. . .

To see how echoes occur, consider a long-distance telephone circuit depicted in
Fig. 27. Every telephone set in a given geographical area is connected to a central office
by a two-wire line called the customer loop; the two-wire line serves the need for commu-
nications in either direction. However, for circuits longer than about 35 miles, a separate
path is necessary for each direction of transmission. Accordingly, there has to be provision
for connecting the two-wire circuit to the four-wire circuit. This connection is accom-
plished by means of a hybrid transformer, commonly referred to as a hybrid. Basically, a
hybrid is a bridge circuit with three ports (terminal pairs), as depicted in Fig. 28. If the
bridge is not perfectly balanced, the “in” port of the hybrid becomes coupled to the “out”
port, thereby giving rise to an echo.

Echoes are noticeable when a long-distance call is made on a telephone circuit, par-
ticularly one that includes a geostationary satellite. Due to the high altitude of such a sat-
ellite, there is a one-way travel time of about 300 ms between a ground station and the
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satellite. Thus, the round-trip delay in a satellite link (including telephone circuits) can be
as long as 600 ms. Generally speaking, the Jonger the echo delay, the more it must be
attenuated before it becomes noticeable.

The question to be answered is: How do we exercise echo control? It appears that
the idea with the greatest potential for echo control is that of adaptive echo cancelation
{Sondhi and Prasti, 1966; Sondhi, 1967; Sondhi and Berkley, 1980; Messerschmitt, 1984;
Murano et al., 1590). The basic principle of echo cancelation is to synthesize a replica of
the echo and subtract it from the returned signal. This principle is illustrated in Fig. 29 for
only one direction of transmission (from speaker A on the far left of the hybrid to speaker
B on the right). The adaptive canceler is placed in the four-wire path near the origin of the
echo. The synthetic echo, denoted by 7 (n), is generated by passing the speech signal from
speaker A (i.e., the “reference” signal for the adaptive canceler) through an adaptive filter
that ideally matches the transfer function of the echo path. The reference signal, passing
ihrough the hybrid, results in the echo signal r(n). This echo, together with a near-end
talker signal x(n) (i.e., the speech signal from speaker B) constitutes the “desired™
response for the adaptive canceler. The synthetic echo 7 (r) is subtracted from the desired
response r{n) + x(n) to yield the canceler error signal

e(n) = r(n) — F(n) + x(n) (42)

Note that the error sighal e(n) also contains the necar-end talker signal x(n). In any event,
the error signal e(n) is used to control the adjustments made in the coefficients (tap
weights) of the adaptive filter. In practice, the echo path is highly variable, depending on
the distance to the hybrid, the characteristics of the two-wire circuit, and so on. These vari-
ations are taken care of by the adaptive control loop built into the canceler. The control
loop continuously adapts the filter coefficients to take care of fluctuations in the echo path.
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For the adaptive echo cancelation circuit to operate satisfactorily, the impulse
response of the adaptive filter should have a length greater than the longest echo path that
needs to be accommodated. Let T, be the sampling period of the digitized speech signal.
M be the number of adjustable coefficients (1ap weights) in the adaptive filter, and 7 be the
longest echo delay to be accommodated. We must then choose

MT, >+ (43)

As mentioned previously (when discussing adaptive differential pulse-code modulation).
the sampling rate for speech signals on the telephone network is conservatively chosen as
8 kHz, that is,

T,=125ps
Suppose, for example, that the echo delay T = 30 ms. Then we must choose
M > 240 taps

Thus, the use of an echo canceler with M = 256 taps, say, is satisfactory for this situation.
Adaptive Beamforming

For our last application, we describe a spatial form of adaptive signal processing that finds
practical use in radar, sonar, communications, geophysical exploration, astrophysical
exploration, and biomedical signal processing.

In the particular type of spatial filtering of interest to us in this book, a number of
independent sensors are placed at different points in space to “listen” to the received sig-
nal. In effect, the sensors provide a means of sampling the received signal in space. The
set of sensor outputs collected at a particular instant of time constitutes a snapshot. Thus, a
snapshot of data in spatial filtering (for the case when the sensors lie uniformly on a
straight line) plays a role analogous to that of a set of consecutive tap inputs that exist in a
transversal filter at a particular instant of time."

In radar, the sensors consist of antenna elements (e.g., dipoles, horns, slotted
waveguides) that respond to incident electromagnetic waves. In sonar, the sensors consist
of hydrophones designed to respond to acoustic waves. In any event, spatia} filtering,
known as beamforming, is used in these systems 10 distinguish between the spatial proper-
ties of signal and noise. The device used to do the beamforming is called a beamformer.
The term “beamformer” is derived from the fact that the early forms of antennas (spatial
filters) were designed to form pencil beams, so as to receive a signal radiating from a spe-
cific direction and attenuate signals radiating from other directions of no interest (Van
Veen and Buckley, 1988). Note that the beamforming applies to the radiation (transmis-
sion) or reception of energy.

PFor a discussion of the analogies between time- and space-domain forms of signal processing, see
Bracewell (1986) and Van Veen and Buckley (1988).
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In a primitive type of spatial filtering, known as the delay-and-sum-beamformer, the
various sensor outputs are delayed (by appropriate amounts to align signal components
coming from the direction of a target) and then summed, as in Fig. 30. Thus, for a single
target, the average power at the output of the delay-and-sum beamformer is maximized
when it is steered toward the target. A major limitation of the delay-and-sum beamformer,
however, is that it has no provisions for dealing with sources of interference.

In order to enable a beamformer to respond to an unknown interference environ-
ment, it has to be made adaptive in such a way that it places nulls in the direction(s) of the
source(s) of interference automatically and in real time. By so doing, the output signal-to-
noise ratio.of the system is increased, and the directional response of the system is thereby
improved. Below, we consider two examples of adaptive beamformers that are well suited
for use with narrow-band signals in radar and sonar systems.

Adaptive beamformer with minimum-variance distortionless re-
sponse.  Consider an adaptive beamformer that uses a linear array of M identical sen-
sors, as in Fig. 31. The individual sensor outputs, assumed to be in baseband form, are
weighted and then summed. The beamformer has to satisfy two requiremnents: (1) a steer-
ing capability whereby the target signal is always protected, and (2} the effects of sources
of interference are minimized. One method of providing for these two requirements is to
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minimize the variance (i.e., average power) of the bearnformer output, subject to the con-
straint that, during the process of adaptation, the weights satisfy the condition:

win)s(d) = 1 forall'n, and ¢ = &, (44)

where w{n) is the M-by-1 weight vector and s(¢) is an M-by-1 steering vector. The super-
script H denotes Hermitian transposition (i.¢., transposition combined with complex con-
jugation). In this application, the baseband data are complex valued; hence the need for
complex conjugation. The value of electrical angle & = ¢, is determined by the direction
of the target. The angle o is itself measured with sensor 1 (at the top end of the array)
treated as the point of reference.

The dependence of vector s(¢) on the angle ¢ is defined by

s($) = [1, e é—jw—nd:]r

The angle ¢ is itself related to incidence angle 0 of a plane wave, measured with respect to
the normal to the linear array, as follows'*

¢ = 2%isin 8 (45)

where d is the spacing between adjacent sensors of the array, and A is the wavelength (see
Fig. 32). The incidence angle 0 lies inside the range —n/2 to w/2. The permissible values
that the angle & may assume lie inside the range —m to w. This means that we must
choose the spacing d << \/2, so that there is a one-to-one correspondence between the val-
ues of 8 and ¢ without ambiguity. The condition 4 < A/2 may be viewed as the spatial
analog of the sampling theorem.

The imposition of the sigral-protection constraint in Eq. (44) ensures that, for a pre-
scribed look direction, the response of the array is maintained constant (i.e., equal to 1), no
matter what values are assigned to the weights. An algorithm that minimizes the variance
of the beamformer output, subject to this constraint, is therefore referred to as the mini-
mum-variance distortionless response (MVDR) beamforming algorithm (Capon, 1969;
Owsley, 1985). The imposition of the constraint described in Eq. (44) reduces the number
of “degrees of freedom” available to the MVDR algorithm to M — 2, where M is the num-
ber of sensors in the array. This means that the number of independent nulls produced by
the MVDR algorithm (i.e., the number of independent interferences that can be canceled)
isM-2

The MVDR beamforming is a special case of linearly constrained minimum vari-
ance (LCMV) beamforming. In the latter case, we minimize the variance of the beam-
former output, subject to the constraint

win)sd) = g forall n,and ¢ = o, (46)

"“When a plane wave impinges on a linear array ds in Fig. 32 there is a spatial delay of d sin 8 between
the signals received at any pair of adjacent sensors. With a wavelength of A, this spatial delay is translated into an
electrical angular difference defined by & = 2m(d sin 8/A).
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where g is a complex constant. The LCMV beamformer linearly constrains the weights,
such that any signal coming from electrical angle &, is passed to the output with response
(gain) g. Comparing the constraint of Eq. {44) with that of Eq. (46), we see that the
MVDR beamformer is indeed a special case of the LCMV beamformer for g ='1.

Adaptation in beam space. The MVDR beamformer performs adaptation
directly in the data space. The adaptation process for interference cancelation may also be
performed in beam space. To do so, the input data (received by the array of sensors) are
transformed into the beam space by means of an orthogonal multiple-beamforming net-
work, as illustrated in the block diagram of Fig. 33. The resulting cutput is processed by a
multiple sidelobe canceler so as to cancel interference(s) from unknown directions.
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The beamforming network is designed to generate a set of orthogonal beams. The
multiple outputs of the beamforming network are referred to as beam ports. Assume that
the sensor outputs are equally weighted and have a uniform phase. Under this condition,
the response of the array produced by an incident plane wave arriving at the argay along
direction 8, measured with respect to the normal to the array, is given by

N

Aboa) = D, ™ @7

n=—N

where M = (2N + 1) is the total number of sensors in the array, with the sensor at the mid-
point of the array treated as the point of reference. The electrical angle ¢ is related to 6 by
Eq. (45), and o is a constant called the uniform phase factor. The quantity A(¢, a) is
called the array pattern. For d = M2, we find from Eq. (45) that

b =msinb

Summing the geometric series in Eq. (47), we may express the array pattern as

SIn[RN+ 1) (b= )]
A =" Gnle -~ a)] (48)

By assigning different values to a, the main beam of the antenna is thus scanned across
the range —mr < ¢ =< 7. To generate an orthogonal set of beams, equal to 2N in number,
we assign the following discrete values to the uniform phase factor
w

G—Wﬁk, k—i’l,i3,...,i2N—1 (49)
Figure 34 illustrates the variations of the magnitude of the array pattern A(¢, o) with ¢ for
the case of 2N + | = 5 elements and a = *=7/5, £3w/5. Note that owing to the symmet-
ric nature of the beamnformer, the final values of the weights are real valued.

The orthogonal beams generated by the beamforming network represent 2N inde-
pendent look directions, one per beam. Depending on the target direction of interest, a par-
ticular beam in the set is identified as the main beam and the remainder are viewed as
auxiliary beams. We note from Fig. 34 that each of the auxiliary beams has a null in the
look direction of the main beam. The auxiliary beams are adaptively weighted by the mul-
tiple sidelobe canceler so as to form a cancelation beam that is subtracted from the main
beam. The resulting estimation error is fed back to the multiple sidelobe canceler so as to
control the corrections applied to its adjustable weights.

Since all the auxiliary beams have nulls in the look direction of the main beam, and
the main beam is excluded from the multiple sidelobe canceler, the overall output of the
adaptive beamformer is constrained to have a constant response in the look direction of
the main beam (i.e., along the direction of the target). Moreover, with (2N — 1) degrees of
freedom (i.e., the number of available auxiliary beams) the system is capable of placing up
to (2¥ — 1) nulls along the (unknown) directions of independent interferences.
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Note that with an array of (2N¥ + 1) sensors, we may produce a beamforming net-

work with (2N + 1) orthogonal beam ports by assigning the uniform phase factor the fol-
lowing set of values:

_ _ku =
a—i-N—_-—l, k—o, :'-._2...., i'ZN (50)

Tn this case, a small fraction of the main lobe of the beam port at either end lies in the non-
visible region. Nevertheless, with one of the beam ports providing the main beam and the

remaining 2N ports providing the auxiliary beams, the adaptive beamformer is now capa-
ble of producing up to 2N independent nulls.

8. SOME HISTORICAL NOTES

To understand a science it is necessary to know its history.
Auguste Comte (1798—1857)

We complete this introductory chapter by presenting a brief historical review of develop-
ments in four areas that are closely related insofar as the subject matter of this book is con-
cerned. The areas are; linear estimation theory, linear adaptive filters, neural networks,
and adaptive signal-processing applications.

Linear Estimation Theory

The earliest stimulus for the development of linear estimation theory'” was apparently
provided by astonomical studies in which the motion of planets and comets was studied
using telescopic measurement data. The beginnings of a “theory” of estimation in Which
altempts are made to minimize various functions of errors can be attributed to Galileo
Galilei in 1632. However, the origin of linear estimation theory is credited to Gauss who,
ai the age of 18 in 1795, invented the method of least squares to study the motion of heav-
enly bodies (Gauss, 1809). Nevertheless, in the early nineteenth century, there was consid-
erable controversy regarding the actual inventor of the method of least squares. The
controversy arose because Gauss did not publish his discovery in 1795. Rather, it was first
published by Legendre in 1803, who independently invented the method (Legendre,
1810;.

The first studies of minimum mean-square estimation in stochastic processes were
made by Kolmogorov, Krein, and Wiener during the late 1930s and early 1940s (Kolmog-
orov, 1939; Krein, 1945; Wiencr, 1949). The works of Kolmogorov and Krein were inde-
pendent of Wiener's, and while there was some overlap in the results, their aims were
rather different. There were many conceptual differences (as one would expect after 140
years) between Gauss's problem and the probiem treated by Kolmogorov, Krein, and
Wiener.

"“The notes presented on linear estimation are influenced by the following review papers: Serenson
(1979), Kailath (1974), and Makhoul (1975).
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Kolmogorov, inspired by some early work of Wold on discrete-time stationary pro-
cesses (Wold, 1938), developed a comprehensive treatment of the linear prediction prob-
lem for discrete-time stochastic processes. Krein noted the relationship of Kolmogorov’s
results to some early work by Szegd on orthogonal polynomials (Szegd, 1939; Grenander
and Szego, 1958) and extended the results to continuous time by clever use of a bilinear
transformation.

Wiener, independently, formulated the continuous-time linear prediction problem
and derived an explicit formula for the optimum predictor. Wiener also considered the
“filtering” problem of estimating a process corrupted by an additive “noise” process. The
explicit formula for the optimum estimate required the solution of an integral equation
known as the Wiener-Hopf equation (Wiener and Hopf, 1931).

In 1947, Levinson formulated the Wiener filtering problem in discrete time. In the
caslg of discrete-time signals, the Wiener—Hopf equation takes on a matrix form described
by

Rw,=p {(51)

where w, is the tap-weight vector of the optimum Wiener filter structured in the form of a
transversal filter, R is the correlation matrix of the tap inputs, and p is the cross-correla-
tion vector between the tap inputs and the desired response. For stationary inputs, the cor-
relation matrix R assumes a special structure known as Toepliiz, so named after the
mathematician O. Toeplitz. By exploiting the properties of a Toeplitz matrix, -Levinson
derived an elegant recursive procedure for solving the matrix form of the Wiener-Hopf
equation (Levinson, 1947). In 1960, Durbin rediscovered Levinson’s recursive procedure
as a scheme for recursive fitting of autoregressive models to scalar time-series data
(Durbin, 1960). The problem considered by Durbin is a special case of Eq. (51) in that the
column vector p comprises the same elements found in the correlation matrix R. In 1963,
Whittle showed there is a close relationship between the Levinson—Durbin recursion and
that for Szeg®’s orthagonal polynomials, and also derived a multivariate generalization of
the Levinson—~Durbin recursion (Whittle, 1963).

Wiener and Kolmogorov assumed an infinite amount of data and assumed the sto-
chastic processes to be stationary. During the 1950s, some generalizations of the Wiener-
Kolmogorov filter theory were made by various authors to cover the estimation of station-
ary processes given only for a finite observation interval and to cover the estimation of
nonstationary processes. However, there were dissatisfactions with the most significant of
the results of this period because they were rather complicated, difficult to update with
increases in the observations interval, and difficult to modify for the vector case. These
last two difficulties became particularly evident in the late 1950s in the problem of deter-
mining satellite orbits. In this application, there were generally vector observations of

1¢The Wiener—Hopf equation, originally formulated as an integral equation, specifies the optimum solu-
tion of a continuous-time linear filter subject to the constraint of causality. This is a difficult-to-solve equation
that has resulted in the development of a considerable amount of theory, including spectral factorization. For a
tutorial treatment of this subject, see Gardner {1990).
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some combinations of position and velocity, and there were also large amounts of data
sequentially accumulated with each pass of the satellite over a tracking station. Swerling
was one of the first to tackle this problem by presenting some useful recursive algorithms
(Swerling, 1958). For different reasons, Kalman independently developed a somewhat
more restricted algorithm than Swerling's, but it was an algorithm that seemed particularly
matched to the dynamical estimation problems that were brought by the advent of the
space age (Kalman, 1960). After Kalman had published his paper and it had attained con-
siderable fame, Swerling wrote a letter claiming priority for the Kalman filter equations
(Swerling, 1963). However, history shows that Swerliff’s plea has fallen on deaf ears. It
is ironic that orbit determination problems provided the stimulus for both Gauss’s method
of least squares and the Kalman filter, and that there were squabbles concemning their
inventors. Kalman’s original formulation of the linear filtering problem was derived for
discrete-time processes. The continuous-time filter was derived by Kaiman in his subse-
quent collaboration with Bucy; this latter solution is sometimes referred to as the Kalman—
Bucy filter (Kalman and Bucy, 1961).

In a series of stimulating papers, Kailath reformulated the solution to the linear fil-
tering probiem by using the innovations approach (Kailath, 1968, 1970; Kailath and Frost,
1968; Kailath and Geesey, 1973). In this approach, a stochastic process u(n) is represented
as the output of a causal and causally invertible filter driven by a white-noise process v(n).
The white noise process v(n) is called the innovations process, with the term “innovation”
denoting “newness.” The reason for this terminology is that each sample of the process
v(n) provides entirely new information, in the sense that it is statistically independent of
all past samples of the original process u(n), assuming Gaussianity; otherwise, it is only
uncorrelated with all past samples of u(n). The idea of innovations approach was intro-
duced by Kolmogorov (1941).

Linear Adaptive Filters

Stochastic gradient algorithms.  The earliest work on adaptive filters may
be traced back to the late 1950s, during which time a number of researchers were working
independently on different applications of adaptive filters. From this early work, the least-
mean-square (LMS) algorithm emerged as a simple and yet effective algorithm for the
operation of adaptive transversal filters. The LMS algorithm was devised by Widrow and
Hoff in 1959 in their study of a pattern recognition scheme known as the adaptive linear
(threshold logic). element, commonly referred to in the literature as the Adaline (Widrow
and Hoff, 1960; Widrow, 1970). The LMS algorithm is a stochastic gradient algorithm in
that it iterates each tap weight of a transversal filter in the direction of the gradient of the
squared magnitude of an error signal with respect to the tap weight. As such, the LMS
algorithm is closely related to the concept of stochastic approximation developed by Rob-
bins and Monro (1951) in statistics for solving certain sequential parameter estimation
problems. The primary difference between them is that the LMS algorithm uses a fixed
step-size parameter to control the correction applied to each tap weight from one jteration
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to the next, whereas in stochastic approximation methods the step-size parameter is made
inversely proportional to time n or 1o a power of n. Another stochastic gradient algorithm,
closely related to the LMS algorithm, is the gradient adaptive lattice (GAL) algorithm
(Griffiths, 1977, 1978); the difference between them is structural in that the GAL algo-
rithm is lattice-based, whereas the LMS algorithm uses a transversal filter.

In 1981, Zames introduced the H* norm (or minimax criterion) as ‘a robust index of
performance for solving problems in estimation and control, and with it the ficld of robust
control took on a new research direction. In this context, it is particularly noteworthy that
Sayed and Rupp (1994) have shown that the LMS algorithm is indeed optimal under the
H™ criterion. Thus, for the first time, theoretical evidence was presented for the robust per-
formance of the LMSralgorithm. It is also of interest to note that the zero-forcing algo-
rithm, which represents an alternative to the LMS algorithm for the adaptive equalization
of communication channels, also uses a minimax type of performance criterion (Lucky,
1965).

Recursive least-squares algorithms. Tumning next to the recursive least-
squares (RLS) family of adaptive filtering algorithms, the original paper cn the standard
RLS algorithm appears to be that of Plackett (1950), though it must be said that many
other investigators have derived and rederived the RLS algorithm. In 1974, Godard used
Kalman filter theory to derive a variant of the RLS algorithm, which is sometimes referred
1o in the literature as the Godard algorithm. Although prior to this date, several investiga-
tors had applied Kalman filter theory to solve the adaptive filtering problem, Godard’s
approach was widely accepted as the most successful application of Kalman filter theory
for a span of two decades. Then, Sayed and Kailath (1994) published an expository paper,
in which the exact relationship between the RLS algorithm and Kalman filter theory was
delineated for the first time, thereby laying the groundwork for how to exploit the vast lit-
erature on Kalman filters for solving linear adaptive filtering problems.

In 1981, Gentleman and Kung introduced a numerically robust method, based on the
QR-decomposition of matrix algebra, for solving the recursive least-squares problem. The
resulting adaptive filter structure, sometimes referred to as the Gentleman~Kung (systolic)
array, was subsequently refined and extended in various ways by many other investiga-
tors.

In the 1970s and during subsequent years, a great deal of research effort was
expended on the development of numerically stable fast RLS algorithms, with the aim of
reducing computational complexity to a level comparable to that of the LMS algorithm. In
one form or another, the development of these algorithms can be traced back to results
derived by Morf in 1974 for solving the deterministic counterpart of the stochastic filter-
ing problem solved efficiently by the Levinson-Durbin algorithm for stationary inputs.

Returning to the paper by Sayed and Kailath (1994), the one-to-one correspon-
dences between RLS and Kalman variables was exploited in that paper to show that QR-
decomposition-based RLS algorithms and fast RLS algorithms are all in fact special cases
of the Kalman filter, thereby providing a unified treatment of the RLS family of linear
adaptive filtgrs in a rather elegant and compact fashion.



introduction b1

Neural Networks'’

Research interest in neural networks began with the pioneering work of McCulloch and
Pitts (1943), who described a logical calculus for neural networks. Then, in 1958, Rosen-
blatt introduced a new approach to the pattern-classification problem using a neural net-
work known as the perceptron. Out of this early work on neural networks, the LMS algo-
rithm was pioneered by Widrow and Hoff in 1959, which, as mentioned previously, was
used to formulate the Adaline. In the 1960s, it seemed as if neural networks could solve
any problem. But then came the book by Minsky and Papert (1969), who used elegant
mathematics to demonstrate that there are fundamental limits on what single-layer percep-
trons can compute, and with it interest in neural networks took a sharp downturn.

In 1986, successful development of the back-propagation algorithm was reported
by Rumelhart, Hinton, and Williams as a device for the training of multilayer perceptrons;
the back-propagation algorithm is a generalization of the LMS algorithm. In that same
year, the two-volume seminal book, Paralle!l Distributed Processing: Explorations in the
Microstructures of Cognition, with Rumelhart and McClelland as editors, was published.
This book has been a major influence in reviving interest in the vse of neural networks.
After the publication of this book, however, it became known that the back-propagation
algorithm had actually been described earlier by Werbos in his Ph.D. thesis at Harvard
University in 1974.

The muitilayer perceptron represents one important type of feedforward layered net-
work that is well suited for adaptive signal processing. Another equally important feedfor-
ward layered network is the radial-basis function (RBF) network, which was described by
Broomhead and Lowe in 1988. However, the basic idea of RBF networks may be traced
back to earlier work by Bashkirov, Braverman, and Muchnick in 1964 on the method of
potential functions.

The field of neural networks encompasses many other types of network structures
and learning algorithms. Indeed, they have been established as an interdisciplinary subject
with deep roots in the neurosciences, psychology, mathematics, the physical sciences, and
engineering. Needless to say, they have a major impact on adaptive signal processing, par-
ticularly in those applications that require the use of nonlinearity.

L]

Adaptive Signal-Processing Applications

Adaptive Equalization.  Until the early 1960s, the equalization of telephone
channels to combat the degrading effects of intersymbol interference on data transmission
was performed by using either fixed equalizers (resulting in a performance loss) or equal-
izers whose parameters wete adjusted manually (a rather cumbersome procedure). In
1965, Lucky made a major breakthrough in the equalization problem by proposing a zero-
forcing algorithm for automatically adjusting the tap weights of a transversal equalizer. A
distinguishing feature of the work by Lucky was the use of a minimax type of performance

- UFor 2 more complete historicat account of neural networks, see Cowan (1990) and Haykir (1994).
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criterion. In particular, he used a performance index called peak distortion, which is
directly related to the maximum value of intersymbol interference that can occur. The tap
weights in the equalizer are adjusted to minimize the peak distortion. This has the effect of
forcing the intersymbol interference due to those adjacent pulses that are contained in the
transversal equalizer to become zero; hence the name of the algorithm. A sufficient, but
not necessary, condition for optimality of the zero-forcing algorithm is that the initial dis-
tortion (the distortion that exists at the equalizer input) be less than unity. In a subsequent
paper published in 1966, Lucky extended the use of the zero-forcing algorithm to the
tracking mode of operation. In 1965, DiToro independently used adaptive equalizaticn for
combatting the effect of intersymbol interference on data transmitted over high-frequency
links.

The pioneering work by Lucky inspired many other significant contributions to dif-
ferent aspects of the adaptive equalization problem in one way or another. Gersho (1969)
and Proakis and Miller (1969) independently reformulated the adaptive equalization prob-
lem using a mean-square-error criterion. In 1972, Ungerboeck presented a detailed mathe-
matical analysis of the convergence properties of an adaptive transversal equalizer using
the LMS algorithm. In 1974, as mentioned previously, Godard used Kalman filter theory
to derive a powerful algorithm for adjusting the tap weights of a transversal equalizer. In
1978, Falconer and Ljung presented a modification of this algorithm that simplified. its
computational complexity to a level comparable to that of the simple LMS algorithm.
Satorius and Alexander (1979) and Satorius and Pack (1981) demonstrated the usefulness
of lattice-based algorithms for adaptive equalization of dispersive channels.

This brief historical review pertains to the use of adaptive equalizers for linear syn-
chronous receivers; by “synchronous” we mean that the equalizer in the receiver has its
taps spaced at the reciprocal of the symbol rate. Even though our interest in adaptive
equalizers is largely restricted to this class of receivers, nevertheless, such a historical
review would be incomplete without some mention of fractionally spaced equalizers and
decision-feedback equalizers.

In a fractionally spaced equalizer (FSE), the equalizer taps are spaced closer than
the reciprocal of the symbol rate. An FSE has the capability of compensating for delay dis-
tortion much more effectively than a conventional synchronous equalizer. Another advan-
tage of the FSE is the fact that data transmission may begin with an arbitrary sampling
phase. However, mathematical analysis of the FSE is much more complicated than for a
conventional synchronous equalizer. It appears that early work on the FSE was initiated
by Brady (1970). Other contributions to the subject include subsequent work by Unger-
boeck (1976) and Gitlin and Weinstein (1981). _

A decision-feedback equalizer consists of a feedforward section and a feedback sec-
tion connected as shown in Fig. 35. The feedforward section itself consists of a transversal
filter whose taps are spaced at the reciprocal of the symbol rate. The data sequence to be
equalized is applied to the input of this section. The feedback section consists of another
transversal filter whose taps are also spaced at the reciprocal of the symbol rdte. The input
applied to the feedback section is made up of decisions on previously detected symbols.
The function of the feedback section is to subtract out that portion of intersymbol interfer-
ence produced by previously detected symbols from the estimates of future symbols. This
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Figure 35 Block diagram of decision-feedback equalizer.

cancelation is an old idea known as the bootstrap technique. A decision-feedback equal-
izer yields good performance in the presence of severe intersymbol interference as experi-
enced in fading radio channels, for example. The first report on decision-feedback
equalization was published by Austin (1967), and the optimization of the decision-feed-
back receiver for minimum mean-squared error was first accomplished by Monsen (1971).

Coding of speech. In 1966, Saito and [takura used a maximum likelihood
approach for the application of prediction to speech. A standard assumption in the applica-
tion of the maximum likelihood principle is that the input process is Gaussian. Under this
condition, the exact application of the maximum likelihood principle yields a set of non-
linear equations for the parameters of the predictor. To overcome this difficulty, Itakura
and Saito utilized approximations based on the assumption that the number of available
data points greatly exceeds the prediction order. The use of this assumption makes the
result obtained from the maximum likelihood principle assume an approximate form that
is the same as the autocorrelation method of linear prediction. The application of the max-
imum likelihood principle is justified on the assumption that speech is a stationary Gauss-
ian process, which seems reasonable in the case of unvoiced sounds.

In 1970, Atal presented the first use of the term “linear prediction” for speech analy-
sis. Details of this new approach, linear predictive coding (LPC), to speech analysis and
synthesis were published by Atal and Hanauer in 1971, in which the speech waveform is
represented directly in terms of time-varying parameters related to the transfer function of
the vocal tract and the characteristics of the excitation. The predictor coefficients are
determined by minimizing the mean-squared error, with the error defined as the difference
between the actual and predicted values of the speech samples. In the work by Atal and
Hanauer, the speech wave was sampled at 10 kHz and then analyzed by predicting the
present speech sample as a linear combination of the 12 previous samples. Thus 15 param-
eters [the 12 parameters of the predictor, the pitch period, a binary parameter indicating
whether the speech is voiced or unvoiced, and the root-mean-square (rms) value of the
speech samples] were used to describe the speech analyzer. For the speech synthesizer, an
all-pole filter was used, with a sequence of quasi-periodic pulses or a white-noise source
providing the excitation. '

Another significant contribution to the linear prediction of speech was made in 1972
by Itakura and Saito; they used partial correlation techniques to develop a new structure,
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the lattice, for formulating the linear prediction problem.'® The parameters that character-
ize the lattice predictor are called reflection coefficients or partial correlation (PARCOR)
coefficients, depending on the algebraic sign used in the definition. Although by that time
the essence of the lattice structure had been considered by several other investigators, the
invention of the lattice predictor is credited to Saito and Itakura. In 1973, Wakita showed
that the filtering actions of the lattice predictor model and an acoustic tube model of
speech are identical, with the reflection coefficients in the acoustic tube model as common
factors. This discovery made possible the extraction of the reflection coefficients by the
use of a lattice predictor.

Early designs of a lattice predictor were based on a block processing approach
(Burg, 1967). In 1981, Makhoul and Cossell used an adaptive approach for designing the
lattice predictor for applications in speech analysis and synthesis. They showed that the
convergence of the adaptive lattice predictor is fast encugh for its performance to equal
that of the optimal (but more expensive) adaptive autocorrelation method. ‘

This historical review on speech coding relates to LPC vocoders. We next present a
historical review of the adaptive predictive coding of speech starting with ordinary pulse-
code modulation (PCM).

PCM was invented in 1937 by Reeves (1975). This was followed by the invention of
differential pulse-code modulation (DPCM) by Cutler (1952). The early use of DPCM for
the predictive coding of speech signals was limited to linear predictors with fixed parame-
ters {McDonald, 1966). However, due to the nonstationary nature of speech signals, a
fixed predictor cannot predict the signal values efficiently at all times. In order to respond
to the nonstationary characteristics of speech signals, the predictor has to be adaptive (Atal
and Schroeder, 1967). In 1970, Atal and Schroeder described a sophisticated scheme for
adaptive predictive coding of speech. The scheme recognizes that there are two main
causes of redundancy in speech (Schroeder, 1966): (1) quasi-periodicity during voiced
segments, and (2) lack of flatness of the short-time spectral envelope. Thus, the predictor
is designed to remove signal redundancy in two stages. The first stage of the predictor
removes the quasi-periodic nature of the signal. The second stage removes formant infor-
mation from the spectral envelope. The scheme achieves dramatic reductions in bit rate at
the expense of a significant increase in circuit complexity. Atal and Schroeder (1970)
report that the scheme can transmit speech at 10 kb/s, which is several times less than the
bit rate required for logarithmic-PCM encoding with comparable speech quality.

Spectrum analysis. At the wmn of the twentieth century, Schuster introduced
the periodogram for analyzing the power spectrum19 of a time series (Schuster, 1898). The
periodogram is defined as the squared amplitude of the discrete Fourier transform of the
time series. The periodogram was originally used by Schuster to detect and estimate the
amplitude of a sine wave of known frequency that is buried in noise. Until the work of

18 According to Markel and Gray (1976), the work of Itakura and Saitc in Japan on the PARCOR formu-
lation of linear prediction had been presented in 1969.

"®For a fascinating historical account of the concept of power spectrum, its origin and its estimation, see
Robinson (1982).
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Yule in 1927, the periodogram was the only numerical method available for spectrum
analysis. However, the periodogram suffers from the limitation that when it is applied to
empirical time series cbserved in nature the results obtained are very erratic. This led Yule
to introduce a new approach based on the concept of a finite parameter model for a sta-
tionary stochastic process in his investigation of the periodicities in time series with spe-
cial reference to Wolfer’s sunspot number (Yule, 1927). Yule, in effect, created a
stochastic feedback-model in which the present sample value of the time series is assumed
to consist of a linear combination of past sample values plus an error term. This model is
called an autoregressive model in that a sample of the time series regresses on its own past
values, and the method of spectrum analysis based on such a mode! is accordingly called
autoregressive spectrum analysis. The name “autoregressive” was coined by Wold in his
doctoral thesis (Wold, 1938).

Interest in the autoregressive method was reinitiated by Burg (1967, 1975). Burg
introduced the term maximum-entropy method to describe an algorithmic approach for
estimating the power spectrum directly from the available time series. The idea behind the
maximum-entropy method is to extrapolate the autocorrelation function of the time series
in such a way that the entropy of the corresponding probability density function is maxi-
mized at each step of the extrapolation. In 1971, Van den Bos showed that the maximum-
entropy method is equivalent to least-squares fiting of an autoregressive model to the
known autocorrelation sequence. _

Another important contribution made to the literature on spectrum analysis is that by
Thomson (1982). His method of multiple windows, based on the prolate spheroidal wave
functions, represents a nonparametric method for spectrum estimation that overcomes
many of the limitations of the above-mentioned techniques.

Adaptive Noise Cancelation. The initial work on adaptive echo cancelers
started around 1965. It appears that Kelly of Bell Telephone Laboratories was the first to
propose the use of an adaptive filter for echo cancelation, with the speech signal itself
atilized in performing the adaptation; Kelly's contribution is recognized in the paper by
Sondhi (1967). This invention and its refinement are described in the patents by Kelly and
Logan (1970) and Sondhi (1970).

The adaptive line enhancer was.originated by Widrow and his co-workers at Stan-
ford University. An early version of this device was built in 1965 to cancel 60-Hz interfer-
ence at the output of an electrocardiographic amplifier and recorder. This work is
described in the paper by Widrow et al. (1975b). The adaptive line enhancer and its appli-
cation as an adaptive detector are patented by McCool et al. (1980).

The adaptive echo canceler and the adaptive linear enhancer, although intended for
different applications, may be viewed as examples of the adaptive noise canceler dis-
cussed by Widrow et al. (1975). This scheme operates on the outputs of two sensors: a pri-
mary sensor that supplies a desired signal of interest buried in noise, and a reference
sensor that supplies noise alone, as illustrated in Fig. 24. 1t is assumed that (1) the signal
and noise at the output of the primary sensor are uncorrelated, and (2) the noise at the out-
put of the reference sensor is correlated with the noise component of the primary sensor

output.
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The adaptive noise canceler consists of an adaptive filter that operates on the refer-
ence sensor output to produce an estimate of the noise, which is subtracted from the pri-
mary sensor output. The overall output of the canceler is used to control the adjustments
applied to the tap weights in the adaptive filter. The adaptive canceler tends to minimize
the mean-square value of the overall output, thereby causing the output to be the best esti-
mate of the desired signal in the minimum-mean-square error sense.

Adaptive beamforming. The development of adaptive beamforming technol-
ogy may be traced back to the invention of the intermediate frequency (IF) sidelobe can-
celer by Howells in the late 1950s. In a paper published in the 1976 Special Issue of the
IEEE Transactions on Antennas and Propagation, Howeils describes his personal observa-
tions on early work on adaptive antennas at the General Electric and Syracuse University
Research Corporation (Howells, 1976). According to this historic report, Howells had
developed by mid-1957 a sidelobe canceler capable of automatically nulling out the effect
of one jammer. The sidelobe canceler uses a primary (high-gain) antenna and a reference
omni-directional (low-gain) antenna to form a two-element array with one degree of free-
dom that makes it possible to steer a deep null anywhere in the sidelobe region of the com-
bined antenna pattern. In particular, a null is placed in the direction of the jammer, with
only a minor perturbation of the main lobe. Subsequently, Howells (1965) patented the
sidelobe canceler.

The second major contribution to adaptive array antennas was made by Applebaum
in 1966. In a classic report, he derived the control law govermning the operation of an adap-
tive array antenna, with a control loop for each element of the array {Applebaum, 1966).
The algorithm derived by Applebaum was based on maximizing the signal-to-noise ratio
(SNR) at the array antenna output for any type of noise environment. Applebaum’s theory
included the sidelobe canceler as a special case. His 1966 classic report was reprinted in
the 1976 Special Issue of IEEE Transactions on Antennas and Propagation.

Another algorithm for the weight adjustment in adaptive array antennas was
advanced independently in 1967 by Widrow and his co-workers at Stanford University.
They based their theory on the simple and yet effective LMS algorithm. The 1967 paper
by Widrow et al. was not only the first publication in the open literature on adaptive array
antenna systems, but also it is considered to be another classic of that era.

It is noteworthy that the maximum SNR algorithm (used by Applebaum) and the
LMS algorithm (used by Widrow and his co-workers) for adaptive array antennas are
rather similar, Both algorithms derive the control law for adaptive adjustment of the
weights in the array antenna by sensing the correlation between element signals. Indeed,
they both converge toward the optimum Wiener solution for stationary inputs (Gabriel,
1976).

A different method for solving the adaptive beamforming problem was proposed by
Capon (1969). Capon realized that the poor performance of the delay-and-sum beam-
former is due to the fact that its response along a direction of interest depends not only on
the power of the incoming target signal but also undesirable contributions received from
other sources of interference. To overcome this limitation of the delay-and-sum beam-
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former, Capon proposed a new beamformer in which the weight vector w(n) is chosen so
as to minimize the variance(i.e., average power) of the beamformer output, subject to the
constraint w"(n)s(¢) = 1 for ail n, where s(d) is a prescribed szeering vector. This con-
strained minimization yields an adaptive beamformer with minimum-variance distortion-
less response (MVDR).

In 1983, McWhirter proposed a simplification of the Gentleman-Kung (systolic)
array for recursive least-squares estimation. The resulting filtering structure, often referred
to as the McWhirter (systolic) array, is particularly well suited for adaptive beamforming
applications.

The historical notes presented in this last section of the chapter on adaptive filter
theory and applications are not claimed to be complete. Rather, they are intended to high-
light many of the significant contributions made to this important part of the ever-expand-
ing field of signal processing. Above all, it is hoped that they provide a source of
inspiration to the reader,



