
Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, 2003

S e a r c h i n g

Nicolas Spyratos
Laboratoire de Recherche en

Informatique,
Université de Paris-Sud,

91405 Orsay cedex, FRANCE

Yannis Tzitzikas
Department of Computer Science,

University of Crete,
P.O.Box 2208, Heraklion, Crete, GR-714

09 GREECE

Searching is the process of seeking a desired
element in a set of related elements. The task of
searching is one of the most frequent operations in
computer science. There exist several basic
variations of the theme of searching, and many
different approaches, data structures and
algorithms have been developed on this subject.

data
need data

searching

query searching
algorithm

basedOn

exploits

searches

physical world

digital world

user

user/
application

submits

auxiliary
data

structures

stored
data

reorganizes

Figure 1 The basic components of searching
in the natural and the digital world

Figure 1 describes graphically the basic
components of searching in the natural and the
digital world. In our natural world, a human having
an information need is searching a data set. In the
digital world, an information need (or query) of a
user or application is searched over a data set
stored in computer memory. An algorithm is used
to carry out the task of searching. As searching is a
very frequent operation, in many cases the data is
structured and stored in such a way so that to
facilitate the task of searching. However the
efficiency of searching is not the only factor that
determines the structuring of data. Other factors
are the storage space required, the efficiency of
updating, etc. As a consequence, in many cases
auxiliary data structures are created and maintained
in order to speed up the task of searching. These
auxiliary data structures store data, which are
derived from the original data set and are exploited
by the searching algorithm in order to speed up
searching.

1 Outline

We can categorize the searching approaches and
techniques according to three basic questions:
where, what and how.

The first question, i.e. where, concerns the type
and the structure of the data set over which
searching takes place. Roughly, we can distinguish
the following kinds of data set:

• sequences of records, for example, the data set

can be a (sorted) table (or a file) of integers (or
records);

• sequences of characters, for example, the data
set can be a string stored in main memory, or a
text file stored in secondary memory;

• graphs, for example, the data set can be the
map of a metro network; moreover, a special
case of graphs is trees, for example, the data
set can be a taxonomy of classes, a set of
geographical names structured by spatial
inclusion relation or a game tree;

• tables, for example the data set can be a
relational database;

• k-dimensional spaces, for example, the data set
can be a set of points in a three-dimensional
space or a two-dimensional array of pixels (i.e.
a digital image).

We can also distinguish data sets, which consist of
“composite” data elements. For instance, the data
set can be:
• a set of documents, where a document can be

seen as a sequence of strings and images, and
furthermore, a document may be structured in
sections, subsections etc.;

• a set of Web pages, where we can view the
Web as a distributed stored graph where each
node is a document.

Searching in this kind of data sets is more
sophisticated.

The second question, i.e. what, concerns the
objective of searching and the method used for

Page 1 of 1

Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, 2003

specifying this objective. In particular, the
objective of searching may be an element or a set
of elements. The desired element(s) can be
specified by some key, by other information
related to the key, or by specifying the conditions
that the desired elements must fulfil. Furthermore,
in some cases the specification of the objective is
done gradually, i.e. it is the outcome of a process
(e.g. the navigation process in a hierarchy of
subjects, or the query reformulation through
relevance feedback in information retrieval
systems).

The third question, i.e. how, concerns the
algorithm, i.e. the sequence of steps, for finding the
desired element(s) in the data set. As mentioned
earlier, for speeding up searching, auxiliary data
structures are usually created and maintained along
with the original data set.

For the same search problem there may be several
algorithms, and this raises the question of how to
decide which of them is preferable. There are two
different approaches for answering this question.
The empirical (or a posteriori) approach consists of
programming the competing algorithms and trying
them on different instances with the help of a
computer. The theoretical (or a priori) approach
consists of determining mathematically the
quantity of resources (execution time, memory
space, etc.) needed by each algorithm as a function
of the size of the instances considered (this is also
referred to as computational complexity).

It is natural to ask at this point what unit should be
used to express the theoretical efficiency of an
algorithm. There can be no question of expressing
this efficiency in seconds, say, since we do not
have a standard computer to which all
measurements might refer. An answer to this
problem is given by the principle of invariance,
according to which two different implementations
of the same algorithm will not differ in efficiency
by more than some multiplicative constant.

More precisely, if two implementations take t1(n)
and t2(n) seconds, respectively, to solve an instance
of size n, then there always exists a positive
constant c such that t1(n)≤ ct2(n) whenever n is
sufficiently large. This principle remains true
whatever the computer used (provided it is of a
conventional design), regardless of the
programming language employed and regardless of
the skill of the programmer (provided that he or
she does not actually modify the algorithm!).

Coming back to the question of the unit to be used
to express the theoretical efficiency of an
algorithm, there will be no such unit: we express
this efficiency to within a multiplicative constant.

We say that an algorithm takes time in the order of
t(n), for a given function t, if there exist a positive
constant c and an implementation of the algorithm
capable of solving every instance of the problem in
time bounded above by ct(n) seconds, where n is
the size of the instance considered. We also say
than the algorithm has O(t(n)) running time. By the
principle of invariance any other implementation
of the algorithm will have the same property,
although the multiplicative constant may change
from one implementation to another.

Certain orders occur so frequently that it is worth
giving them a name. For example, if an algorithm
takes time in the order of n, where n is the size of
instance to be solved, we say that it takes linear
time. In this case we also talk about a linear
algorithm. Similarly, an algorithm is quadratic,
cubic, polynomial, or exponential if it takes a time
in the order of n2, n3, nk, or cn, respectively where
k and c are appropriate constants.
For more about computational complexity, see (1).
[Garey79].

Below we discuss searching according to the type
and structure of the data set.

2 Searching a Sequence of
Records

Assume that the data set is an array (or file) of
integers (or records) and suppose that we are
searching for a desired element. The simplest
method for searching involves testing elements in
sequential order, starting at the beginning and
stopping when the desired element is found or
proved to be missing. This is a serial search, it
takes linear time, and the average time for finding
an element in a data set of n elements in n/2.

As mentioned earlier, the data set can be stored so
as to speed the searching. This raises the question:
given a set of elements characterized by a key
(upon which an ordering relation is defined), how
is the set to be organized so that the retrieval
(searching) of an element with a given key
involves as little effort as possible?

Hashing is one answer to this question. As in a
computer each element is ultimately accessed by
specifying a storage address, hashing essentially
consists in finding an appropriate mapping, or hash
function h of keys (K) into addresses (A), i.e., a
function h: K→A (or h: K→{1..N}). If we assume
an array structure then h is a mapping transforming
keys into array indices. The fundamental difficulty
in using a key transformation is that the set of
possible key values is much larger than the set of
available store addresses (array indices). The

Page 2 of 2

Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, 2003

function h is therefore obviously a many-to-one
function. For example, if K is a set of integers then
a hash function is the modulo N. A hash function is
a good choice if it efficiently disperses all the
possible elements, that is, if h(x) ≠ h(y) for most of
the pairs x≠ y that are likely to be found. When x≠
y but h(x) = h(y), we say that there is a collision
between x and y. The hash table is an array T[1..N]
of lists in which T[i] is the list of those items such
that h(x)=i. Thus searching for an element with
key q requires searching sequentially the list
T[h(q)]. The ratio a=n/N, where n is the number of
distinct elements in the data set, is called the load
factor of the table. Increasing the value of N
reduces the average search time but increases the
space occupied by the table. However, hashing is
not efficient in range queries, i.e., in queries of the
form: find all elements x such that qmin≤ x≤ qmax.
Range queries can be evaluated efficiently if
instead of creating a hash table we sort the data set,
or create a search tree.

As mentioned earlier, an alternative approach to
hashing is to build a search tree (which is
discussed in a subsequent section) or to sort the
elements. Assume that the data set is a sorted
array, a sorted list, or a sorted file of records. In
this case algorithms more sophisticated than serial
search can be employed. A widely used algorithm
is binary search.
Binary searching predates computing. In essence, it
is the algorithm used to look up a word in a
dictionary or a name in a telephone directory. It is
probably the simplest application of divide-and-
conquer. To speed up the search, divide-and-
conquer suggests that we should look for the
desired element x either in the first half of the array
or in the second half. To find out which of these
searches is appropriate, we compare x to an
element in the middle of the array: if x is less than
this element, then the search for x can be confined
to the first half; otherwise it is sufficient to search
the second half. Binary search runs in O(log(n)).
This is significantly better than serial search for
large data sets. However binary search requires
the data set to be random access. Arrays are
random access, however sorted lists or files are not
random access.

If the data set is not random access, e.g. a sorted
list or a file of ordered records, then there is no
obvious way to select the middle of the list, which
would correspond to the first step of binary search.
In this case, probabilistic algorithms, such as
Sherwood algorithm (whose expected execution
time is O(sqrt(n)) can be employed.

For more about these algorithms see (2). [D. Knuth
73].

3 Searching a Sequence of
Characters

Assume that the data set is a sequence of
characters, i.e. a string stored in main memory, or
a text file stored in secondary memory. The search
problem is formulated as follows:

find the first occurrence (or all occurrences)
of a string (or pattern) p of length m in a string s of

length n.

Commonly, n is much larger than m. The simplest
algorithm is the Brute-Force (BF), or sequential
text searching. It consists of merely trying all
possible positions in the text. For each position it
verifies whether the pattern matches at that
position. Since there are O(n) text positions and
each one is examined at O(m) worst-case cost, the
worst-case of brute-force searching is O(nm).

There are several more efficient algorithms (e.g.
the Knuth-Morris-Pratt, or the Boyer-Moore
algorithm) which use a modification of this
scheme. They employ a window of length m which
is slid over the text. It is checked whether the text
in the window is equal to the pattern (if it is, the
window position is reported as a match). Then, the
window is shifted forward. The algorithms mainly
differ in the way they check and shift the window.
For instance, the Knuth-Morris-Pratt (KMP)
algorithm does not try all window positions as BF
does. Instead, it reuses information from previous
checks. For doing this, the pattern p is pre-
processed to build a table called next. A prefix of a
string s is any substring of s that starts from the
first character of s, while a suffix of s is any
substring of s that ends at the last character of s.
The next table at position j says which is the
longest proper prefix of p[1..j-1] which is also a
suffix and the characters following prefix and
suffix are different. Hence j-next[j]-1 window
positions can be safely skipped if the characters up
to j-1 matched and the j-th did not. For example,
when searching for the word “abracadabra” if a
text window matched up to “abracab”, five
positions can be safely skipped since next[7]=1 as
shown next:

j 1 2 3 4 5 6 7 8 9 10 11
p[j] A b r a c a d a b r A s
next[j] 0 0 0 0 1 0 1 0 0 0 0 4

Since at each text comparison the window or the
pointer advance by at least one position, the
algorithm performs at most 2n comparisons (and at
least n).

Sequential searching is appropriate when the text is
small (i.e. a few megabytes). If the text is big then

Page 3 of 3

Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, 2003

we can build data structures over the text, called
indices, to speed up search. The most widely used
techniques for indexing are inverted files, suffix
trees (and suffix arrays), and signature files.
Examples of these techniques are given in Figure
2. Inverted files are currently the best choice for
most applications.

Text
Tonia is a lovely girl. Yannis loves Tonia.
1 7 10 12 19 25 32 38

Inverted Index Suffix Tree

Text Signature

girl
loves
lovely
Tonia
Yannis

Vocabulary Occurences
19
32
12
1, 38
25

19
g

i r l

32 l o v e s

12
l y

1

t
o n i a

38

“ “

“.“
25

a n n i s
y

Tonia is a lovely girl. Yannis loves Tonia.
signature function
h(girl) = 10000
h(loves) = 01000
h(lovely) = 00100
h(Tonia) = 00010
h(Yannis) = 00001

B=5 b=3

block 1 block 2 block 3

00010 10101 01010

Figure 2 An inverted index, a suffix tree and a
signature file for the same text.
The inverted file structure is composed of two
parts: the vocabulary and the occurrences. The
vocabulary is the set of all different words in the
text. For each such word a list of all the text
positions where the word appears is stored. The
search algorithm on an inverted index follows
three general steps. At first, the words (or patterns)
in the query are searched in the vocabulary. Then
the lists of occurrences of all the words found are
retrieved. Finally the occurrences are processed to
solve phrases, proximity or Boolean operations.

Queries such as phrases are expensive to solve
using inverted indices, as inverted indices actually
view the text as a sequence of words. A type of
index which allows answering efficiently more
complex queries (e.g. phrases) is suffix trees (and
suffix arrays). These indices view the text as one
long string. Each position in the text is considered
as a text suffix, i.e. a string that goes from that text
position to the end of the text. Each suffix is
uniquely identified by its position. In essence, a
suffix tree is a trie data structure build over all the
suffixes of the text. A trie is a tree for storing
strings in which there is one node for every
common prefix. The strings are stored in extra leaf
nodes. In a suffix tree the pointers to the suffixes
are stored at the leaf nodes of the trie. The problem
with this data structure is its size. However, not all
text positions need to be indexed. Index points are
selected from the text, which point to the
beginning of text positions which will be
retrievable. Suffix arrays provide essentially the
same functionality as suffix trees with much less
space requirements.

Its main drawbacks are its costly construction
process, the fact that text must be readily available
at query time, and that the results are not delivered
in text position order.

Signature files are word-oriented index structures
based on hashing. A signature file uses a hash
function (or signature) that maps words to bit
masks of B bits. It divides the text in blocks of b
words each. To each text block of size b, a bit
mask of size B will be assigned. This mask is
obtained by bitwise ORing the signatures of all the
words in the text block. The main idea is that if a
word is present in a text block, then all the bits set
in its signature are also set in the bit mask of the
text block. Hence, whenever a bit is set in the mask
of the query word and not in the mask of the text
block, then the word is not present in the block.
Signature files require a low storage space
overhead, at the cost of forcing a sequential search
over the index. However we may have false drops,
i.e. it is possible that all the corresponding bits are
set even though the word is not there. The most
delicate part of the design of a signature file is to
ensure that the probability of a false drop is low
enough while keeping the signature file as short as
possible.
Inverted files outperform signature files for most
applications.

For more about inverted files, suffix trees and
signature files see Chapter 8 of Reference (3).
[Baeza-Yates].

4 Searching in Graphs

Many important searching problems can be
formulated in terms of graphs. A graph is a pair
G=<N, A> where N is a set of nodes and A ⊆ N x
N is a set of edges. We can distinguish directed
and undirected graphs. An edge from node n to
node n’ of a directed graph is denoted by the
ordered pair (n, n’), whereas an edge joining nodes
n and n’ in an undirected graph is denoted by the
set {n, n’}.
In an undirected graph a sequence of nodes
n1,...,nk where {ni, ni+1 }∈A for i=1..k-1, is called a
path of length k from node n1 to node nk. Often it is
convenient to assign positive costs to edges, for
example c(n ,n') may denote the distance between
two cities denoted by n an n’. The cost of a path is
the sum of the costs of all edges in the path. In
certain search problems, given two nodes n and n'
we want to find a path of minimal cost among all
paths from n to n'.

In a directed graph, if an edge is directed from a
node n to a node n' then we say that n is the parent

Page 4 of 4

Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, 2003

(or ancestor) of n' and that n' is a child (or
successor) of n. A sequence of nodes n1,...,nk with
each ni+1 a successor of ni, for i=1..k-1, is called a
path of length k from node n1 to node nk. If c(n ,n')
denotes the cost of an edge directed from n to
successor node n', then the cost of a path is the sum
of the costs of all edges connecting in the path. In
certain search problems, given two nodes n and n'
we want to find a path of minimal cost among all
paths from n to n'. Such paths are called optimal
paths. Figure 3 shows a directed graph consisting
of 4 nodes and 5 edges.

1

2 4

3

Parent of nodes 2 and 4
Ancestor of nodes 2, 4 and 3.

Child (successor) of node 4
Descendant of nodes 1, 2 and 4

10 20

40

30 50

G=(N,A)
N={1, 2, 3, 4}
A={(1,2), (1,4), (2,4), (4,3), (3,2)}

The cost of the edge (1,4) equals to 20.
The cost of the path (1,4,3) equals to 70 (=20+50).

Figure 3 Graph notations.

A special case of directed graph is the Directed
Acyclic Graph (DAG). A DAG is a directed graph
with no cycles, where a cycle is defined to be a
path whose initial and final node coincide. For
example the directed graph shown in Figure 3 is
not a DAG as there is the cycle (1,2,4,1). DAGs
are used in many applications. For example, they
are used to represent the structure of an arithmetic
expression that includes repeated subexpressions;
or the different stages of a complex project: the
nodes represent the different states of the project,
from the initial state to the final completion state of
the project, and the edges correspond to activities
that have to be completed to pass from one state to
another. Moreover, DAGs offer a natural
representation for partial orderings.

Another special case of directed graph is the
directed tree in which each node has exactly one
parent, except for a single node that has no parent
and is called the root of the tree. A node in the tree
having no successors (children) is called a tip node
or a leaf. Two nodes are siblings if they have the
same parent. The depth of the root node is 0 and
the depth of any other node in the tree is defined to
be the depth of its parent plus 1. Certain trees have
the property that all nodes except the leaves have
the same number of successors, say b. In this case,

b is called the branching factor of the tree. Figure
4 shows an example of a tree.

a

b

e

Root node

Leaf node

depth(a) = 0
depth(b) = 1
depth(e) = 2

c d

f g

Figure 4 Tree notations.

In what follows, section 4.1 describes an
application of trees for speeding up searching in a
sequences of records; section 4.2 describes
searching in explicit graphs, i.e. in graphs which
are stored explicitly in the computer memory; and
section 4.3 describes searching in implicit graphs,
i.e. in graphs for which we have available a
description of its nodes and edges, but which are
not stored explicitly in the computer memory.

4.1 Search Trees
An ordered tree is a tree in which the branches of
each node are ordered. The number of successors
of a node is called its degree. The maximum
degree over all nodes is the degree of the tree. A
binary tree is an ordered tree of degree 2. Trees
with degree greater than 2, are called multiway
trees. Binary trees are frequently used to represent
a set of data whose elements are to be retrievable
through a unique key. If a tree is organized in such
a way that for each node n, all keys in the left
subtree are (numerically or lexicographically) less
than the key of n, and those in the right subtree are
greater than the key of n, then this tree is called a
search tree. The upper part of Figure 5 shows a
binary search tree. Note that all keys in the left
subtree of node 10, i.e. the keys {5,3,8}, are less
than 10, and that all keys in the right subtree, i.e.
the keys {15,13,18}, are greater than 10. In a
search tree it is possible to locate an arbitrary key
by starting at the root and proceeding along a
search path switching to a node’s left or right
subtree by a decision based on inspection of the
node’s key only. As n elements may be organized
in a binary tree of a height as small as logn, a
search among n elements may be performed with
as few as logn comparisons if the tree is perfectly
balanced.

Page 5 of 5

Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, 2003

A balanced binary search tree for the set {3,5,8,10,13,15,18}

10

5

3 8

15

13 18

2 5 7 8 13 14 15 18 22 24 26 27 28 32 35 38 41 42 45 46

10 20 30 40

25

A B-tree of degree 2 with 3 levels

Figure 5 Search Trees.
An AVL tree is a binary search tree in which for
every node the heights of its two subtrees differ by
at most 1.
An application of multiway trees is the
construction of large-scale search trees where the
primary store of a computer is not large enough (or
is too costly) to be used for long-term storage. An
example of such tree is the B-tree. A B-tree of
degree 2 and depth 3 is shown in Figure 5.

If information about the probabilities of access to
individual keys is available then we can structure
the search tree so as to minimize the average path
length. For example suppose we have an ordered
set c1<...<cn of n distinct keys, and let pi be the
probability that a request refers to key ci,
i=1,2,...,n. If some key ci is held in a node at depth
di, then di+1 comparisons are needed to find it.
Thus for a given tree the average number of
comparisons needed for finding a key is

∑
=

+=
n

i
ii dpC

1
)1(

Trees whose structure minimizes the quantity C are
called Optimal Search Trees.
For more about search trees and optimal search
trees, see (4). [Brassard].

4.2 Explicit Graphs

Suppose the objective of searching is to see
whether a node (or the information assigned to a
node) exists in a graph. This requires traversing the
graph. We can distinguish the depth-first traversal
(or searching) and the breadth-first traversal (or
searching).

To carry out a depth-first search of a graph (dfs for
short) we choose any node of G, say n, as the
starting node and mark it to show that it has been
visited. Next, if there are nodes adjacent to n (or
successors of n, if G is a directed graph) that have
not been visited yet, we choose one as the new
starting node and call the depth-first search
procedure recursively. When all nodes adjacent to

n have been marked, the search starting at n is
finished. If there remain any nodes of G that have
not been visited yet, we choose one of them as a
new starting node, and continue in this way until
all nodes of G have been marked. Depth-first
search can be also used for detecting whether a
given directed graph is acyclic.

In breadth-first search (bfs for short) when we
arrive at some node n, we first visit all the nodes
adjacent to n (or all siblings of n, if G is a directed
graph) and not until this has been done we go on to
look at nodes farther away. Unlike dfs, bfs is not
naturally recursive.

For example, a dfs traversal of the tree shown in
Figure 4 will visit the nodes of the tree in the
following order: a, b, e, c, d, f, g, while a bfs
traversal will visit the nodes in the order a, b, c, d,
e, f, g.

Given a graph, there are many cases where we
need to search for paths, or for sub-graphs that
satisfy certain conditions. For example, given an
explicit graph, we might want to find a path from a
node n, to each of the other nodes in the graph.
Such a collection of paths constitutes a spanning
tree of the graph - a tree rooted at n, and a famous
problem is finding a minimal spanning tree. Other
famous graph searching problems of this kind
include the shortest route problem and the
topological sort. A topological sort of the nodes of
a directed acyclic graph is the operation of
arranging the nodes in a linear order in such a way
that if there exists an edge (n, n’), then n precedes
n’ in the linear order. The necessary modification
to the procedure depth-first search to make it into a
topological sort is immediate. For more on the
computational aspects of graphs and on graph
algorithms see chapter 6 of Reference (4)
[Bransard 88] and chapter 6 of Reference (5)
[Cormen 90].

In Artificial Intelligence (AI), directed graphs are
used to model the world of an agent and the effects
of its actions on the world model. These graphs are
called state-space graphs. The nodes are labelled
by representations of the individual worlds and the
edges by operators, i.e. the actions that an agent
can take. If the number of different distinguishable
world situations is sufficiently small, a graph
representing all of the possible actions and
situations is stored explicitly. To find a set of
actions that will achieve a specified goal (a world
situation), an agent needs to find a path in the
graph from a node representing its initial world
state (the start node) to a node representing a
specified goal state, the goal node. The actions that
will achieve the goal can then be read out as the

Page 6 of 6

Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, 2003

labels on the edges of this path. The operators
labelling the edges along a path to a goal can be
assembled into a sequence called a plan, and
searching for such a sequence is called planning.
Searching such graphs involves propagating
"markers" over the nodes of the graph. We start by
labelling the start node with a 0, and then we
propagate successively larger integers out in waves
along the edges until an integer hits the goal node.
Then, we trace a path back from the goal to the
start along a decreasing sequence of numbers. The
actions along this path, from start to goal, are the
actions that should be taken to achieve the goal (if
there is a single goal node, the process could also
be implemented in the reverse direction - starting
with the goal node and ending when an integer hits
the start node). The stages of marker propagation
correspond to a breadth-first-search traversal. The
process of marking the successors of a node is
called expansion.

4.3 Implicit Graphs

In certain situations a graph exists only implicitly.
For instance, we often use abstract graphs to
represent games, such as chess : each node
corresponds to a particular position of the pieces
on the board, and the fact that an edge exists
between two nodes means that it is possible to get
from the first to the second of these positions by
making a single legal move. Often the original
problem translates to searching for a specific node,
path, or pattern in the associated graph. If the
graph contains a large number of nodes, it may be
wasteful or infeasible to build it explicitly in
computer memory before applying one of the
search techniques that we have encountered so far.
For example, the number of nodes in the state-
space graph of chess has approximately 1040 nodes.
Most of the time, all we have is a representation of
the current position. An implicit graph is one for
which we have available a description of its nodes
and edges. Relevant portions of the graph can thus
be built as the search progresses. Therefore
computing time is saved whenever the search
succeeds before the entire graph has been
constructed.

We can distinguish two broad classes of search
processes in implicit graphs. In the first, called
uninformed, we have no problem-specific reason
to prefer one part of the search space to another, as
far as finding a path to the goal is concerned. In the
second class, called heuristic, we do have problem-
specific information to help focus on a specific
search.

Note : The word heuristic comes from the Greek
word «ευρίσκειν» (pronounced heuriskein),
meaning "discover".

4.3.1 Uninformed Search

The simplest uninformed search procedure is
breadth-first search. The basic property of this
search is that when a goal node is found, we have
found a path of minimal length to that goal. The
disadvantage, however, is that it requires the
generation and storage of a tree whose size is
exponential in the depth of the shallowest goal
node.

 Uniform-cost search is the analogue of bfs for
graphs which have costs assigned to their edges. In
uniform-cost search nodes are expanded outward
from the start node along "contours" of equal cost
rather than along equal depth.

Another method is the depth first search or
backtracking. To prevent the search process from
running away towards nodes of unbounded depth
from the start node, a depth bound is used. No
successor is generated whose depth is greater than
the depth bound. The memory requirements of dfs
are linear in the depth bound. A disadvantage of
dfs is that when a goal is found, we are not
guaranteed to have found a path to a goal having
minimal length.

A technique called iterative deepening enjoys the
linear memory requirements of dfs while
guaranteeing that a goal node of minimal length
will be found. In iterative deepening, successive
depth first searches are conducted - each with
depth bounds increasing by 1 - until a goal node is
found. Figure 6 shows an example of iterative-
deepening search.

Depth bound =1 Depth bound =2 Depth bound =3

Figure 6 Iterative-Deepening Search.

4.3.2 Heuristic Search

Here the search proceeds preferentially through
nodes that problem-specific information indicates
as being on the best path to a goal. We call such

Page 7 of 7

Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, 2003

processes best-first or heuristic search. For doing
this we define a heuristic (evaluation) function f to
help decide which node is the best one to expand
next. Actually, f is a real-valued function of state
descriptions and its definition is based on
information specific to the problem domain.
During searching we expand next the node n
satisfying a certain condition expressed by f, for
example, we may expand next the node n resulting
in the smallest value of f(n), and we terminate
when the node to be expanded is a goal node.
Usually we also take into account the depth of
node n, i.e f has the form f(n) = g(n) + h(n) where
g(n) is an estimate of the depth of n in the graph
(i.e. the length of the shortest path from the start to
n), and h(n) is a heuristic evaluation of node n.
There are conditions on graphs and on h that
guarantee that the best-first algorithm applied to
these graphs is admissible, i.e. it is guaranteed to
find an optimal path to the goal (for more see
chapter 9 of Reference (6) [Nillson]).

The classic book on heuristic search is (7) [Pearl
1984].

4.3.3 Approximate Search

Relaxing the requirement of producing optimal
paths often reduces the computational cost of
finding a plan. This reduction can be done either
by searching for a complete path to a goal node
without requiring that this path be optimal, or by
searching for a partial path that does not take us all
the way to a goal node.
A best-first search can be used in both cases. In the
first, we use a nonadmissible heuristic function,
and in the second, we quit searching before
reaching the goal - using either an admissible or
nonadmissible heuristic function. Examples of this
kind of algorithms include the Island-Driven
Search, the Hierarchical Search and the Limited-
Horizon Search. For instance, in island-driven
search, heuristic knowledge from the problem
domain is used to establish a sequence of “island
nodes” in the search space through which it is
suspected that goal paths pass. Suppose that n0 is
the start node, ng is the goal node, and (n1,…,nk) is
a sequence of such islands. In this case a heuristic
search is initiated with n0 as the start node and with
n1 as the goal node, using a heuristic function
appropriate for that goal. When the search finds a
path to n1, another search starts with n1 as the start
node and n2 as the goal node, and so on, until a
path to ng is found.

4.3.4 Rewards Instead of Goals

In the previous discussions we assumed that the
objective of searching is a goal node. In many
problems the common task cannot be so simply

stated. Instead, the task may be an ongoing one.
The user expresses his or her satisfaction and
dissatisfaction with task performance by
occasionally giving the agent positive or negative
rewards. The task for the agent is to maximise the
amount of reward it receives. The special case of a
simple goal-achieving task can be cast in this
framework by rewarding the agent positively (just
once) when it achieves the goal, and negatively
(by the amount of an action's cost) every time it
takes an action. In this sort of task environment,
we seek to describe an action policy that
maximises reward. One problem for ongoing, non-
terminating tasks is that the future rewards might
be infinite, so it is difficult to decide how to
maximise it. A way of proceeding is to discount
future rewards by some factor. That is, the agent
prefers rewards in the immediate future to those in
the distant future.

4.3.5 Constraint Satisfaction and

Constraint Propagation

There are applications of search techniques beyond
the problem of selecting actions for an agent.
These applications include finding solutions to
problems of assigning values to variables subject
to constraints and solving optimisation problems.
When the goal node is defined not by a specific
data structure but by conditions or constraints, it
might be that the problem is to exhibit some data
structure satisfying those conditions; the steps that
produce it using the above graph-search methods
might be irrelevant. We call these problems
constraint-satisfaction problems. A prominent
member of this class involves assigning values to
variables subject to constraints. These are called
assignments problems.

We can solve constraint-satisfaction problems by
graph-search methods. A goal node is a node
labelled by a data structure (or state description)
that satisfies the constraints. Operators change one
data structure to another. The start node is some
initial data structure. A good example of an
assignment problem is the Eight-Queens problem.
The problem is to place (assign) eight queens on a
chess board in such a way that there is a queen in
every row and column but with the additional
constraint that only one queen can be in any single
row, column, or diagonal. We call this an
assignment problem because it can be posed as a
problem of assigning values from the set {row 1,
…, row 8} to variables from the set {position of
queen in column 1, ..., position of queen in column
8}). In assignment problems, since the path to the
goal is not the important thing, we often have
many choices about what the start state and
operators can be.

Page 8 of 8

Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, 2003

Constructive methods try assigning a value to each
variable in turn (eg. the position of a queen). A
computational technique called constraint
propagation often helps markedly in reducing the
size of the search space. It is used in combination
with a constructive solution technique - assigning a
value to each variable in turn. Constraints are
represented in a directed graph called a constraint
graph. Each node in this graph is labelled by a
variable name together with a set of possible
values for that variable. A directed constraint edge,
say (i, j), connects a pair of nodes i and j if the
value of the variable labelling i is constrained by
the value of the variable labelling j. We say that a
directed edge, (i,j) is consistent if each value of the
variable at the tail of the arc has at least one value
of the variable at the head of the arc that violates
no constraints. After assigning values to one or
more variables, we can use the concept of edge
consistency to rule out some of the values of other
variables. The process of constraint propagation
iterates over the edges in the graph and eliminates
values of variables at the tails of arcs in an attempt
to enforce edge consistency. The process halts
when no more values can be eliminated. Figure 7
shows a constraint graph for the Four-Queens
problem. In this problem, each variable constraints
all of the others. The lower part of the figure shows
the constraint propagation assuming q1=2. At each
step, the arrow that determines the elimination of
values is written in boldface.

{1,2,3,4}

{1,2,3,4}

{1,2,3,4} {1,2,3,4}

q1

q2 q3

q4

Variables: q1, q2, q3, q4

Values: {1,2,3,4} (= {row1, row2, row3, row4})

q1 q2 q3 q4

1
2
3
4

{2}

{1,2,3,4}

{1,2,3,4} {1,2,3,4}

q1

q2 q3

q4

{2}

{1,2,3,4}

{4} {1,2,3,4}

q1

q2 q3

q4

{2}

{1,2,3,4}

{4} {1,3}

q1

q2 q3

q4

{2}

{1,3,4}

{4} {1,3}

q1

q2 q3

q4

{2}

{1,3,4}

{4} {1}

q1

q2 q3

q4

{2}

{4}

{4} {1}

q1

q2 q3

q4

{2}

{3,4}

{4} {1}

q1

q2 q3

q4

solution

Figure 7 Constraint Propagation for solving
the Four-Queens problem

Constraint propagation has been applied to a
variety of interesting problems, including the
problem of labelling lines in visual scene analysis
and that of propositional satisfiability. For a
survey of the method, its extensions and its
applications, see (8) [Kumar 1992].

4.3.6 Function Optimization (Hill

climbing)

 In some problems, instead of having an explicit
goal condition, we may have some function v over
data structures and we seek to find a structure
having a maximum (or minimum) value of that
function. If we view the data structures as points in
a space, this function can be thought of as a
landscape over the space. One class of methods
consists of those that traverse the landscape,
looking for points of high elevation. Since we
might not know the value of the global maximum,
we might never know for sure if we have reached a
point having maximal height. Among the
techniques for traversing a space are the hill-
climbing methods, which traverse by moving from
one point to that "adjacent" point having the
highest elevation. Hill-climbing methods typically
terminate when there is no adjacent point having a
higher elevation than the current point - thus, they

Page 9 of 9

Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, 2003

can get stuck on local maxima. We can use graph-
searching methods to do hill climbing. As in
assignment problems, the path to the goal is not
important in this kind of problems. Hill climbing
follows a single path (much like a dfs without
backup), and never descending to a lower point.

4.3.7 Game Trees

Most games of strategy can be represented in the
form of directed graphs. A node of the graph
corresponds to a particular position in the game,
and an edge corresponds to a legal move between
two positions. The graph is infinite if there is no a
priori limit on the number of positions possible in
the game. For simplicity we assume that two
players, A and B, play the game, each of whom
moves in turn, that the game is symmetric (the
rules are the same for both players), and that
chance plays no part in the outcome (the game is
deterministic).
To determine a winning strategy for a game of this
kind, we need only attach to each node in the graph
a label chosen from the set win, lose, draw. The
label corresponds to the situation that neither
player will make an error.

The purpose of a game tree search is to find the
best possible move given a game position. Ideally,
to find a move for which even if the opponent
plays perfectly, victory is still guaranteed.
However most games are sufficiently complex that
it is impossible to follow the tree all the way to the
end condition (win, lose, or draw). Thus an
evaluation function is needed to evaluate the
quality of a given position. This function attributes
some value to each possible position. Ideally, say
in a chess game, we want the value of eval(u) to
increase as the position u becomes more
favourable to A. It is customary to give values not
too far from zero to positions where neither side
has a marked advantage, and large negative values
to positions that favour B. When applied to a
terminal position (i.e. a position that does not offer
any legal move), the evaluation function should
return +∞ if B has mated, -∞ if A has been mated,
and 0 if the game is a draw.

Figure 8 shows the part of the graph corresponding
to some game. In this example we suppose that
player A is trying to maximize the evaluation
function and that player B is trying to minimize it.
The values attached to the leaves are obtained by
applying the function eval to the corresponding
positions. The values for the other nodes can be
calculated using the minimax rule. We see why the
technique is called minimax : B tries to minimize
the advantage of A, and A tries to maximize the
advantage he obtains from each move.

Player Rule

A

A

B

B

max

max

min

eval -7 5 -3 10 -20 0 -5 10 -15 20 1 6 -8 14 -30 0 -9 -8

5 -3 10 10 20 1 14 0 -8

-8 10 -3

10

Figure 8 The Minimax principle: player A
is trying to maximize, while player B to
maximize, the evaluation function

The basic minimax technique can be improved in a
number of ways. According to alpha-beta
pruning, the exploration of certain branches are
abandoned early if the information we have about
them is already sufficient to show that they cannot
possibly influence the values of nodes farther up
the tree.
Branch-and-bound is another technique for
exploring an implicit directed graph. At each node
we calculate a bound on the possible value of any
solutions that might happen to be farther on in the
graph. If the bound shows that any such solution
must necessarily be worse than the best solution
we have found so far, then we do not need to go on
exploring this part of the graph. In the simplest
version, calculation of these bounds is combined
with a breadth-first or depth-first search, and
serves only, as we have just explained, to prune
certain branches of a tree or to close certain paths
in a graph. More often, however, the calculated
bound is used not only to close off certain paths,
but also to choose which of the open paths looks
the most promising, so that it can be explored first.

Some games, such as Backgammon, involve an
element of chance. For example, the moves that
one is allowed to make might depend on the
outcome of a throw of the dice. We can use games
trees in such games too. Max’s and Min’s turns
now each involve a throw of a dice. We might
imagine that at each dice throw, a fictitious third
player, DICE, makes a move. That move is
determined by chance. In the case of a throwing
dice, the six outcomes are all equally probable but
the chance element could also involve an arbitrary
probability distribution. Values can be backed up
in game trees involving chance moves also, except
that when backing up values to nodes at which
there was a chance move, we might backup the
expected (average) values of the successors instead
of a maximum or minimum.

A good overview of graph searching algorithms
and their application in AI is (6) [Nillson 98],
while a good overview of game tree searching
algorithms can be found in (9) [Marsland 91].

Page 10 of 10

Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, 2003

5 Searching in Tables

Here the data set is a table or a set of tables. A
table T consists of a scheme denoted sch(T) and an
instance. The scheme is a set of column headings,
also called attributes, and the instance is a set of
rows over these attributes. A row is a mapping that
associates each attribute with a value from the set
of values, or domain, of that attribute. For
example, Figure 9(a) shows a table whose scheme
consists of the attributes A, B and C and whose
instance consists of four rows. In the example, we
assume that all attributes have the same domain,
namely the set of characters.

Searching a given table means asking for a new
table to be constructed by keeping some of the
columns and/or some of the rows of the given one.
The specification of the new table is done using
two operations, projection and selection.

The projection operation takes as input a table T
and a subset X of the attributes of T and returns a
table, denoted by πX(T), whose scheme is X and
whose instance consists of the restrictions of all
rows of T over the attributes of X. For example, if
T is the table of Figure 9(a) and X = {A, B} then
πX(T) is the table shown in Figure 9(b).

Figure 9. Searching in tables using projection
and selection

The selection operation takes as input a table T and
a selection condition C and returns a table, denoted
by σC(T), whose scheme is that of T and whose
instance consists of those rows of T that satisfy C.
Elementary conditions of the form <attribute =
value>, where value is taken from the domain of
attribute, are the building blocks of selection
conditions. A selection condition is formed by
combining elementary conditions using the
traditional logical connectives (&, not, or). For
example, if T is the table of Figure 9(a) and C =

<A=a>&<C=c’> then σC(T) is the table shown in
Figure 9(c).

One important generalization of searching a table
is that of searching a relational database. A
relational database is a set of tables and users
search the database by submitting queries. A query
is a well-formed expression whose operands are
tables and whose operations are projection and
selection (for searching one table as we have seen
earlier) plus a few binary operations for combining
two or more tables. For more on relational
databases and their query languages see (10)
[Ramakrishnan 98].

5.1 Data Mining
Data mining (also known as Knowledge Discovery
in Databases - KDD) is a new kind of searching.
Here, the objective is to discover previously
unknown relationships among the data. These
relationships, or rules, can lead to reasonable
predictions about the future. For example,
marketers use data mining trying to distill useful
consumer data from Web sites.
Let I={i1,…,im} be a set of items and let D be a set
of transactions, where each transaction T is a set of
items such as T ⊆I. An association rule is an
implication of the form X => Y, where X and Y are
subsets of I, and X ∩Y = ∅. A rule X=>Y holds in
the transaction set D with confidence c if c% of
transactions in D that contain X also contain Y. A
rule X=>Y has support s in the transaction set D is
s% of transactions in D contain X ∪Y.
Specifically, high level languages are used where
the user specifies two parameters, namely the
minimum support and the minimum confidence,
and the system searches and finds all association
rules whose support and confidence is greater than
the given values.

Other kinds of mining include classification end
clustering. For more see (26) [Hand01].

6 Searching in
Semistructured Data

In order to represent data with loosely defined or
irregular structure, the semistructured data model
has emerged. At the same time the document
community has developed XML as a format in
which more structure is added to documents in
order to simplify and standardize the transmission
of data via documents. It turns out that these two
representations are essentially identical.
From a database point of view, semistructured
data is often described as “schema-less” or “self-
describing”, because there is no separate

Page 11 of 11

Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, 2003

description of the type or structure of the data (as
in the relational data model). One of the main
strengths of semistructured data in comparison to
other data models is its ability to accommodate
variations in structure. The variations typically
consist of missing data and duplicated fields. An
example is given in Figure 13.

Figure 13. Semistructured data

The semistructured data model is actually a
directed acyclic graph (N,A) with a labelling
function L:A→LA where LA is the domain of edge
labels. The model usually also includes node
labels, though the labels on nodes are typically
confined to leaf nodes. The semistructured data
model can be used to represent several kinds of
databases including the relational ones.
The objective of searching is that of database query
languages, i.e. to select and transform information
from large sources. Query languages for
semistructured data emphasize on restructuring.
However there is no accepted notion of
completeness for semistructured data restructuring.
The building blocks of any query language are path
expressions. A path expression is a simple query
whose result, for a given data graph, is a set of
nodes. For example the result of the path
expression “person.name.first” is the set of nodes
{“Tonia”,”Yannis”}. Path expressions may
contain regular expressions allowing the
specification of path that have some properties. For
example the regular expression “fist | last”
matches either a first name of a last name. In
addition, there are “wildcards” that match any
label, and symbols that specify arbitrary repeats of
a regular expression. Roughly, a high level query
language for semistructured data supports path
expressions and patterns to extract data, variables
to which this data is bound, and templates which
determine the construction of the output.
An XML document is actually a labelled ordered
tree where leaves are text. There are only some
slight differences with the semistructured data
model: XML trees are ordered and the labels are
not attached to edges but to nodes. XML has
already become a standard for knowledge
representation on the Web. For more about
semistructured data and XML see (27)
[Abitebul99]

7 Searching in Metric Spaces
(Multimedia)

Assume that the data set is a set of images,
fingerprints, audio or video. These data sets cannot
be meaningfully searched in the classical sense.
Not only they cannot be ordered, but also they
cannot even be compared for equality. There is no
interest in an application for searching an audio
segment exactly equal to a given one. The
probability that two different images are pixelwise
equal is negligible unless they are digital copies of
the same source. In multimedia applications, all the
queries ask for objects similar to a given one. This
is called similarity searching or proximity
searching. Some example applications are face
recognition, fingerprint matching, voice
recognition, or similarity searching in general
multimedia databases.

In similarity searching the data set is a metric
space, i.e. a set of elements X equipped with a
metric function d. The function d: X×X→ℜ
denotes a measure of “distance” between objects
(i.e. the smaller the distance, the closer or more
similar are the objects). Distance functions have
the following properties, for any x, y, z in X:

1. d(x,y)≥0 positiveness,
2. d(x,y) = d(y,x) symmetry,
3. d(x,x)=0 reflexivity, and
4. d(x,y)≤d(x,z) + d(z,y) triangle inequality.

If the elements of the metric space (X,d) are tuples
of real numbers (actually tuples of any field) then
the pair is a finite-dimensional vector space. A k-
dimensional vector space is a particular metric
space where the objects are identified with k real-
valued coordinates (x1,...,xk). There are a number of
options for the distance function to use, but the
most widely used is the family of Ls distances
defined as:

s

ii
k

i
kks yxyyxxL

/1

1
11 ||)),...,)(,...,((








−= ∑

=

For instance, the L1 distance accounts for the sum
of the differences along the coordinates. It is also
called “block” or “Manhattan” distance, since in
two dimensions it corresponds to the distance to
walk between two points in a city of rectangular
blocks. The L2 distance is better known as
“Euclidean” distance, as it corresponds to our
notion of spatial distance. The other most used
member of the family is L∞ , which corresponds to
taking the limit of the Ls formula when s goes to
infinity.

Thus the data set is a finite subset U of X . Possible
types of searches (objectives) are range queries,
i.e. retrieve all elements that are within distance r

Page 12 of 12

Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, 2003

to the query q, and k-nearest neighbour queries ,
i.e. retrieve the k closest elements to q.

For evaluating this kind of queries (similarity or
proximity queries) auxiliary data structures, called
indexes, are used in order to reduce the number of
distance evaluations at query time. Indexes can be
distinguished to (a) tree indexes for discrete
distance functions, i.e. for functions that deliver a
small set of values, (b) tree indexes for continuous
distance functions, i.e. for functions where the set
of alternatives is infinite or very large, and (c) not
tree-based indexes.

Examples of tree indexes for discrete distance
functions include the Burkhard-Keller Tree (BKT)
(11) [Buthard et al 73] , Fixed Query Tree (FQT)
(12) [Baeza-Yates 94], and many others. In BKT
an arbitrary element p in U is selected as the root
of the tree. For each distance i>0, we define Ui={u
in U | d(u,p)=i} as the set of all the elements at
distance i to the root p. Then, for any nonempty Ui,
we build a child of p (labelled i), and we
recursively build the BKT for Ui,. This process can
be repeated until there is only one element to
process, or until there are no more than b elements
(and we store a bucket of size b). All the elements
selected as roots of subtrees are called pivots. The
left part of Figure 10 shows the division of the
elements of a metric space when u3 is taken as a
pivot, while the right part shows the first level of
BKT with u3 as root. The distances have been
discretized and return integer values.

Figure 10 A BKT for a data set consisting of 8
elements

An FQT (which is a variation of BKT) built over n
elements has O(log n) height on average, is built
using O(nlogn) distance evaluations, and the
average number of distance computations is O(na),
where 0<a<1 is a number that depends on the
range of the search and the structure of the space.

If we have a continuous distance or if the distance
function gives too many different values, it is not
possible to have a child of the root for any such
value. However the indexes for discrete functions
can be adapted to a continuous distance by
assigning a range of distances to each branch of the
tree. Other examples indexes for continuous
distance functions include Vantage Point-Trees

(VTPs), Multi-Vantage-Point trees (MVTs),
Voronoi Trees (VTs), M-trees (MT).
Vantage-point-trees, also called metric-trees, are
actually binary trees. They build a binary tree,
taking any element p as the root and taking the
median of the set of all distances,
M=median(d(p,u) | u in U}. Those elements u such
that d(p,u)≤M are inserted into the left subtree,
while those such that d(p,u)>M are inserted into
the right subtree. The VTP takes O(n) space and is
built in O(nlogn) worst case time. The query
complexity is O(logn).

Other, not tree-based indexes, include AESA
(Approximating Eliminating Search Algorithm)
and LAESA (for linear AESA).

Search structures for vector spaces are called
spatial access methods (SAM). Among the most
popular are kd-trees, R-trees, quad-trees, and X-
trees. These techniques make extensive use of
coordinate information to group and classify points
in the space. For example, kd-trees divide the
space along different coordinates and R-trees
group points in hyper-rectangles.
These techniques are very sensitive to the vector
space dimensions. Closest point and range search
algorithms have an exponential dependency on the
dimension of the space (this is called the “curse of
dimensionality”). Vector spaces may suffer from
large differences between their representational
dimension (k) and their intrinsic dimension, i.e. the
real number of dimensions in which the points can
be embedded while keeping the distance among
them. For example, a plane embedded in a 50-
dimensional space has intrinsic dimension 2 and
representational dimension 50. This is, in general,
the case of real applications, where the data are
clustered, and it has led to attempts to measure the
intrinsic dimension such as the concept of “fractal
dimension”. Despite the fact that no technique can
cope with intrinsic dimension higher than 20, much
higher representational dimensions can be handled
by dimensionality reduction techniques. For
searching techniques for vector spaces see (13)
[Bohm et al. 2001]

This kind of searching has several
applications: querying by content multimedia
objects, text retrieval, computational biology,
pattern recognition and function approximation,
audio and video compression.

A comprehensive survey about searching in metric
spaces can be found in (14) [Chavez01]

Page 13 of 13

Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, 2003

8 Searching in Documents
(Information Retrieval)

Here, the data set is a collection of documents with
natural language text stored in digital form. Users
want to search such collections in order to find
information about a subject or topic. This kind of
searching is usually referred to as information
retrieval (IR). While searching for data (or data
retrieval) aims at retrieving elements that satisfy
clearly defined conditions, information retrieval
aims at retrieving elements that satisfy conditions
which are not always defined clearly. While a data
retrieval system (such as a relational database)
deals with data that has a well defined structure
and semantics, an IR system deals with natural
language text, which is not always well structured
and could be semantically ambiguous. Data
retrieval, while providing a solution to the user of a
database system, does not solve the problem of
retrieving information about a subject or topic. To
be effective in its attempt to satisfy the user
information need, the IR system must somehow
interpret the contents of the information items
(documents) in a collection and rank them
according to a degree of relevance to the user
query. This interpretation of a document content
involves extracting syntactic and semantic
information from the document text and using this
information to match the user information need.
The difficulty is not only knowing how to extract
this information but also knowing how to use it to
decide relevance. Thus, the notion of relevance is a
central notion of information retrieval. In fact, the
primary goal of an IR system is to retrieve all
documents that are relevant to a user query while
retrieving as few non-relevant documents as
possible.

An information retrieval system can be described
as consisting of a set of documents D, a set of
requests Q and some mechanism Sim for
determining which of the documents meets the
requirements of, or is relevant to, the requests. In
practice, the relevance of specific documents to
particular requests is not determined directly.
Rather, the objects are first converted to a specific
form using a classification or indexing language
(L). The requests are also converted into a
representation consisting of elements of this
language. The mapping of objects to the indexing
language is known as the indexing process, while
the mapping of the information requests to the
indexing language is known as the query
formulation process. The procedures for
determining which objects should be retrieved in
response to a query are based on the
representations of the objects and the requests in

the indexing language. Figure 11 shows a
functional overview of information retrieval.

Figure 11. Functional overview of Information
Retrieval

The set of indexing terms may be controlled, that
is limited to a predefined set of index terms, or
uncontrolled, that is allowing use of any term that
fits some broad criteria. If the indexing language is
uncontrolled, then automatic indexing techniques
are usually employed. These techniques are based
on text analysis (e.g. see (15) [Salton83]). If the
indexing language is controlled, then the indexing
of the documents is usually done manually.
Manual indexing involves some intellectual effort
to identify and describe the content of a document.
However there are techniques that allow the
automatic indexing of objects under a controlled
vocabulary.

Table 1. Statistical vs Knowledge-based
Information Retrieval

Statistical approaches Knowledge-based

approaches

Text representation on
counts of single words

Text representation based on
syntactic and semantic
analysis

Retrieval based on a
similarity function

Retrieval based on inference

Domain-independent Potentially large domain
knowledge bases

Feedback based on
statistical models

Learning based on symbolic
and connectionist models

User-independent Models of individuals and
classes of users

Efficient Currently expensive to
implement

Effective Effective in narrow/specific
domains

We use the term statistical information retrieval to
refer to the case where the indexing language is
free and the indexing of documents is done
automatically. On the other hand, we use the term
knowledge-based retrieval to refer to the case
where the indexing language is controlled.
Much of the research in information retrieval has
used the statistical approach. The retrieval
strategies and indexing techniques used in this
approach are simple, easily implemented, and

Page 14 of 14

Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, 2003

reasonably effective. The knowledge-based
approach is less well understood. Loosely
speaking, this approach is concerned more with the
cognitive than the engineering aspects of
information retrieval. By trying to understand more
about how people retrieve information and by
emphasizing representation and reasoning using
domain knowledge, researchers pursuing a
knowledge-based approach hope to build systems
that achieve significantly better retrieval
effectiveness than those based on statistical
techniques. Table 1 lists the basic differences
between the statistical and knowledge-based
approaches (for more see (16) [Croft93]).

The statistical approach provides techniques that
can deal with very large databases in a variety of
domains and languages, whereas the knowledge-
based approach promises to provide techniques for
retrieving passages and extracting facts more
accurately. Knowledge-based approaches include
natural-language-processing techniques for
analysing the text of documents and queries,
inference and domain knowledge used in the
retrieval process, learning techniques used to
improve performance and user modelling for
responding to individual needs. The challenge is to
discover how these approaches can be merged into
a single theoretical framework and combined in
efficient, effective system implementations.

8.1 Statistical Information Retrieval
Here the indexing language consists of those words
that appear in the documents of the collections.
The three classic models in information retrieval
are called Boolean, Vector, and Probabilistic. In
the Boolean model, documents and queries are
represented as sets of index terms (this model can
be called set-theoretic). In the Vector Model,
documents and queries are represented as vectors
in a finite-dimensional space (this model can be
called algebraic). In the Probabilistic Model, the
framework for modelling document and query
representations is based on probability theory (this
model can be called probabilistic). Several
alternative modelling paradigms have been
proposed. Regarding alternative set theoretic
models, we distinguish the fuzzy and the extended
Boolean model. Regarding alternative algebraic
models, we distinguish the generalized vector, the
latent semantic indexing, and the neural network
models. Regarding alternative probabilistic
models, we distinguish the inference network and
the belief network models. In all these models,
users specify their information need by a query
which can be a phrase (or a document).

Consider a collection D of documents, which
together contain n different words. It is common

practice to exclude words which do not carry any
information when isolated, such as “and”, “or”,
“has”, “why” (this is called elimination of
stopwords). Sometimes words are stemmed before
weight vectors are calculated. This reduces distinct
words to their common grammatical root.

The Boolean model is a simple retrieval model
based on set theory and Boolean algebra.
According to this model, keywords are either
present or absent in a document, and the queries
are specified as Boolean expressions, i.e a query is
composed of keywords linked by three connectives
and, or, not. The Boolean model predicts that each
document is either relevant or non-relevant to the
query. The main advantages of the Boolean model
are the clean formalism behind the model and its
simplicity, while the main disadvantage is that
exact matching may lead to retrieval of too few or
too many documents. This problem does not occur
in the vector model and in the probabilistic model
as these models take into account the frequency of
the words that appear in documents and queries.

In the vector model, documents are represented as
vectors of keywords. Each query or document is
represented as an n-dimensional vector where each
component corresponds to one keyword in the
collection. The weight of term ti in document dj
denoted wij, is the product wij =tfij⋅idfi where tfij, is
the term frequency of ti in dj , and idfi is the
inverted document frequency of ti in the collection
D. Specifically, the term frequency of a term ti in
document dj, denoted tfij, is the number of
occurrences of ti in dj , while the inverted document
frequency of a term ti in a collection D of
documents, denoted idfi, is defined as:

i
i tD

Didf
 termecontain th that in documents ofnumber

in documents ofnumber log=

The motivation for this representation is that there
is a natural means of comparing two vectors: the
angle, or inverse cosine of the dot product between
the two vectors. The smaller the angle, the more
similar the two vectors are – and so are, therefore,
the documents they represent. If d1 and d2 are
document vectors, the similarity is expressed as the
cosine of the angle between the two document
vectors:

∑×∑

∑ ×
=

⋅
⋅

=

==

=
n

i
i

n

i
i

i
n

i
i

ww

ww

dd
dddd

1

2
2

1

2
1

2
1

1

21
21

21

),sim(

For a description of the probabilistic model, see
(17) [Robertson 76].

Page 15 of 15

Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, 2003

The evaluation of an information retrieval system
commonly concerns the retrieval efficiency and
effectiveness. Retrieval efficiency concerns issues
like the user effort and the time needed for
retrieving the desired information. The evaluation
of retrieval effectiveness is based on a test
reference collection and on an evaluation measure.
The test reference collection consists of a
collection of documents, a set of example requests,
and a set of relevant documents (provided by
specialists) for each example information request.
Given a system S, the evaluation measure
quantifies (for each example request) the similarity
between the set of documents retrieved by S and
the set of relevant documents provided by the
specialists. This provides an estimation of the
goodness of the system S. The most widely used
evaluation measures are recall and precision,
defined as follows. Let R be the set of relevant
documents for a given information request and
assume that the system being evaluated processes
the information request and generates a document
answer set A. The recall and precision are defined
as follows:

 Precision , Recall
A

RA
R

RA ∩
=

∩
=

Alternative measures that have been proposed
include the harmonic mean and the E-measure.
The E-measure allows the user to specify whether
he or she is more interested in recall or precision,
and it is defined as
follows:

)(
1

)(

11
2

2

jprecisionjrecall
b

bE(j)
+

+
−=

where recall(j) is the recall for the j-th document in
the ranking, precision(j) is the precision for the j-th
document in the ranking, E(j) is the E evaluation
measure relative to recall(j) and precision(j), and b
is a user specified parameter which reflects the
relative importance of recall and precision. Other
user-oriented evaluation measures that have been
proposed include coverage and novelty.

Frequently, the initial query yields an answer
which does not satisfy the user information need.
In such cases, the user can reformulate this query.
Relevance feedback is the most popular query
reformulation strategy. In a relevance feedback
cycle, the user is presented with a list of retrieved
documents and, after examining them, marks those
which are relevant. In practice only the top ranked
documents need to be examined. The main idea
consists of selecting important terms, or
expressions, attached to the documents that have
been identified as relevant by the user, and of

enhancing the importance of these terms in a new
query formulation. The expected effect is that the
new answer will be moved towards the relevant
documents and away from the non-relevant ones.

For more on information retrieval see (15)
[Salton83], (4) [Yates99], (18) [Korfhage97]

8.2 Knowledge-based Retrieval
Here the indexing language is a controlled
vocabulary which may contain terms that do not
appear in the documents of the collection. Usually,
these vocabularies are structured. Commonly, they
are structured by a small set of relations such as
subsumption and equivalence. The so-called
thesauri (19) [ISO2788] constitute an important
example of such indexing languages. They capture
an adequate body of real world (domain)
knowledge which is exploited through some form
of reasoning for improving the effectiveness of
retrieval. The adoption of thesauri has proved its
usefulness in improving the effectiveness of
retrieval and in assisting the query formulation
process by expanding queries with synonyms,
hyponyms and related terms.
However, when the indexing process is done
manually, indexing of objects can also be done
with respect to more expressive conceptual
models, usually called ontologies. These models
represent domain knowledge in a more detailed
and more precise manner, using logic-based
formalisms and their reasoning mechanisms for
retrieving the objects. Recently, there are several
works that follow this approach to information
retrieval (e.g. see relevance terminological logics,
or four-valued logics). Even ontologies that have
no clear semantic interpretation, such as some
linguistic ontologies, are nevertheless useful in
information retrieval by applying techniques such
as spreading activation (see (20) [Paice91]), or by
representing objects and queries by lexical
conceptual graphs (see (21) [Guarino99]).

9 Searching in the Web
Here, the data set is the Web (World Wide Web).
Roughly, we can view the Web as a distributed
stored directed graph where each node is a Web
page, i.e. a HTML page. Each page contains text
(and probably other media like images, audio,
videos, etc) and hyperlinks that originate from
specific positions in the page and point to other
pages. The distinguishing characteristics of the
Web are that it is very big, it is not stored in a
single machine, and it is subject to continuous
change. However, the basic objective of searching
in the Web is identical to the objective of searching

Page 16 of 16

Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, 2003

in documents (Information Retrieval), i.e. to find
information that is relevant to a topic.

There are basically three different forms of
searching the Web. The first is to use search
engines that index (a portion of) the Web as a full-
text database. In this case, the objective of
searching can be specified by a set of words, a
phrase, a pattern (using proximity operators or
wildcards), or by giving a page that is similar to
the desired ones. The second is to use Web
catalogues which classify selected Web pages by
subject. Here the objective is specified gradually,
i.e. by browsing a hierarchy of subject terms until
the area of interest has been reached. The
corresponding node then provides the user with
links to related pages. The third is to search the
Web exploiting its hyperlink structure. Here the
objective is related to the connectivity of the graph
(e.g. find all pages that have links pointing to a
specific page).

9.1 Search Engines
Search engines are usually based on information
retrieval techniques. However, in the case of the
Web, the data set is not stored in a single machine
so the IR techniques for searching cannot be
applied directly. In order to apply IR techniques,
most search engines use a centralized crawler-
indexer architecture as shown in Figure 12. A
specialized program called a crawler traverses the
Web and sends pages to a main server where they
are indexed. Crawlers (also called robots, spiders,
or knobots) start from a given set of (popular)
pages and they traverse the Web in breadth-first or
depth-first fashion. One problem here is how to
avoid visiting the same page more than once.
Moreover, as the Web is subject to continuous
change, efficient techniques are needed for keeping
up to date the indexes stored at the server.

Figure 12. The crawler-indexer
architecture for searching the Web

Concerning the indexing of the gathered pages,
search engines use variants of the inverted file
approach. Moreover, in order to give the user some
idea about each page retrieved, the index is
complemented with a short description of each
Web page. A query is answered by doing binary

search on the sorted list of words (vocabulary) of
the inverted file.

Concerning relevance, most search engines use
variants of the Boolean or vector model to do
ranking. As the Web is very big, the link structure
is exploited in order to deduce the pages that
contain valuable information. This is an important
difference between the Web and normal IR
databases. The number of hyperlinks that point to a
page provides a measure of its popularity and
quality. Also, many links in common between
pages or pages referenced by the same page, often
indicate a relationship between those pages. A
popular ranking scheme is HITS (Hypertext
Induced Topic Search) (22) [Kleinberg 98]. It
considers the set of pages S that point to or are
pointed by pages in the answer. Pages that have
many links pointing to them in S are called
authorities (that is, they should have relevant
content). Pages that have many outgoing links to
pages in S are called hubs (they should point to
similar content). A positive two-way feedback
exists: better authority pages come from incoming
links from good hubs and better hub pages come
from outgoing links to good authorities. Let H(p)
and A(p) be the hub and authority value of a page
p. These values are defined such that the following
equations are satisfied for all pages p:

∑∑
→∈→∈

==
puSuupSu
uHpAuApH

 | |
)()(),()(

where p→u means that page p has a link pointing
to page u.
Another ranking scheme is Page Rank which is
part of the ranking algorithm used by the popular
search engine Google (23) [Brin 98]. This scheme
simulates a user navigating randomly in the Web
who jumps to a random page with probability q or
follows a random hyperlink (on the current page)
with probability 1-q. This process can be modelled
with a Markov chain, from where the stationary
probability of being in each page can be computed.
This value is then used as part of the ranking
mechanism. Let C(a) be the number of outgoing
links of page a, and suppose that page a is pointed
to by pages p1 to pn. Then the page rank of a,
PR(a), is defined as:

∑
=

−+=
n

i
ii pCpPRqqaPR

1
)(/)()1()(

where q must be set by the system (a typical value
is 0.15). PageRank can be computed using an
interactive algorithm, and corresponds to the
principal eigenvector of the normalized link

Page 17 of 17

Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, 2003

martrix of the Web (which is the transition matrix
of the Markov chain).

Page Rank is a global ranking scheme that can be
used to rank search results, while the HITS
algorithm identifies, for a given search query, a set
of authority pages and a set of hub pages. A
comparison of the performance of these link-based
ranking techniques can be found in (24) [Amento
et al. 2000]
There are several variants of the crawler-indexer
architecture. Among them, the most popular is
Harvest, which uses a distributed architecture to
gather and distribute data.

9.2 Web Catalogues
Web catalogues such as Yahoo! (www.yahoo.com)
or Open Directory (http://dmoz.org), use
structured and controlled indexing languages for
indexing the pages of the Web. These catalogues
turn out to be very useful for browsing and
querying. Although they index only a fraction of
the pages that are indexed by the search engines
using statistical methods, they are hand-crafted by
domain experts and are therefore of high quality.
Recently, the search engines start to exploit these
catalogues in order to enhance the quality of
retrieval and to offer new functionalities.
Specifically, the search engines now employ
catalogues for computing "better" degrees of
relevance, and for determining and presenting to
the user a set of relevant pages for each page in
the answer set. In addition, some search engines
now employ taxonomies in order to enable limiting
the scope (or defining the context) of search.
For example, one can first select a category, e.g.
Sciences/CS/DataStructures, from the taxonomy of
a catalogue and then submit a natural language
query, e.g. "Tree". The search engine will compute
the degree of relevance with respect to the natural
language query, "Tree", only of those pages that
fall in the category Sciences/CS/DataStructures of
the catalogue. Clearly, this enhances the precision
of retrieval and reduces the computational cost.

9.3 Searching Using Hyperlinks

There are paradigms for searching the Web, that
are based on exploiting its hyperlinks. For
example, one might like to search for all Web
pages that contain at least one image and that are
reachable from a given site following at most three
links. To pose this kind of query, the Web is
viewed as a labelled graph. Examples of this kind
of approach are the Web query languages and
dynamic searching. The existing Web query and

manipulation languages provide access to the
structure of Web pages and allow the creation of
new structures as a result of a query.
Dynamic search in the Web is equivalent to
sequential text searching. The idea is to use an
online search to discover relevant information by
following links. The main advantage is that
searching is carried out in the current structure of
the Web, and not in what is stored in the index of a
search engine.

9.4 Meta Searching
Meta-searchers are also employed for searching the
Web. A meta-searcher is actually a mediator, i.e. a
secondary information source aiming at providing
a uniform interface to a number of underlying
sources (which may be primary or secondary).
Users submit queries to the mediator. Upon
receiving a user query, the mediator queries the
underlying sources. This involves selecting the
sources to be queried and formulating the query to
be sent to each source. Finally, the mediator
appropriately combines the returned results and
delivers the final answer to the user.
The main advantages of meta-searchers are that (a)
they combine the results of many sources and (b)
allow the user to avoid posing the same query to
multiple sources, by providing a single common
interface. Meta-searchers differ mainly in the way
ranking is performed in the result, and how well
they translate the user query to the query language
of each search engine.

For more details see chapter 13 of (3) [Yates et als
99], and for an overview of current Web search
engine design see (25) [Arasu01].

Bibl iography

1. Michael R. Garey, David S. Johnson,
Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman
and Company, New York, 1979

2. D. Knuth D, The Art of Computer
Programming, Vol. 3: sorting and searching.
Addison-Wesley, Reading, Mass, 1973

3. Ricardo Baeza-Yates, Berthier Ribeiro-Neto,
Modern Information Retrieval, ACM Press,
Addison-Wesley, New York, 1999

4. Gilles Brassard, Paul Bratley, Algorithmics:
Theory and Practice, Prentice-Hall, Upper
Saddle River, NJ, USA, 1988

5. T. Cormen, A. Thomas, Introduction to
Algorithms, Cambidge, MA and New York:
MIT Press and McGraw-Hill, 1990

6. Nils J. Nilsson, Artificial Intelligence - A New
Synthesis, Morgan Kaufmann, San Francisco,
1998

Page 18 of 18

http://www.yahoo.com/

Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, 2003

7. J. Pearl, Heuristics: Intelligent Search
Strategies for Computer Problem Solving,
Addison-Wesley, Boston, MA, USA, 1984.

8. V. Kumar, Algorithms for constraint-
satisfaction problems: a survey, Artificial
Intelligence Magazine, 13(1), 32-44, 1992

9. T. A Marsland, Tree Searching Algorithms,
Computer, Chess and Cognition, pp 133-158,
1991.

10. Raghu Ramakrishnan, Database Management
Systems, WCB/McGraw-Hill 1998, ISBN 0-
07-050775-9

11. W. Buthard, R. Keller, Some approaches to
best-match file searching, Communications of
ACM, 16(4), 230-236, 1973

12. R. Baeza-Yates, W. Cunto, U. Manber, S. Wu,

Proximity matching using fixed-queries trees.
Proceedings of the 5th Combinatorial Pattern
Matching (CPM’94), Lecture Notes in
Computer Science, vol. 807, 198-212,1994

13. Christian Bohn, Stefan Berchtold, Daniel
Keim, Searching in multidimensional spaces,
ACM Computing Surveys, 33(3) , 322-373,
September 2001

14. Edgar Chavez, Gonzalo Navaro, Ricardo
Baeza-Yates, Jose Luis Marroquin, Searching
in metric spaces, ACM Computing Surveys,
33(3), 273-321, September 2001

15. G. Salton, and M.J. McGill, Introduction to
Modern Information Retrieval, McGill, New
York, 1983

16. B. Croft, Knowledge-based and Statistical
Approaches to Text Retrieval, IEEE Expert, 9,
April 1993, p. 8-12

17. S. E. Robertson and K. Sparck Jones,
Relevance weighting of search terms, Journal
of the American Society for Information
Sciences, 27(3), 129-146, 1976

18. Robert R. Korfhage, Information Storage and
Retrieval, John Wiley & Sons, New York,
1997

19. International Organization For
Standardization, Documentation - Guidelines
for the establishment and development of
monolingual thesauri, Ref. No ISO 2788-
1986, 1988.

20. C. Paice, A thesaural model of information
retrieval, Information Processing and
Management, 27(5), 433-447, 1991

21. N. Guarino and C. Masolo, G. Vetere,
OntoSeek: content-based access to the Web,
IEEE Intelligent Systems, 14(3), May-June,
70-80, 1999

22. Jon Kleinberg, Authoritative sources in a
hyperlinked environment, Proceedings of the
9th ACM-SIAM Symposium on Discrete
Algorithms, San Francisco, USA, 1998

23. Sergey Brin, Lawrence Page, The anatomy of
a large-scale hypertextual Web search engine,

Proceedings of the 7th International WWW
Conference, Brisbane, Australia, April, 1998.

24. B. Amento, L. Terveen, W. Hill, Does
authority mean quality ? Predicting expert
quality ratings of Web documents,
Proceedings of the 23rd ACM SIGIR
Conference, 2000.

25. A. Arasu, J. Cho, H. Garcia-Molina, A.
Paepcke, S. Raghavan, Searching the Web,
ACM Transactions on Internet Technology,
1(1), August 2001

26. David J. Hand, Heikki Manilla, Padhraic
Smyth, Principles of Data Mining, MIT Press
2001

27. Serge Abiteboul, Dan Suciu, Peter Buneman,
Data on the Web: From Relations to
Semistructured Data and XML , Morgan
Kaufmann Series in Data Management
Systems, October 1999, ISBN 155860622X

Page 19 of 19

