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Searching is the process of seeking a desired 
element in a set of related elements. The task of 
searching is one of the most frequent operations in 
computer science. There exist several basic 
variations of the theme of searching, and many 
different approaches, data structures and 
algorithms have been developed on this subject. 
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Figure 1 The basic components of searching 
in the natural and the digital world 

 
Figure 1 describes graphically the basic 
components of searching in the natural and the 
digital world. In our natural world, a human having 
an information need is searching a data set. In the 
digital world, an information need (or query) of a 
user or application is searched over a data set 
stored in computer memory. An algorithm is used 
to carry out the task of searching. As searching is a 
very frequent operation, in many cases the data is 
structured and stored in such a way so that to 
facilitate the task of searching. However the 
efficiency of searching is not the only factor that 
determines the structuring of data.  Other factors 
are the storage space required, the efficiency of 
updating, etc. As a consequence, in many cases 
auxiliary data structures are created and maintained 
in order to speed up the task of searching. These 
auxiliary data structures store data, which are 
derived from the original data set and are exploited 
by the searching algorithm in order to speed up 
searching.  
 

1 Outline 
 
We can categorize the searching approaches and 
techniques according to three basic questions: 
where, what  and  how. 
 
The first question, i.e. where, concerns the type 
and the structure of the data set over which 
searching takes place. Roughly, we can distinguish 
the following kinds of data set:  
 
• sequences of records, for example, the data set 

can be a (sorted) table (or a file) of integers (or 
records); 

• sequences of characters, for example, the data 
set can be a string stored in main memory, or a 
text file stored in secondary memory; 

• graphs, for example, the data set can be the  
map of a metro network; moreover, a special 
case of graphs is trees, for example, the data 
set can be a taxonomy of classes,  a set of 
geographical names structured by spatial 
inclusion relation or a game tree; 

• tables, for example the data set can be a 
relational database; 

•  k-dimensional spaces, for example, the data set 
can be a set of points in a three-dimensional 
space or a two-dimensional array of pixels (i.e. 
a digital image). 

 
We can also distinguish data sets, which consist of 
“composite” data elements. For instance, the data 
set can be: 
• a set of documents, where a document can be 

seen as a sequence of  strings and  images, and 
furthermore, a document  may be structured  in 
sections, subsections etc.; 

• a set of  Web pages, where we can view the 
Web as a distributed stored graph where each 
node is a document. 

Searching in this kind of data sets is more 
sophisticated. 
 
The second question, i.e. what, concerns the 
objective of searching and the method used for 
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specifying this objective. In particular, the 
objective of searching may be an element or a set 
of elements. The desired element(s) can be 
specified by some key, by other information 
related to the key, or by specifying the conditions 
that the desired elements must fulfil. Furthermore, 
in some cases the specification of the objective is 
done gradually, i.e. it is the outcome of a process 
(e.g. the navigation process in a hierarchy of 
subjects, or the query reformulation through 
relevance feedback in information retrieval 
systems). 
 
The third question, i.e. how, concerns the 
algorithm, i.e. the sequence of steps, for finding the 
desired element(s) in the data set. As mentioned 
earlier, for speeding up searching, auxiliary data 
structures are usually created and maintained along 
with the original data set.  
 
For the same search problem there may be several 
algorithms, and this raises the question of how to 
decide which of them is preferable. There are two 
different approaches for answering this question. 
The empirical (or a posteriori) approach consists of 
programming the competing algorithms and trying 
them on different instances with the help of a 
computer. The theoretical (or a priori) approach 
consists of determining mathematically the 
quantity of resources (execution time, memory 
space, etc.) needed by each algorithm as a function 
of the size of the instances considered (this is also 
referred to as computational complexity).  
 
It is natural to ask at this point what unit  should be 
used to express the theoretical efficiency of an 
algorithm. There can be no question of expressing 
this efficiency in seconds, say, since we do not 
have a standard computer to which all 
measurements might refer. An answer to this 
problem is given by the principle of invariance, 
according to which two different implementations 
of the same algorithm will not differ in efficiency 
by more than some multiplicative constant.  
 
More precisely, if two implementations take t1(n) 
and t2(n) seconds, respectively, to solve an instance 
of size n, then there always exists a positive 
constant c such that t1(n)≤ ct2(n) whenever n is 
sufficiently large. This principle remains true 
whatever the computer used (provided it is of a 
conventional design), regardless of the 
programming language employed and regardless of 
the skill of the programmer (provided that he or 
she does not actually modify the algorithm!).  
 
Coming back to the question of the unit to be used 
to express the theoretical efficiency of an 
algorithm, there will be no such unit: we express 
this efficiency to within a multiplicative constant. 

We say that an algorithm takes time in the order of 
t(n), for a given function t, if there exist a positive 
constant c and an implementation of the algorithm 
capable of solving every instance of the problem in  
time bounded above by ct(n) seconds, where n is 
the size of the instance considered. We also say 
than the algorithm has O(t(n)) running time. By the 
principle of invariance any other implementation 
of the algorithm will have the same property, 
although the multiplicative constant may change 
from one implementation to another.   
 
Certain orders occur so frequently that it is worth 
giving them a name. For example, if an algorithm 
takes time in the order of n, where n is the size of 
instance to be solved, we say that it takes linear 
time. In this case we also talk about a linear 
algorithm. Similarly, an algorithm is quadratic, 
cubic, polynomial, or exponential if it takes a time 
in the order of n2, n3, nk, or  cn, respectively where 
k and c are appropriate constants. 
For more about computational complexity, see (1). 
[Garey79].  
 
Below we discuss searching according to the type 
and structure of the data set. 

2 Searching a Sequence of 
Records  

 
Assume that the data set is an array (or file) of 
integers (or records) and suppose that we are 
searching for a desired element.  The simplest 
method for searching involves testing elements in 
sequential order, starting at the beginning and 
stopping when the desired element is found or 
proved to be missing. This is a serial search, it 
takes linear time, and the average time for finding 
an element in a data set of n elements in n/2. 
 
As mentioned earlier, the data set can be stored so 
as to speed the searching. This raises the question: 
given a set of elements characterized by a key 
(upon which an ordering relation is defined), how 
is the set to be organized so that the retrieval 
(searching) of an element with a given key 
involves as little effort as possible?   
 
Hashing is one answer to this question. As in a 
computer each element is ultimately accessed by 
specifying a storage address, hashing essentially 
consists in finding an appropriate mapping, or hash 
function h of keys (K) into addresses (A), i.e., a 
function h: K→A (or h: K→{1..N}). If we assume 
an array structure then h is a mapping transforming 
keys into array indices. The fundamental difficulty 
in using a key transformation is that the set of 
possible key values is much larger than the set of 
available store addresses (array indices). The 
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function h is therefore obviously a many-to-one 
function. For example, if K is a set of integers then 
a hash function is the modulo N. A hash function is 
a good choice if it efficiently disperses all the 
possible elements, that is, if h(x) ≠ h(y) for most of 
the pairs x≠ y that are likely to be found. When x≠ 
y but  h(x) = h(y), we say that there is a collision 
between x and y. The hash table is an array T[1..N] 
of lists in which T[i] is the list of those items such 
that h(x)=i. Thus searching for an element with 
key q requires searching sequentially the list 
T[h(q)]. The ratio a=n/N, where n is the number of 
distinct elements in the data set, is called the load 
factor of the table. Increasing the value of N 
reduces the average search time but increases the 
space occupied by the table. However, hashing is 
not efficient in range queries, i.e., in queries of the 
form: find all elements x such that qmin≤ x≤ qmax. 
Range queries can be evaluated efficiently if 
instead of creating a hash table we sort the data set, 
or create a search tree. 
 
As mentioned earlier, an alternative approach to 
hashing is to build a search tree (which is 
discussed in a subsequent section) or to sort the 
elements. Assume that the data set is a sorted 
array, a sorted list, or a sorted file of records. In 
this case algorithms more sophisticated than serial 
search can be employed.   A widely used algorithm 
is binary search. 
Binary searching predates computing. In essence, it 
is the algorithm used to look up a word in a 
dictionary or a name in a telephone directory. It is 
probably the simplest application of divide-and-
conquer. To speed up the search, divide-and-
conquer suggests that we should look for the 
desired element x either in the first half of the array 
or in the second half. To find out which of these 
searches is appropriate, we compare x to an 
element in the middle of the array: if x is less than 
this element, then the search for x can be confined 
to the first half; otherwise it is sufficient to search 
the second half. Binary search runs in O(log(n)).  
This is significantly better than serial search for 
large data sets.  However binary search requires 
the data set to be random access.  Arrays are 
random access, however sorted lists or files are not 
random access. 
 
If the data set is not random access, e.g. a sorted 
list or a file of ordered records, then there is no 
obvious way to select the middle of the list, which 
would correspond to the first step of binary search. 
In this case,  probabilistic algorithms, such as 
Sherwood algorithm (whose expected execution 
time is O(sqrt(n)) can be employed. 
 
For more about these algorithms see (2). [D. Knuth 
73]. 

 

3 Searching a Sequence of 
Characters 

Assume that the data set is a sequence of 
characters, i.e. a string stored in main memory, or 
a text file stored in secondary memory. The search 
problem is formulated as follows:  
 

find the first occurrence (or all occurrences)  
of a string (or pattern) p of length m in a string s of 

length n. 
 
Commonly, n is much larger than m. The simplest 
algorithm is the Brute-Force (BF), or sequential 
text searching. It consists of merely trying all 
possible positions in the text. For each position it 
verifies whether the pattern matches at that 
position.  Since there are O(n) text positions and 
each one is examined at O(m) worst-case cost, the 
worst-case of brute-force searching is O(nm). 
 
There are several more efficient algorithms (e.g. 
the Knuth-Morris-Pratt, or the Boyer-Moore 
algorithm) which use a modification of this 
scheme. They employ a window of length m which 
is slid over the text. It is checked whether the text 
in the window is equal to the pattern (if it is, the 
window position is reported as a match). Then, the 
window is shifted forward. The algorithms mainly 
differ in the way they check and shift the window.  
For instance, the Knuth-Morris-Pratt (KMP) 
algorithm does not try all window positions as BF 
does. Instead, it reuses information from previous 
checks. For doing this, the pattern p is pre-
processed to build a table called next.  A prefix of a 
string s is any substring of s that starts from the 
first character of s, while a suffix of s is any 
substring of s that ends at the last character of s. 
The next table at position j says which is the 
longest proper prefix of p[1..j-1] which is also a 
suffix and the characters following prefix and 
suffix are different. Hence j-next[j]-1 window 
positions can be safely skipped if the characters up 
to j-1 matched and the j-th did not. For example, 
when searching for the word “abracadabra” if a 
text window matched up to “abracab”, five 
positions can be safely skipped since next[7]=1 as 
shown next: 
 

j 1 2 3 4 5 6 7 8 9 10 11   
p[j] A b r a c a d a b r A s  
next[j] 0 0 0 0 1 0 1 0 0 0 0 4  

 
Since at each text comparison the window or the 
pointer advance by at least one position, the 
algorithm performs at most 2n comparisons (and at 
least n).  
 
Sequential searching is appropriate when the text is 
small (i.e. a few megabytes). If the text is big then 
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we can build data structures over the text, called 
indices, to speed up search. The most widely used 
techniques for indexing are inverted files, suffix 
trees (and suffix arrays), and signature files. 
Examples of these techniques are given in Figure 
2. Inverted files are currently the best choice for 
most applications. 
 

Text 
Tonia is a lovely girl. Yannis loves Tonia. 
1                  7      10  12                  19              25                  32              38 

Inverted Index Suffix Tree 

Text Signature 

girl  
loves  
lovely  
Tonia  
Yannis   

Vocabulary  Occurences   
19  
32  
12  
1, 38  
25  

19 
g 

i r l 

32 l o v e s 

12 
l y 

1                    

t 
o n i a 

38 

“ “ 

“.“ 
25                    

a n n i s 
y 

Tonia is a lovely girl. Yannis loves Tonia. 
signature function 
h(girl)        = 10000 
h(loves)     = 01000 
h(lovely)   = 00100 
h(Tonia)   = 00010 
h(Yannis) = 00001 
 
B=5 b=3 

block 1 block 2 block 3 

00010 10101 01010 

 
Figure 2 An inverted index, a suffix tree and a 
signature file for the same text. 
The inverted file structure is composed of two 
parts: the vocabulary and the occurrences. The 
vocabulary is the set of all different words in the 
text. For each such word a list of all the text 
positions where the word appears is stored. The 
search algorithm on an inverted index follows 
three general steps. At first, the words (or patterns) 
in the query are searched in the vocabulary. Then 
the lists of occurrences of all the words found are 
retrieved. Finally  the occurrences are processed to 
solve phrases, proximity or Boolean operations. 
 
Queries such as phrases are expensive to solve 
using inverted indices, as inverted indices actually 
view the text as a sequence of words. A type of 
index which allows answering efficiently more 
complex queries (e.g. phrases) is suffix trees (and 
suffix arrays). These indices view the text as one 
long string. Each position in the text is considered 
as a text suffix, i.e. a string that goes from that text 
position to the end of the text. Each suffix is 
uniquely identified by its position. In essence, a 
suffix tree is a trie data structure build over all the 
suffixes of the text. A trie is a tree for storing 
strings in which there is one node for every 
common prefix. The strings are stored in extra leaf 
nodes. In a suffix tree the pointers to the suffixes 
are stored at the leaf nodes of the trie. The problem 
with this data structure is its size. However, not all 
text positions need to be indexed. Index points are 
selected from the text, which point to the 
beginning of text positions which will be 
retrievable.  Suffix arrays  provide essentially the 
same functionality as suffix trees with much less 
space requirements. 

Its main drawbacks are its costly construction 
process, the fact that  text must be readily available 
at query time, and that the results are not delivered 
in text position order.  
 
Signature files are word-oriented index structures 
based on hashing. A signature file uses a hash 
function (or signature) that maps words to bit 
masks of B bits. It divides the text in blocks of b 
words each. To each text block of size b, a bit 
mask of size B will be assigned. This mask is 
obtained by bitwise ORing the signatures of all the 
words in the text block. The main idea is that if a 
word is present in a text block, then all the bits set 
in its signature are also set in the bit mask of the 
text block. Hence, whenever a bit is set in the mask 
of the query word and not in the mask of the text 
block, then the word is not present in the block. 
Signature files require a low storage space 
overhead, at the cost of forcing a sequential search 
over the index. However we may have false drops, 
i.e. it is possible that all the corresponding bits are 
set even though the word is not there. The most 
delicate part of the design of a signature file is to 
ensure that the probability of a false drop is low 
enough while keeping the signature file as short as 
possible. 
Inverted files outperform signature files for most 
applications. 
 
For more about inverted files, suffix trees and 
signature files see Chapter 8 of Reference (3). 
[Baeza-Yates]. 
 

4 Searching in Graphs  
 
Many important searching problems can be 
formulated in terms of graphs. A graph is a pair 
G=<N, A> where N is a set of nodes and A ⊆ N x 
N is a set of edges. We can distinguish directed 
and undirected graphs. An edge from node n to 
node n’ of a directed graph is denoted by the 
ordered pair (n, n’), whereas an edge joining nodes 
n and n’ in an undirected graph is denoted by the 
set {n, n’}.  
In an  undirected graph a sequence of nodes 
n1,...,nk  where {ni, ni+1 }∈A for i=1..k-1, is called a 
path of length k from node n1 to node nk. Often it is 
convenient to assign positive costs to edges, for 
example c(n ,n') may denote the distance between 
two cities denoted by n an n’. The cost of a path is 
the sum of the costs of all edges in the path. In 
certain search problems, given two nodes n and n' 
we want to find a path of minimal cost among all 
paths from n to n'.  
 
In a directed graph, if an edge is directed from a 
node n to a node n' then we say that n is the parent 

Page 4 of 4 



Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, 2003 

(or ancestor) of n' and that n' is a child (or 
successor) of n. A sequence of nodes n1,...,nk with 
each  ni+1 a successor of ni, for i=1..k-1, is called a 
path of length k from node n1 to node nk. If  c(n ,n') 
denotes the cost of an edge directed from n to 
successor node n', then the cost of a path is the sum 
of the  costs of all edges connecting in the path. In 
certain search problems, given two nodes n and n' 
we want to find a path of minimal cost among all 
paths from n to n'. Such paths are called optimal 
paths. Figure 3 shows a directed graph consisting 
of 4 nodes and 5 edges. 
 

1 

2 4 

3 

Parent of nodes 2 and 4 
Ancestor of nodes 2, 4 and 3.  

Child (successor) of node 4 
Descendant of nodes 1, 2 and 4

10 20 

40 

30 50 

G=(N,A) 
N={1, 2, 3, 4} 
A={(1,2), (1,4), (2,4), (4,3), (3,2)} 

The cost of the edge (1,4) equals to 20.  
The cost of the path (1,4,3) equals to 70 (=20+50).  

 

Figure 3 Graph notations. 
 
A special case of directed graph is the Directed 
Acyclic Graph (DAG). A DAG is a directed graph 
with no cycles, where a cycle is defined to be a 
path whose initial and final node coincide. For 
example the directed graph shown in Figure 3 is 
not a DAG as there is the cycle (1,2,4,1). DAGs 
are used in many applications. For example, they 
are used to represent the structure of an arithmetic 
expression that includes repeated subexpressions; 
or the different stages of a complex project: the 
nodes represent the different states of the project, 
from the initial state to the final completion state of 
the project, and the edges correspond to activities 
that have to be completed to pass from one state to 
another. Moreover, DAGs offer a natural 
representation for partial orderings. 
 
Another special case of directed graph is the 
directed tree in which each node has exactly one 
parent, except for a single node that has no parent 
and is called the root of the tree. A node in the tree 
having no successors (children) is called a tip node 
or a leaf. Two nodes are siblings if they have the 
same parent. The depth of the root node is 0 and 
the depth of any other node in the tree is defined to 
be the depth of its parent plus 1. Certain trees have 
the property that all nodes except the leaves have 
the same number of successors, say b. In this case, 

b is called the branching factor of the tree. Figure 
4 shows an example of a tree.  
 

a 

b 

e 

Root  node 

Leaf  node  

depth(a) = 0 
depth(b) = 1 
depth(e) = 2 

c d 

f g 

 
Figure 4 Tree notations. 
 
In what follows, section 4.1 describes an 
application of trees for speeding up searching in a 
sequences of records; section 4.2 describes 
searching in explicit graphs, i.e. in graphs which 
are stored explicitly in the computer memory; and 
section 4.3 describes searching in implicit graphs, 
i.e. in graphs for which we have available a 
description of its nodes and edges, but which are 
not stored explicitly in the computer memory. 
 

4.1 Search Trees 
An ordered tree is a tree in which the branches of 
each node are ordered. The number of successors 
of a node is called its degree. The maximum 
degree over all nodes is the degree of the tree. A 
binary tree is an ordered tree of degree 2. Trees 
with degree greater than 2, are called multiway 
trees. Binary trees are frequently used to represent 
a set of data whose elements are to be retrievable 
through a unique key. If a tree is organized in such 
a way that for each node n, all keys in the left 
subtree are (numerically or lexicographically) less 
than the key of n, and those in the right subtree are 
greater  than the key of n, then this tree is called a 
search tree. The upper part of Figure 5 shows a 
binary search tree. Note that all keys in the left 
subtree of node 10, i.e. the keys {5,3,8}, are less 
than 10, and that all keys in the right subtree, i.e. 
the keys {15,13,18}, are greater than 10. In a 
search tree it is possible to locate an arbitrary key 
by starting at the root and proceeding along a 
search path switching to a node’s left or right 
subtree by a decision based on inspection of the 
node’s key only. As n elements may be organized 
in a binary tree of a height as small as logn, a 
search among n elements may be performed with 
as few as logn comparisons if the tree is perfectly 
balanced. 
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A balanced binary search tree for  the set {3,5,8,10,13,15,18} 

10 

5 

3 8 

15 

13 18 

2   5   7   8  13  14  15  18 22  24 26  27  28 32  35  38 41  42  45  46 

10   20  30  40 

25 

A B-tree of degree  2 with 3 levels 

 

Figure 5 Search Trees. 
An AVL tree is a binary search tree in which for 
every node the heights of its two subtrees differ by 
at most 1. 
An application of multiway trees is the 
construction of large-scale search trees where the 
primary store of a computer is not large enough (or 
is too costly) to be used for long-term storage.  An 
example of such tree is the B-tree. A B-tree of 
degree 2 and depth 3 is shown in Figure 5.  
 
If information about the probabilities of access to 
individual keys is available then we can structure 
the search tree so as to minimize the average path 
length.  For example suppose we have an ordered 
set c1<...<cn of n distinct keys, and let pi be the 
probability that a request refers to key ci, 
i=1,2,...,n. If some key ci is held in a node at depth 
di, then di+1 comparisons are needed to find it. 
Thus for a given tree the average number of 
comparisons needed for finding a key is  

∑
=

+=
n

i
ii dpC

1
)1(
 

Trees whose structure minimizes the quantity C are 
called Optimal Search Trees.  
For more about search trees and optimal search 
trees, see (4). [Brassard]. 
 

4.2 Explicit Graphs 
 
Suppose the objective of searching is to see 
whether a node (or the information assigned to a 
node) exists in a graph. This requires traversing the 
graph. We can distinguish the depth-first traversal 
(or searching) and the breadth-first traversal (or 
searching). 
 
To carry out a depth-first search of a graph (dfs for 
short) we choose any node of G, say n, as the 
starting node and mark it to show that it has been 
visited. Next, if there are nodes adjacent to n  (or 
successors of n, if G is a directed graph) that have 
not been visited yet, we choose one as the new 
starting node and call the depth-first search 
procedure recursively. When all nodes adjacent to 

n have been marked, the search starting at n is 
finished.  If there remain any nodes of G that have 
not been visited yet, we choose one of them as a 
new starting node, and continue in this way until 
all nodes of G have been marked. Depth-first 
search can be also used for detecting whether a 
given directed graph is acyclic. 
 
In breadth-first search (bfs for short) when we 
arrive at some node n, we first visit all the nodes 
adjacent to n (or all siblings of n, if G is a directed 
graph) and not until this has been done we go on to 
look at nodes farther away. Unlike dfs, bfs is not 
naturally recursive.  
 
For example, a dfs traversal of the tree shown in 
Figure 4 will visit the nodes of the tree in the 
following order: a, b, e, c, d, f, g, while a bfs 
traversal will visit the nodes in the order a, b, c, d, 
e, f, g. 
 
Given a graph, there are many cases where we 
need to search for paths, or for sub-graphs that 
satisfy certain conditions.  For example, given an 
explicit graph, we might want to find a path from a 
node n, to each of the other nodes in the graph. 
Such a collection of paths constitutes a spanning 
tree of the graph - a tree rooted at n, and a famous 
problem is finding a minimal spanning tree. Other 
famous graph searching problems of this kind 
include the shortest route problem and the 
topological sort. A topological sort of the nodes of 
a directed acyclic graph is the operation of 
arranging the nodes in a linear order in such a way 
that if there exists an edge (n, n’), then n precedes 
n’ in the linear order. The necessary modification 
to the procedure depth-first search to make it into a 
topological sort is immediate. For more on the 
computational aspects of graphs and on graph 
algorithms see chapter 6 of Reference (4) 
[Bransard 88] and chapter 6 of Reference (5) 
[Cormen 90]. 
 
 
In Artificial Intelligence (AI), directed graphs are 
used to model the world of an agent and the effects 
of its actions on the world model. These graphs are 
called state-space graphs. The nodes are labelled 
by representations of the individual worlds and the 
edges by operators, i.e. the actions that an agent 
can take. If the number of different distinguishable 
world situations is sufficiently small, a graph 
representing all of the possible actions and 
situations is stored explicitly. To find a set of 
actions that will achieve a specified goal (a world 
situation), an agent needs to find a path in the 
graph from a node representing its initial world 
state (the start node) to a node representing a 
specified goal state, the goal node. The actions that 
will achieve the goal can then be read out as the 
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labels on the edges of this path. The operators 
labelling the edges along a path to a goal can be 
assembled into a sequence called a plan, and 
searching for such a sequence is called planning. 
Searching such graphs involves propagating 
"markers" over the nodes of the graph. We start by 
labelling the start node with a 0, and then we 
propagate successively larger integers out in waves 
along the edges until an integer hits the goal node. 
Then, we trace a path back from the goal to the 
start along a decreasing sequence of numbers. The 
actions along this path, from start to goal, are the 
actions that should be taken to achieve the  goal (if 
there is a single goal node, the process could also 
be implemented in the reverse direction - starting 
with the goal node and ending when an integer hits 
the start node). The stages of marker propagation 
correspond to a breadth-first-search traversal. The 
process of marking the successors of a node is 
called expansion. 
 
 

4.3 Implicit  Graphs 
 
In certain situations a graph exists only implicitly. 
For instance, we often use abstract graphs to 
represent games, such as chess : each node 
corresponds to a particular position of the pieces 
on the board, and the fact that an edge exists 
between two nodes means that it is possible to get 
from the first to the second of these positions by 
making a single legal move. Often the original 
problem translates to searching for a specific node, 
path, or pattern in the associated graph. If the 
graph contains a large number of nodes, it may be 
wasteful or infeasible to build it explicitly in 
computer memory before applying one of the 
search techniques that we have encountered so far. 
For example, the number of nodes in the state-
space graph of chess has approximately 1040 nodes. 
Most of the time, all we have is a representation of 
the current position. An implicit graph is one for 
which we have available a description of its nodes 
and edges. Relevant portions of the graph can thus 
be built as the search progresses. Therefore 
computing time is saved whenever the search 
succeeds before the entire graph has been 
constructed. 
 
We can distinguish two broad classes of search 
processes in implicit graphs. In the first, called 
uninformed,  we have no problem-specific reason 
to prefer one part of the  search space to another, as 
far as finding a path to the goal is concerned. In the 
second class, called heuristic, we do have problem-
specific information to help focus on a specific 
search.  

Note : The word heuristic comes from the Greek 
word «ευρίσκειν» (pronounced   heuriskein), 
meaning "discover".  
 
4.3.1 Uninformed Search 
 
The simplest uninformed search procedure is 
breadth-first search. The basic property of this 
search is that when a goal node is found, we have 
found a path of minimal length to that goal. The 
disadvantage, however, is that it requires the 
generation and storage of a tree whose size is 
exponential in the depth of the shallowest goal 
node. 
 
  Uniform-cost search is the analogue of bfs for 
graphs which have costs assigned to their edges. In 
uniform-cost search nodes are expanded outward 
from the start node along "contours" of equal cost 
rather than along equal depth. 
 
Another method is the depth first search or 
backtracking. To prevent the search process from 
running away towards nodes of unbounded depth 
from the start node, a depth bound is used. No 
successor is generated whose depth is greater than 
the depth bound.  The memory requirements of dfs 
are linear in the depth bound. A disadvantage of 
dfs is that when a goal is found, we are not 
guaranteed to have found a path to a goal having 
minimal length. 
 
A technique called iterative deepening enjoys the 
linear memory requirements of dfs while 
guaranteeing that a goal node of minimal length 
will be found. In iterative deepening, successive 
depth first searches are conducted - each with 
depth bounds increasing by 1 - until a goal node is 
found. Figure 6 shows an example of iterative-
deepening search. 
 

Depth bound =1  Depth bound =2  Depth bound =3  

 

Figure 6 Iterative-Deepening Search. 
 
 
4.3.2 Heuristic Search 
 
Here the search proceeds preferentially through 
nodes that problem-specific information  indicates 
as being on the best path to a goal. We call such 
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processes best-first or heuristic search. For doing 
this we define a heuristic (evaluation) function f to 
help decide which node is the best one to expand 
next. Actually, f is a real-valued function of state 
descriptions and its definition is based on 
information specific to the problem domain. 
During searching we expand next the node n 
satisfying a certain condition expressed by f, for 
example, we may expand next the node n resulting 
in the smallest value of f(n), and we terminate 
when the node to be expanded is a goal node. 
Usually we also take into account the depth of 
node n, i.e f has the form f(n) = g(n) + h(n) where 
g(n) is an estimate of the depth of n in the graph 
(i.e. the length of the shortest path from the start to 
n), and h(n) is a heuristic evaluation of node n. 
There are conditions on graphs and on h that 
guarantee that the best-first algorithm applied to 
these graphs is admissible, i.e. it is guaranteed to 
find an optimal path to the goal (for more see 
chapter 9 of Reference (6) [Nillson]). 
 
The classic book on heuristic search is (7)  [Pearl 
1984]. 
 
4.3.3 Approximate Search  
 
Relaxing the requirement of producing optimal 
paths often reduces the computational cost of 
finding a plan. This reduction can be done either 
by searching for a complete path to a goal node 
without requiring that this path be optimal, or by 
searching for a partial path that does not take us all 
the way to a goal node. 
A best-first search can be used in both cases. In the 
first, we use a nonadmissible heuristic function, 
and in the second, we quit searching before 
reaching the goal - using either an admissible or 
nonadmissible heuristic function. Examples of this 
kind of algorithms include the Island-Driven 
Search, the Hierarchical Search and the Limited-
Horizon Search. For instance, in island-driven 
search, heuristic knowledge from the problem 
domain is used to establish a sequence of “island 
nodes” in the search space through which it is 
suspected that goal paths pass. Suppose that n0 is 
the start node, ng is the goal node, and (n1,…,nk) is 
a sequence of such islands. In this case a heuristic 
search is initiated with n0 as the start node and with 
n1  as the goal node, using a heuristic function 
appropriate for that goal. When the search finds a 
path to n1, another search starts with n1 as the start 
node and n2 as the goal node, and so on, until a 
path to ng is found. 
 
4.3.4 Rewards Instead of Goals 
 
In the previous discussions we assumed that the 
objective of searching is a goal node. In many 
problems the common task cannot be so simply 

stated. Instead, the task may be an ongoing one. 
The user expresses his or her satisfaction and 
dissatisfaction with task performance by 
occasionally giving the agent positive or negative 
rewards. The task for the agent is to maximise the 
amount of reward it receives. The special case of a 
simple goal-achieving task can be cast in this 
framework by rewarding the agent positively (just 
once) when it achieves the goal,  and negatively 
(by the amount of an action's cost) every time it 
takes an action. In this sort of task environment, 
we seek to describe an action policy that 
maximises reward. One problem for ongoing, non-
terminating tasks is that the future rewards might 
be infinite, so it is difficult to decide how to 
maximise it. A way of proceeding is to discount 
future rewards by some factor. That is, the agent 
prefers rewards in the immediate future to  those in 
the distant future. 
  
 
4.3.5 Constraint Satisfaction and 

Constraint Propagation 
 
There are applications of search techniques beyond 
the problem of selecting actions for an agent. 
These applications include finding solutions to 
problems of assigning values to variables subject 
to constraints and solving optimisation problems. 
When the goal node is defined not by a specific 
data structure but by conditions or constraints, it 
might be that the problem is to exhibit some data 
structure satisfying those conditions; the steps that 
produce it using the above graph-search methods 
might be irrelevant. We call these problems 
constraint-satisfaction problems. A prominent 
member of this class involves assigning values to 
variables subject to constraints. These are called 
assignments problems. 
 
We can solve constraint-satisfaction problems by 
graph-search methods. A goal node is a node 
labelled by a data structure (or state description) 
that satisfies the constraints. Operators change one 
data structure to another. The start node is some 
initial data structure. A good example of an 
assignment problem is the Eight-Queens problem. 
The problem is to place (assign) eight queens on a 
chess board in such a way that there is a queen in 
every row and column but with the additional 
constraint that only one queen can be in any single 
row, column, or diagonal. We call this an 
assignment problem because it can be posed as a 
problem of assigning values from the set {row 1, 
…, row 8} to variables from the set  {position of 
queen in column 1, ..., position of queen in column 
8}). In assignment problems, since the path to the 
goal is not the important thing, we often have 
many choices about what the start state and 
operators can be. 
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Constructive methods try assigning a value to each 
variable in turn  (eg. the position of a queen). A 
computational technique called constraint 
propagation often helps markedly in reducing the 
size of the search space. It is used in combination 
with a constructive solution technique - assigning a 
value to each variable in turn. Constraints are 
represented in a directed graph called a constraint 
graph. Each node in this graph is labelled by a 
variable name together with a set of possible 
values for that variable. A directed constraint edge, 
say (i, j), connects a pair of nodes i and j if the 
value of the variable labelling i is constrained by 
the  value of the variable labelling j. We say that a 
directed edge, (i,j) is consistent if each value of the 
variable at the tail of the arc has at least one value 
of the variable at the head of the arc that violates 
no constraints. After assigning values to one or 
more variables, we can use the concept of edge 
consistency to rule out some of the values of other 
variables. The process of constraint propagation 
iterates over the edges in the graph and eliminates 
values of  variables at the tails of arcs in an attempt 
to enforce edge consistency. The process halts 
when no more values can be eliminated. Figure 7 
shows a constraint graph for the Four-Queens 
problem. In this problem, each variable constraints 
all of the others. The lower part of the figure shows 
the constraint propagation assuming q1=2. At each 
step, the arrow that determines the elimination of 
values is written in boldface. 
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{1,2,3,4} {1,2,3,4} 
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Figure 7 Constraint Propagation for solving 
the Four-Queens problem 
 
Constraint propagation has been applied to a 
variety of interesting problems, including the 
problem of labelling lines in visual scene analysis 
and that of  propositional satisfiability. For a 
survey of the method, its extensions and its 
applications, see (8)  [Kumar 1992]. 
 
 
4.3.6  Function Optimization (Hill 

climbing) 
  
 In some problems, instead of having an explicit 
goal condition, we may have some function v over 
data structures and we seek to find a structure 
having a maximum (or minimum) value of that 
function. If we view the data structures as points in 
a space, this function can be thought of as a 
landscape over the space. One class of methods 
consists of those that traverse the landscape, 
looking for points of high elevation. Since we 
might not know the value of the global maximum, 
we might never know for sure if we have reached a 
point having maximal height. Among the 
techniques for traversing a space are the hill-
climbing methods, which traverse by moving from 
one point to that "adjacent" point having the 
highest elevation. Hill-climbing methods typically 
terminate when there is no adjacent point having a 
higher elevation than the current point - thus, they 
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can get stuck on local maxima. We can use graph-
searching methods to do hill climbing. As in 
assignment problems, the path to the goal is not 
important in this kind of problems. Hill climbing 
follows a single path (much like a dfs without 
backup), and never descending to a lower point.  
 
 
4.3.7 Game Trees 
 
Most games of strategy can be represented in the 
form of directed graphs. A node of the graph 
corresponds to a particular position in the game, 
and an edge corresponds to a legal move between 
two positions.  The graph is infinite if there is no a 
priori limit on the number of positions possible in 
the game. For simplicity we assume that two 
players, A and B, play the game, each of whom 
moves in turn, that the game is symmetric (the 
rules are the same for both players), and that 
chance plays no part in the outcome (the game is 
deterministic).  
To determine a winning strategy for a game of this 
kind, we need only attach to each node in the graph 
a label chosen from the set win, lose, draw. The 
label corresponds to the situation that neither 
player will make an error.  
 
The purpose of a game tree search is to find the 
best possible move given a game position. Ideally, 
to find a move for which even if the opponent 
plays perfectly, victory is still guaranteed. 
However most games are sufficiently complex that 
it is impossible to follow the tree all the way to the 
end condition (win, lose, or draw). Thus an 
evaluation function is needed to evaluate the 
quality of a given position. This function attributes 
some value to each possible position. Ideally, say 
in a chess game, we want the value of eval(u) to 
increase as the position u becomes more 
favourable to A. It is customary to give values not 
too far from zero to positions where neither side 
has a marked advantage, and large negative values 
to positions that favour B. When applied to a 
terminal position (i.e. a position that does not offer 
any legal move), the evaluation function should 
return +∞ if B has mated, -∞ if A has been mated, 
and 0 if the game is a draw. 
 
Figure 8 shows the part of the graph corresponding 
to some game. In this example we suppose that 
player A is trying to maximize the evaluation 
function and that player B is trying to minimize it. 
The values attached to the leaves are obtained by 
applying the function eval to the corresponding 
positions. The values for the other nodes can be 
calculated using the minimax rule. We see why the 
technique is called minimax : B tries to minimize 
the advantage of A, and A tries to maximize the 
advantage he obtains from each move.  

 
Player Rule 

A 

A 

B 

B 

max               

max               

min  

eval  -7 5 -3 10 -20 0 -5 10 -15 20 1 6 -8 14 -30 0 -9 -8 

5 -3 10 10 20 1 14 0 -8 

-8 10 -3 

10 

 
Figure 8 The Minimax principle: player A 
is trying to maximize, while player B to 
maximize, the evaluation function 
 
The basic minimax technique can be improved in a 
number of ways. According to  alpha-beta 
pruning,  the exploration of certain branches are 
abandoned early if the information we have about 
them is already sufficient to show that they cannot 
possibly influence the values of nodes farther up 
the tree. 
Branch-and-bound is another technique for 
exploring an implicit directed graph. At each node 
we calculate a bound on the possible value of any 
solutions that might happen to be farther on in the 
graph. If the bound shows that any such solution 
must necessarily be worse than the best solution 
we have found so far, then we do not need to go on 
exploring this part of the graph.    In the simplest 
version, calculation of these bounds is combined 
with a breadth-first or depth-first search, and 
serves only, as we have just explained, to prune 
certain branches of a tree or to close certain paths 
in a graph. More often, however, the calculated 
bound is used not only to close off certain paths, 
but also to choose which of the open paths looks 
the most promising, so that it can be explored first. 
 
Some games, such as Backgammon, involve an 
element of chance. For example, the moves that 
one is allowed to make might depend on the 
outcome of a throw of the dice. We can use games 
trees in such games too. Max’s and Min’s turns 
now each involve a throw of a dice. We might 
imagine that at each dice throw, a fictitious third 
player, DICE, makes a move. That move is 
determined by chance. In the case of a throwing 
dice, the six outcomes are all equally probable but 
the chance element could also involve an arbitrary 
probability distribution. Values can be backed up 
in game trees involving chance moves also, except 
that when backing up values to nodes at which 
there was a chance move, we might backup the 
expected (average) values of the successors instead 
of a maximum or minimum.  
 
A good overview of graph searching algorithms 
and their application in AI is (6) [Nillson 98], 
while a good overview of game tree searching 
algorithms can be found in (9)  [Marsland 91].  
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5 Searching in Tables 
 
Here the data set is a table or a set of tables. A 
table T consists of a scheme denoted sch(T) and an 
instance. The scheme is a set of column headings, 
also called attributes, and the instance is a set of 
rows over these attributes. A row is a mapping that 
associates each attribute with a value from the set 
of values, or domain, of that attribute. For 
example, Figure 9(a) shows a table whose scheme 
consists of the attributes A, B and C and whose 
instance consists of four rows. In the example, we 
assume that all attributes have the same domain, 
namely the set of characters. 
 
 
 
Searching a given table means asking for a new 
table to be constructed by keeping some of the 
columns and/or some of the rows of the given one. 
The specification of the new table is done using 
two operations, projection and selection.  
 
The projection operation takes as input a table T 
and a subset X of the attributes of T and returns a 
table, denoted by πX(T), whose scheme is X and 
whose instance consists of the restrictions of all 
rows of T over the attributes of X. For example, if 
T is the table of Figure 9(a) and X = {A, B} then 
πX(T) is the table shown in Figure 9(b). 
 

 
Figure 9. Searching in tables using projection 
and selection 
 
 
The selection operation takes as input a table T and 
a selection condition C and returns a table, denoted 
by σC(T), whose scheme is that of T and whose 
instance consists of those rows of T that satisfy C. 
Elementary conditions of the form <attribute = 
value>, where value is taken from the domain of 
attribute, are the building blocks of selection 
conditions. A selection condition is formed by 
combining elementary conditions using the 
traditional logical connectives (&, not, or). For 
example, if T is the table of Figure 9(a) and C = 

<A=a>&<C=c’> then σC(T) is the table shown in 
Figure 9(c). 
 
One important generalization of searching a table 
is that of searching a relational database. A 
relational database is a set of tables and users 
search the database by submitting queries. A query 
is a well-formed expression whose operands are 
tables and whose operations are projection and 
selection (for searching one table as we have seen 
earlier) plus a few binary operations for combining 
two or more tables. For more on relational 
databases and their query languages see (10) 
[Ramakrishnan 98]. 
      

5.1 Data Mining 
Data mining (also known as Knowledge Discovery 
in Databases - KDD) is a new kind of searching.  
Here, the objective is to discover previously 
unknown relationships among the data.  These 
relationships, or rules, can lead to reasonable 
predictions about the future.  For example, 
marketers use data mining trying to distill useful 
consumer data from Web sites.  
Let I={i1,…,im} be a set of items and let D be a set 
of transactions, where each transaction T is a set of 
items such as T ⊆I.  An association rule is an 
implication of the form X => Y, where X and Y are 
subsets of I, and X ∩Y = ∅.  A rule X=>Y holds in 
the transaction set D with confidence c if c% of 
transactions in D that contain X also contain Y. A 
rule X=>Y has support s in the transaction set D is 
s% of transactions in D contain X ∪Y. 
Specifically, high level languages are used where 
the user specifies two parameters, namely the 
minimum support and the minimum confidence, 
and the system searches and finds all association 
rules whose support and confidence is greater than 
the given values. 
 
Other kinds of mining include classification end 
clustering. For more see (26) [Hand01]. 
 

6 Searching in 
Semistructured Data 

In order to represent data with loosely defined or 
irregular structure, the semistructured data model 
has emerged. At the same time the document 
community has developed XML as a format in 
which more structure is added to documents in 
order to simplify and standardize the transmission 
of data via documents. It turns out that these two 
representations are essentially identical.  
From a database point of view, semistructured  
data is often described as “schema-less” or “self-
describing”, because there is no separate 
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description of the type or structure of the data (as 
in the relational data model).  One of the main 
strengths of semistructured data in comparison to 
other data models is its ability to accommodate 
variations in structure. The variations typically 
consist of missing data and  duplicated fields.  An 
example is given in Figure 13.  
 

 
Figure 13. Semistructured data 
 
The semistructured data model is actually a 
directed acyclic graph (N,A) with a labelling 
function L:A→LA  where LA  is the domain of edge 
labels. The model usually also includes node 
labels, though the labels on nodes are typically 
confined to leaf nodes.   The semistructured data 
model can be used to represent several kinds of 
databases including the relational ones. 
The objective of searching is that of database query 
languages, i.e. to select and transform information 
from large sources. Query languages for 
semistructured data emphasize on restructuring. 
However there is no accepted notion of 
completeness for semistructured data restructuring. 
The building blocks of any query language are path 
expressions. A path expression is a simple query 
whose result, for a given data graph, is a set of 
nodes. For example the result of the path 
expression “person.name.first” is the set of nodes 
{“Tonia”,”Yannis”}. Path expressions may 
contain regular expressions allowing the 
specification of path that have some properties. For 
example the regular expression “fist | last” 
matches either a first name of a last name. In 
addition, there are “wildcards” that match any 
label, and symbols that specify arbitrary repeats of 
a regular expression. Roughly, a high level query 
language for semistructured data supports path 
expressions and patterns to extract data, variables 
to which this data is bound, and templates which 
determine the construction of the output. 
An XML document is actually a labelled ordered 
tree where leaves are text.  There are only some 
slight differences with the semistructured data 
model:  XML trees are ordered and the labels are 
not attached to edges but to nodes. XML has 
already become a standard for knowledge 
representation on the Web. For more about 
semistructured data and XML see (27) 
[Abitebul99] 
 

7 Searching  in Metric Spaces 
( Multimedia) 

Assume that the data set is a set of images, 
fingerprints, audio or video. These data sets cannot 
be meaningfully searched in the classical sense. 
Not only they cannot be ordered, but also they 
cannot even be compared for equality. There is no 
interest in an application for searching an audio 
segment exactly equal to a given one. The 
probability that two different images are pixelwise 
equal is negligible unless they are digital copies of 
the same source. In multimedia applications, all the 
queries ask for objects similar to a given one. This 
is called similarity searching or proximity 
searching. Some example applications are face 
recognition, fingerprint matching, voice 
recognition, or similarity searching in general 
multimedia databases. 
 
In similarity searching the data set is a metric 
space, i.e. a set of elements X equipped with a 
metric function d. The function d: X×X→ℜ 
denotes a measure of “distance” between objects 
(i.e. the smaller the distance, the closer or more 
similar are the objects). Distance functions have 
the following properties, for any x, y, z in X:  
 

1. d(x,y)≥0   positiveness, 
2. d(x,y) = d(y,x)  symmetry, 
3. d(x,x)=0 reflexivity, and 
4. d(x,y)≤d(x,z) + d(z,y) triangle inequality.  

 
If the elements of the metric space (X,d) are tuples 
of real numbers (actually tuples of any field) then 
the pair is a finite-dimensional vector space. A k-
dimensional vector space is a particular metric 
space where the objects are identified with k real-
valued coordinates (x1,...,xk). There are a number of 
options for the distance function to use, but the 
most widely used is the family of Ls distances 
defined as: 
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For instance, the L1 distance accounts for the sum 
of the differences along the coordinates. It is also 
called “block” or “Manhattan” distance, since in 
two dimensions it corresponds to the distance to 
walk between two points in a city of rectangular 
blocks.  The L2 distance is better known as 
“Euclidean” distance, as it corresponds to our 
notion of spatial distance. The other most used 
member of the family is L∞ , which corresponds to 
taking the limit of the Ls formula when s goes to 
infinity. 
 
Thus the data set is a finite subset U of X . Possible 
types of searches (objectives) are range queries, 
i.e. retrieve all elements that are within distance r 
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to the query q, and k-nearest neighbour queries , 
i.e. retrieve the k closest elements to q. 
 
For evaluating this kind of queries (similarity or 
proximity queries) auxiliary data structures, called 
indexes,  are used in order to reduce the number of 
distance evaluations at query time.  Indexes can be 
distinguished to (a) tree indexes for discrete 
distance functions, i.e. for functions that deliver  a 
small set of values, (b) tree indexes for continuous 
distance functions, i.e. for functions where the set 
of alternatives is infinite or very large, and (c) not 
tree-based indexes.  
 
Examples of tree indexes for discrete distance 
functions  include the Burkhard-Keller Tree (BKT) 
(11) [Buthard et al 73] , Fixed Query Tree (FQT) 
(12) [Baeza-Yates 94], and many others. In BKT 
an arbitrary element p in U is selected as the root 
of the tree. For each distance i>0, we define Ui={u 
in U |  d(u,p)=i} as the set of all the elements at 
distance i to the root p. Then, for any nonempty Ui, 
we build a child of p (labelled i), and we 
recursively build the BKT for Ui,. This process can 
be repeated until there is only one element to 
process, or until there are no more than b elements 
(and we store a bucket of size b). All the elements 
selected as roots of subtrees are called pivots. The 
left part of Figure 10 shows the division of the 
elements of a metric space when u3 is taken as a 
pivot, while the right part shows the first level of 
BKT with u3 as root. The distances have been 
discretized and return integer values. 
 

 
Figure 10 A BKT for a data set consisting of 8 
elements 
 
An FQT (which is a variation of BKT) built over n 
elements has O(log n) height on average, is built 
using O(nlogn) distance evaluations, and the 
average number of distance computations is O(na), 
where 0<a<1 is a number that depends on the 
range of the search and the structure of the space. 
 
If we have a continuous distance or if the distance 
function gives too many different values, it is not 
possible to have a child of the root for any such 
value. However the indexes for discrete functions 
can be adapted to a continuous distance by 
assigning a range of distances to each branch of the 
tree.  Other examples indexes for continuous 
distance functions include Vantage Point-Trees 

(VTPs), Multi-Vantage-Point trees (MVTs), 
Voronoi Trees (VTs), M-trees (MT). 
Vantage-point-trees, also called  metric-trees, are 
actually binary trees. They  build a binary tree, 
taking any element p as the root and taking the 
median of the set of all distances, 
M=median(d(p,u) | u in U}. Those elements u such 
that d(p,u)≤M are inserted into the left subtree, 
while those such that d(p,u)>M are inserted into 
the right subtree. The VTP takes O(n)  space and is 
built in O(nlogn) worst case time. The query 
complexity is O(logn). 
 
Other, not tree-based indexes,  include AESA 
(Approximating Eliminating Search Algorithm) 
and  LAESA (for linear AESA). 
 
 
 
Search structures for vector spaces are called 
spatial access methods (SAM). Among the most 
popular are kd-trees, R-trees, quad-trees, and X-
trees. These techniques make extensive use of 
coordinate information to group and classify points 
in the space. For example, kd-trees divide the 
space along different coordinates and R-trees 
group points in hyper-rectangles. 
These techniques are very sensitive to the vector 
space dimensions. Closest point and range search 
algorithms have an exponential dependency on the 
dimension of the space (this is called the “curse of 
dimensionality”). Vector spaces may suffer from 
large differences between their representational 
dimension (k) and their intrinsic dimension, i.e. the 
real number of dimensions in which the points can 
be embedded while keeping the distance among 
them. For example, a plane embedded in a 50-
dimensional space has intrinsic dimension 2 and 
representational dimension 50. This is, in general, 
the case of real applications, where the data are 
clustered, and it has led to attempts to measure the 
intrinsic dimension such as the concept of “fractal 
dimension”. Despite the fact that no technique can 
cope with intrinsic dimension higher than 20, much 
higher representational dimensions can be handled 
by dimensionality reduction techniques.  For 
searching techniques for vector spaces see (13) 
[Bohm et al. 2001] 
 

This kind of searching has several 
applications: querying by content multimedia 
objects, text retrieval, computational biology, 
pattern recognition and function approximation, 
audio and video compression. 
 
A comprehensive survey about searching in metric 
spaces can be found in (14) [Chavez01] 
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8 Searching in Documents 
(Information Retrieval) 

 
Here, the data set is a collection of documents with 
natural language text stored in digital form. Users 
want to search such collections in order to find 
information about a subject or topic. This kind of 
searching is usually referred to as information 
retrieval (IR). While searching for data (or data 
retrieval) aims at retrieving elements that satisfy 
clearly defined conditions, information retrieval 
aims at retrieving elements that satisfy conditions 
which are not always defined clearly. While a data 
retrieval system (such as a relational database) 
deals with data that has a well defined structure 
and semantics, an IR system deals with natural 
language text, which is not always well structured 
and could be semantically ambiguous. Data 
retrieval, while providing a solution to the user of a 
database system, does not solve the problem of 
retrieving information about a subject or topic. To 
be effective in its attempt to satisfy the user 
information need, the IR system must somehow 
interpret the contents of the information items 
(documents) in a collection and rank them 
according to a degree of relevance to the user 
query. This interpretation of a document content 
involves extracting syntactic and semantic 
information from the document text and using this 
information to match the user information need. 
The difficulty is not only knowing how to extract 
this information but also knowing how to use it to 
decide relevance. Thus, the notion of relevance is a 
central notion of information retrieval. In fact, the 
primary goal of an IR system is to retrieve all 
documents that are relevant to a user query while 
retrieving as few non-relevant documents as 
possible. 
 
An information retrieval system can be described 
as consisting of a set of documents D, a set of 
requests Q and some mechanism Sim for 
determining which of the documents meets the 
requirements of, or is relevant to, the requests. In 
practice, the relevance of specific documents to 
particular requests is not determined directly. 
Rather, the objects are first converted to a specific 
form using a classification or indexing language 
(L). The requests are also converted into a 
representation consisting of elements of this 
language. The mapping of objects to the indexing 
language is known as the indexing process, while 
the mapping of the information requests to the 
indexing language is known as the query 
formulation process. The procedures for 
determining which objects should be retrieved in 
response to a query are based on the 
representations of the objects and the requests in 

the indexing language. Figure 11 shows a 
functional overview of information retrieval. 
 

 
Figure 11. Functional overview of Information 
Retrieval 
 
The set of indexing terms may be controlled, that 
is limited to a predefined set of index terms, or 
uncontrolled, that is allowing use of any term that 
fits some broad criteria. If the indexing language is 
uncontrolled, then automatic indexing techniques 
are usually employed. These techniques are based 
on text analysis (e.g. see (15) [Salton83]). If the 
indexing language is controlled, then the indexing 
of the documents is usually done manually. 
Manual indexing involves some intellectual effort 
to identify and describe the content of a document. 
However there are techniques that allow the 
automatic indexing of objects under a controlled 
vocabulary. 
 

Table 1. Statistical vs Knowledge-based 
Information Retrieval 

 
Statistical approaches Knowledge-based 

approaches 

Text representation on 
counts of single words 

Text representation based on 
syntactic and semantic 
analysis 

Retrieval based on a 
similarity function 

Retrieval based on inference  

Domain-independent Potentially large domain 
knowledge bases 

Feedback based on 
statistical models 

Learning based on symbolic 
and connectionist models 

User-independent Models of individuals and 
classes of users 

Efficient Currently expensive to 
implement 

Effective Effective in narrow/specific 
domains 

 
 
We use the term statistical information retrieval to 
refer to the case where the indexing language is 
free and the indexing of documents is done 
automatically. On the other hand, we use the term 
knowledge-based retrieval to refer to the case 
where the indexing language is controlled. 
Much of the research in information retrieval has 
used the statistical approach. The retrieval 
strategies and indexing techniques used in this 
approach are simple, easily implemented, and 
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reasonably effective. The knowledge-based 
approach is less well understood. Loosely 
speaking, this approach is concerned more with the 
cognitive than the engineering aspects of 
information retrieval. By trying to understand more 
about how people retrieve information and by 
emphasizing representation and reasoning using 
domain knowledge, researchers pursuing a 
knowledge-based approach hope to build systems 
that achieve significantly better retrieval 
effectiveness than those based on statistical 
techniques. Table 1 lists the basic differences 
between the statistical and knowledge-based 
approaches  (for more see (16) [Croft93]). 
 
The statistical approach provides techniques that 
can deal with very large databases in a variety of 
domains and languages, whereas the knowledge-
based approach promises to provide techniques for 
retrieving passages and extracting facts more 
accurately. Knowledge-based approaches include 
natural-language-processing techniques for 
analysing the text of documents and queries, 
inference and domain knowledge used in the 
retrieval process, learning techniques used to 
improve performance and user modelling for 
responding to individual needs. The challenge is to 
discover how these approaches can be merged into 
a single theoretical framework and combined in 
efficient, effective system implementations. 
 

8.1 Statistical Information Retrieval 
Here the indexing language consists of those words 
that appear in the documents of the collections. 
The three classic models in information retrieval 
are called Boolean, Vector, and Probabilistic. In 
the Boolean model, documents and queries are 
represented as sets of index terms (this model can 
be called set-theoretic). In the Vector Model, 
documents and queries are represented as vectors 
in a finite-dimensional space (this model can be 
called algebraic). In the Probabilistic Model, the 
framework for modelling document and query 
representations is based on probability theory (this 
model can be called probabilistic). Several 
alternative modelling paradigms have been 
proposed. Regarding alternative set theoretic 
models, we distinguish the fuzzy and the extended 
Boolean model. Regarding alternative algebraic 
models, we distinguish the generalized vector, the 
latent semantic indexing, and the neural network 
models. Regarding alternative probabilistic 
models, we distinguish the inference network and 
the belief network models. In all these models, 
users specify their information need by a query 
which can be a phrase (or a document). 
 
Consider a collection D of documents, which 
together contain n different words. It is common 

practice to exclude words which do not carry any 
information when isolated, such as “and”, “or”, 
“has”, “why” (this is called elimination of 
stopwords). Sometimes words are stemmed before 
weight vectors are calculated. This reduces distinct 
words to their common grammatical root. 
 
The Boolean model is a simple retrieval model 
based on set theory and Boolean algebra.  
According to this model, keywords are either 
present or absent in a document, and the queries 
are specified as Boolean expressions, i.e a query is 
composed of keywords linked by three connectives 
and, or, not.  The Boolean model predicts that each 
document is either relevant or non-relevant to the 
query. The main advantages of the Boolean model 
are the clean formalism behind the model and its 
simplicity, while the main disadvantage is that 
exact matching may lead to retrieval of too few or 
too many documents. This problem does not occur 
in the vector model and in the probabilistic model 
as these models take into account the frequency of 
the words that appear in documents and queries. 
 
In the vector model, documents are represented as 
vectors of keywords. Each query or document is 
represented as an n-dimensional vector where each 
component corresponds to one keyword in the 
collection. The weight of term ti  in document dj 
denoted  wij, is the product wij =tfij⋅idfi where tfij, is 
the term frequency of ti  in  dj , and idfi is the 
inverted document frequency of ti  in the collection 
D. Specifically, the term frequency of a term ti  in 
document  dj, denoted tfij, is the number of 
occurrences of ti in dj , while the inverted document 
frequency of a term ti  in a collection D of 
documents, denoted idfi, is defined as: 
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The motivation for this representation is that there 
is a natural means of comparing two vectors: the 
angle, or inverse cosine of the dot product between 
the two vectors. The smaller the angle, the more 
similar the two vectors are – and so are, therefore, 
the documents they represent. If d1 and d2 are 
document vectors, the similarity is expressed as the 
cosine of the angle between the two document 
vectors: 

∑×∑

∑ ×
=

⋅
⋅

=

==

=
n

i
i

n

i
i

i
n

i
i

ww

ww

dd
dddd

1

2
2

1

2
1

2
1

1

21
21

21

 
),sim(

 

 
For a description of the probabilistic model, see 
(17)  [Robertson 76]. 
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The evaluation of an information retrieval system 
commonly concerns the retrieval efficiency and 
effectiveness. Retrieval efficiency concerns issues 
like the user effort and the time needed for 
retrieving the desired information. The evaluation 
of retrieval effectiveness is based on a test 
reference collection and on an evaluation measure. 
The test reference collection consists of a 
collection of documents, a set of example requests, 
and a set of relevant documents (provided by 
specialists) for each example information request. 
Given a system S, the evaluation measure 
quantifies (for each example request) the similarity 
between the set of documents retrieved by S and 
the set of relevant documents provided by the 
specialists. This provides an estimation of the 
goodness of the system S. The most widely used 
evaluation measures are recall and precision, 
defined as follows. Let R be the set of relevant 
documents for a given information request and 
assume that the system being evaluated processes 
the information request and generates a document 
answer set A. The recall and precision are defined 
as follows: 

  Precision     , Recall
A

RA
R

RA ∩
=

∩
=

 

Alternative measures that have been proposed 
include the harmonic mean and the E-measure. 
The E-measure allows the user to specify whether 
he or she is more interested in recall or precision, 
and it is defined as 
follows:
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where recall(j) is the recall for the j-th document in 
the ranking, precision(j) is the precision for the j-th 
document in the ranking, E(j) is the E evaluation 
measure relative to recall(j) and precision(j), and b 
is a user specified parameter which reflects the 
relative importance of recall and precision.  Other 
user-oriented evaluation measures that have been 
proposed include coverage and novelty. 
 
Frequently, the initial query yields an answer 
which does not satisfy the user information need. 
In such cases, the user can reformulate this query. 
Relevance feedback is the most popular query 
reformulation strategy. In a relevance feedback 
cycle, the user is presented with a list of retrieved 
documents and, after examining them, marks those 
which are relevant. In practice only the top ranked 
documents need to be examined. The main idea 
consists of selecting important terms, or 
expressions, attached to the documents that have 
been identified as relevant by the user, and of 

enhancing the importance of these terms in a new 
query formulation. The expected effect is that the 
new answer will be moved towards the relevant 
documents and away from the non-relevant ones. 
 
For more on information retrieval see (15) 
[Salton83],  (4) [Yates99],  (18) [Korfhage97]  
 

8.2 Knowledge-based Retrieval  
Here the indexing language is a controlled 
vocabulary which may contain terms that do not 
appear in the documents of the collection. Usually, 
these vocabularies are structured. Commonly, they 
are structured by a small set of relations such as 
subsumption and equivalence. The so-called 
thesauri (19) [ISO2788] constitute an important 
example of such indexing languages. They capture 
an adequate body of real world (domain) 
knowledge which is exploited through some form 
of reasoning for improving the effectiveness of 
retrieval. The adoption of thesauri has proved its 
usefulness in improving the effectiveness of 
retrieval and in assisting the query formulation 
process by expanding queries with synonyms, 
hyponyms and related terms.  
However, when the indexing process is done 
manually, indexing of objects can also be done 
with respect to more expressive conceptual 
models, usually called ontologies. These models 
represent domain knowledge in a more detailed 
and more precise manner, using logic-based 
formalisms and their reasoning mechanisms for 
retrieving the objects. Recently, there are several 
works that follow this approach to information 
retrieval (e.g. see relevance terminological logics, 
or four-valued logics). Even ontologies that have 
no clear semantic interpretation, such as some 
linguistic ontologies, are nevertheless useful in 
information retrieval by applying techniques such 
as spreading activation (see (20) [Paice91]), or by 
representing objects and queries by lexical 
conceptual graphs (see (21) [Guarino99]). 
 

9 Searching in the Web 
Here, the data set is the Web (World Wide Web). 
Roughly, we can view the Web as a distributed 
stored directed graph where each node is a Web 
page, i.e. a HTML page.  Each page contains text 
(and probably other media like images, audio, 
videos, etc) and hyperlinks that originate from 
specific positions in the page and point to other 
pages. The distinguishing characteristics of the 
Web are that it is very big, it is not stored in a 
single machine, and it is subject to continuous 
change. However, the basic objective of searching 
in the Web is identical to the objective of searching 
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in documents (Information Retrieval), i.e. to find 
information that is relevant to a topic.  
 
There are basically three different forms of 
searching the Web. The first is to use search 
engines that index (a portion of) the Web as a full-
text database. In this case, the objective of 
searching can be specified by a set of words, a 
phrase, a pattern (using proximity operators or 
wildcards), or by giving a page that is similar to 
the desired ones. The second is to use Web 
catalogues which classify selected Web pages by 
subject.  Here the objective is specified gradually, 
i.e. by browsing a hierarchy of subject terms until 
the area of interest has been reached. The 
corresponding node then provides the user with 
links to related pages. The third is to search the 
Web exploiting its hyperlink structure. Here the 
objective is related to the connectivity of the graph 
(e.g. find all pages that have links pointing to a 
specific page). 
 

9.1 Search Engines 
Search engines are usually based on information 
retrieval techniques. However, in the case of the 
Web, the data set is not stored in a single machine 
so the IR techniques for searching cannot be 
applied directly. In order to apply IR techniques, 
most search engines use a centralized crawler-
indexer architecture as shown in Figure 12. A 
specialized program called a crawler traverses the 
Web and sends pages to a main server where they 
are indexed. Crawlers (also called robots, spiders, 
or knobots) start from a given set of (popular) 
pages and they traverse the Web in breadth-first or 
depth-first fashion. One problem here is how to 
avoid visiting the same page more than once. 
Moreover, as the Web is subject to continuous 
change, efficient techniques are needed for keeping 
up to date the indexes stored at the server. 
 

 
Figure 12. The crawler-indexer 
architecture for searching the Web 
 
Concerning the indexing of the gathered pages, 
search engines use variants of the inverted file 
approach. Moreover, in order to give the user some 
idea about each page retrieved, the index is 
complemented with a short description of each 
Web page. A query is answered by doing binary 

search on the sorted list of words (vocabulary) of 
the inverted file. 
 
Concerning relevance, most search engines use 
variants of the Boolean or vector model to do 
ranking. As the Web is very big, the link structure 
is exploited in order to deduce the pages that 
contain valuable information. This is an important 
difference between the Web and normal IR 
databases. The number of hyperlinks that point to a 
page provides a measure of its popularity and 
quality. Also, many links in common between 
pages or pages referenced by the same page, often 
indicate a relationship between those pages. A 
popular ranking scheme is HITS (Hypertext 
Induced Topic Search) (22) [Kleinberg 98]. It 
considers the set of pages S that point to or are 
pointed by pages in the answer. Pages that have 
many links pointing to them in S are called 
authorities (that is, they should have relevant 
content). Pages that have many outgoing links to 
pages in S are called hubs (they should point to 
similar content). A positive two-way feedback 
exists: better authority pages come from incoming 
links from good hubs and better hub pages come 
from outgoing links to good authorities. Let H(p) 
and A(p) be the hub and authority value of a page 
p. These values are defined such that the following 
equations are satisfied for all pages p: 
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where p→u means that page p has a link pointing 
to page u. 
Another ranking scheme is Page Rank which is 
part of the ranking algorithm used by the popular 
search engine Google (23) [Brin 98]. This scheme  
simulates a user navigating randomly in the Web 
who jumps to a random page with probability q or 
follows a random hyperlink (on the current page) 
with probability 1-q. This process can be modelled 
with a Markov chain, from where the stationary 
probability of being in each page can be computed. 
This value is then used as part of the ranking 
mechanism. Let C(a) be the number of outgoing 
links of page a, and suppose that page a is pointed 
to by pages p1 to pn. Then the page rank of a, 
PR(a), is defined as: 

∑
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where q must be set by the system (a typical value 
is 0.15). PageRank can be computed using an 
interactive algorithm, and corresponds to the 
principal eigenvector of the normalized link 
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martrix of the Web (which is the transition matrix 
of the Markov chain). 
 
Page Rank is a global ranking scheme that can be 
used to rank search results, while the HITS 
algorithm identifies, for a given search query, a set 
of authority pages and a set of hub pages. A 
comparison of the performance of these link-based 
ranking techniques can be found in (24)  [Amento 
et al. 2000] 
There are several variants of the crawler-indexer 
architecture. Among them, the most popular is 
Harvest, which uses a distributed architecture to 
gather and distribute data. 
 
 

9.2 Web Catalogues  
Web catalogues such as Yahoo! (www.yahoo.com)  
or Open Directory (http://dmoz.org),  use 
structured and controlled indexing languages for 
indexing the pages of the Web. These catalogues 
turn out to be very useful for browsing and 
querying. Although they index only a fraction of 
the pages that are indexed by the search engines 
using statistical methods, they are hand-crafted by 
domain experts and are therefore of high quality. 
Recently, the search engines start to exploit these 
catalogues in order to enhance the quality of 
retrieval and to offer new functionalities. 
Specifically, the search engines now employ 
catalogues for computing "better" degrees of 
relevance, and for determining and presenting to 
the user  a set of relevant pages for each page in 
the answer set. In addition, some search engines 
now employ taxonomies in order to enable limiting 
the scope (or defining the context) of search. 
For example, one can first select a category, e.g. 
Sciences/CS/DataStructures, from the taxonomy of 
a catalogue and then submit a natural language 
query, e.g. "Tree". The search engine will compute 
the degree of relevance with respect to the natural 
language query, "Tree", only of those pages that 
fall in the category Sciences/CS/DataStructures of 
the catalogue. Clearly, this enhances the precision 
of retrieval and reduces the computational cost. 
 

9.3 Searching Using Hyperlinks 
 
There are paradigms for searching the Web, that 
are based on exploiting its hyperlinks. For 
example, one might like to search for all Web 
pages that contain at least one image and that are 
reachable from a given site following at most three 
links. To pose this kind of query, the Web is 
viewed as a labelled graph. Examples of this kind 
of approach are the Web query languages and 
dynamic searching. The existing Web query and 

manipulation languages provide access to the 
structure of Web pages and  allow the creation of 
new structures as a result of a query. 
Dynamic search in the Web is equivalent to 
sequential text searching. The idea is to use an 
online search to discover relevant information by 
following links. The main advantage is that 
searching is carried out in the current structure of 
the Web, and not in what is stored in the index of a 
search engine. 
 

9.4 Meta Searching 
Meta-searchers are also employed for searching the 
Web. A meta-searcher is actually a mediator, i.e. a 
secondary information source aiming at providing 
a uniform interface to a number of underlying 
sources (which may be primary or secondary). 
Users submit queries to the mediator. Upon 
receiving a user query, the mediator queries the 
underlying sources. This involves selecting the 
sources to be queried and formulating the query to 
be sent to each source. Finally, the mediator 
appropriately combines the returned results and 
delivers the final answer to the user. 
The main advantages of meta-searchers are that (a) 
they combine the results of many sources and (b) 
allow the user to avoid posing the same query to 
multiple sources, by providing a single common 
interface. Meta-searchers differ mainly in the way 
ranking is performed in the result, and how well 
they translate the user query to the query language 
of each search engine. 
 
For more details see chapter 13 of  (3) [Yates et als 
99], and for an overview of current Web search 
engine design see (25) [Arasu01]. 
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