Query Evaluation in P2P Systems of Taxonomy-based Sources: Algorithms, Complexity, and Optimizations

Carlo Meghini
Consiglio Nazionale delle Ricerche
Istituto della Scienza e delle Tecnologie della Informazione
Pisa, Italy
carlo.meghini@isti.cnr.it

Yannis Tzitzikas
Department of Computer Science
University of Crete, Heraklion, Greece
Institute of Computer Science
Foundation for Research and Technology – Hellas (FORTH-ICS)
tzitzik@ics.forth.gr

Anastasia Analyti
Institute of Computer Science
Foundation for Research and Technology – Hellas (FORTH-ICS)
Crete, Greece
analyti@ics.forth.gr

Abstract

In this study we address the problem of answering queries over a peer-to-peer system of taxonomy-based sources. A taxonomy states subsumption relationships between negation-free DNF formulas on terms and negation-free conjunctions of terms. To the end of laying the foundations of our study, we first consider the centralized case, deriving the complexity of the decision problem and of query evaluation. We conclude by presenting an algorithm that is efficient in data complexity and is based on hypergraphs. More expressive forms of taxonomies are also investigated which however lead to intractability. We then move to the distributed case, and introduce a logical model of a network of taxonomy-based sources. On such network, a distributed version of the centralized algorithm is then presented, based on a message passing paradigm, and its correctness is proved. We finally discuss optimization issues, and relate our work to the literature.

1 Introduction

Consider a tetrad \((T, \preceq, \text{Obj}, I)\) where \(T\) is a set of terms, \(\preceq\) is a subsumption relation over concepts expressed using \(T\) (e.g. \((\text{Animal} \land \text{FlyingObject}) \lor \text{Penguin} \preceq \text{Bird})\), \text{Obj} is a set of objects and \(I\) is a function from \(T\) to \(\mathcal{P}(\text{Obj})\), assigning a description \((i.e., \text{a set of terms})\) to each object. Now assume that all these are not stored at a single place but they are distributed over a set \(\mathcal{N} = \{S_1, \ldots, S_n\}\) of independent peers. Moreover assume that each peer \(S_i\) can have zero, one or more \(\preceq\)-relationships between its terms \((i.e. T_i)\) and some concepts over the terminologies of other peers \((i.e. \text{Parrot}_j \preceq \text{Birds}_i, \text{Animal}_k \land \text{Flying}_k \preceq \text{Birds}_i)\). In this paper we address the problem of answering Boolean queries over this kind of systems.

Some parts of the work reported in this paper have been already published. Namely, [40] presents a first model of a network of articulated sources, while [39] studies query evaluation on taxonomies includ-
ing only term-to-term subsumption relationships. Finally, [30] presents a procedure for evaluating queries over centralized sources supporting term-to-query subsumption relationships, as well as hardness results for extensions. In this paper,

- we consider from the start the most complex type of subsumption for which we can propose an efficient query evaluation procedure, allowing subsumption relationships between negation-free DNF combinations of terms and negation-free conjunctions of terms. We then place the hardness results presented in [30] in context, thus showing that any Boolean extension of the expressive power of subsumption leads to intractability of the query answering problem;
- we ground the centralized query evaluation procedure for this kind of sources, presented in [30], on solid theoretical basis, proving its correctness, and linking it to the existing algorithmic and complexity literature;
- we present a distributed query evaluation procedure, based on a functional model of a peer; correctness and complexity of this procedure are given;
- we describe optimization techniques that can be used for improving the efficiency of query evaluation;
- we relate our work to the existing literature on peer-to-peer systems.

The paper is structured as follows: Section 2 gives the background on peer-to-peer systems, while Section 3 introduces sources, presenting the centralized query evaluation procedure. Networks of sources are considered in Section 4, where our algorithm for query evaluation on networks is presented, and Section 5 discusses optimization issues. Section 6 compares our work with related work and Section 7 concludes the paper.

2 Background

A peer-to-peer (P2P) system is a distributed system in which participants (the peers) rely on one another for service, rather than solely relying on dedicated and often centralized servers. The most popular P2P systems have focused on specific application domains like music file sharing [3, 1, 2] or on providing file-system-like capabilities [8]. In most of the cases, these systems do not provide semantic-based retrieval services as the name of an object (e.g. the title of a music file) is the only means for describing the contents of an object.

Semantic-based retrieval in P2P systems is a great challenge that raises questions about data models, conceptual modeling, query languages, algorithms and data structures for query evaluation, and techniques for dynamic schema mapping. Roughly, the language that can be used for indexing the objects of the domain and for formulating semantic-based queries, can be free (e.g. natural language) or controlled, i.e. object descriptions and queries may have to conform to a specific vocabulary and syntax. The former case, resembles distributed Information Retrieval (IR) systems and this approach is applicable in the case where the objects of the domain have a textual content (e.g. [29, 27, 14, 37]). In the latter case, the objects of a peer are indexed according to a specific conceptual model represented in a particular data model (e.g. relational, object-oriented, logic-based, etc), and content searches are formulated using a specific query language. Of course, a P2P system might impose a single conceptual model on all participants to enforce uniform, global access, but this will be too restrictive. Alternatively, a limited number of conceptual models may be allowed, so that traditional information mediation and integration techniques will likely apply (with the restriction that there is no central authority), e.g. see [32, 31].

The case of fully heterogeneous conceptual models makes uniform global access extremely challenging and this is the focus of this paper. From a data modeling point of view several approaches for P2P systems have been proposed recently, including relational-based approaches [7], XML-based approaches [24] and RDF-based [31].

In this paper we consider the fully heterogeneous conceptual model approach (where each peer can have its own schema), with the only restriction that each conceptual model is represented as a taxonomy. A taxonomy can range from a simple tree-structured hierarchy of terms, to the concept lattice derived
by Formal Concept Analysis \cite{22}, or to the concept lattice of a Description Logics theory. Specifically, according to our model, each peer consists of a taxonomy, an object base, i.e. a database that contains descriptions of the objects according to the taxonomy, and a number of (one-way) articulations to some of the other peers of the network, where an articulation is actually a mapping between terms of the peer and terms (or queries) of other peers. Articulations aim at bridging the inevitable naming, granularity and contextual heterogeneities that may exist between the taxonomies of the peers (for some examples see \cite{40}).

For example, the taxonomy of a peer S_1 could be the following: \{Penguin \preceq Animal, Pelican \preceq Animal, Ostrich \preceq Animal, (Animal \land FlyingObject) \lor Penguin \lor Ostrich \preceq Bird\}. The object base of S_1 could be the following: \{Ostrich(1), Bird(2), Animal(3), FlyingObject(3)\}. S_1 could have an articulation to a peer S_2 like \{Πνυκόπος ≤ Penguin, Πελεκάνος ≤ Pelican\}, an articulation to a peer S_3 like \{Animalθ_3 \land Alatoθ_3 ≤ Birds\}, and an articulation to two peers S_4, S_5 of the form: \{(Fliegentierξ_4 \lor (Animalλ_5 \land Volantλ_5) ≤ (Animal \land FlyingObject)\}.

The articulations can be exploited for finding objects in the network using content-based queries, for publishing objects and their descriptions to the network, and for obtaining more rich descriptions of the objects (by aggregating their descriptions according to different conceptual models). Apart from determining query propagation, these mappings are actually used for translating the query into a vocabulary that the recipient can understand (and thus answer). In certain cases, these inter-taxonomy mappings could be constructed automatically (e.g. using the data-driven method proposed in \cite{38}).

The placement of our work with respect to other logic-founded approaches for query evaluation over P2P systems is given in Section 6.

3 Information sources

This Section defines information sources and derives algorithms and complexity results for querying them. These results will be applied later, upon studying networks of sources. The model is first introduced; the computational and algorithmic foundations of the query evaluation problem are then given; Section 3.3 presents an efficient query evaluation method. Finally, three extensions of information sources are discussed: those having negation in the taxonomy, those having negation only in the query language, and those having disjunction in the taxonomy. For all these, the query evaluation problem is studied, deriving complexity results or correct and efficient algorithms, if any.

3.1 The model

The basic notion of the model is that of terminology: a terminology T is a non-empty set of terms. A terminology comes with an associated language for constructing more complex terms, called queries, from the given ones.

Definition 1 (Query) The query language associated to a terminology T, \mathcal{L}_T, is the language defined by the following grammar, where t is a term of T:

\[
q ::= d \mid q \lor d \\
d ::= t \mid t \land d.
\]

An instance of q is called a **query**, while an instance of d is called a **conjunctive query**. Each d component of a query q is called **disjunct** of q. \hfill\Box

Terms and queries can be used for defining taxonomies.

Definition 2 (Taxonomy) A taxonomy is a pair (T, \preceq) where T is a terminology and \preceq is a binary relation between queries, $\preceq \subseteq (\mathcal{L}_T \times \mathcal{L}_T)$, which is reflexive and transitive, such that $q \preceq q'$ and $q \neq q'$ imply that q' is a conjunctive query. \hfill\Box

\footnote{The latter is possible only if the objects have a unique global identity in the entire network (like URI for example).}
If \((q, q') \in \preceq\), we say that \(q\) is subsumed by \(q'\) and we write \(q \preceq q'\). The reason for having only conjunctive queries as right-hand sides of non-trivial subsumption relationships is computational, and will be discussed later.

Definition 3 (Interpretation) An *interpretation* for a terminology \(T\) is a pair \((\text{Obj}, I)\), where \(\text{Obj}\) is a finite set of objects and \(I\) is a total function \(I : T \to \mathcal{P}(\text{Obj})\).

Interpretations can be extended to queries in an intuitive way, thus defining the semantics of the query language:

Definition 4 (Query extension) Given an interpretation \(I\) of a terminology \(T\) and a query \(q \in \mathcal{L}_T\), the *extension of \(q\) in \(I\)*, \(q^I\), is defined as follows:

1. \((q \lor d)^I = q^I \cup d^I\)
2. \((d \land t)^I = d^I \land t^I\)
3. \(t^I = I(t)\).

Since the function \(I\) is an extension of the interpretation function \(I\), we will simplify notation and will write \(I(q)\) in place of the formally correct \(q^I\). We can now define a taxonomy-based source, called *information source* or simply *source*.

Definition 5 (Information source) An *information source* \(S\) is a 4-tuple \(S = (T_S, \preceq_S, \text{Obj}_S, I_S)\), where \((T_S, \preceq_S)\) is a taxonomy and \((\text{Obj}_S, I_S)\) is an interpretation for \(T_S\).

When no ambiguity will arise, we will simplify notation by omitting the subscript in the components of sources. In addition, an interpretation will be equated with its interpretation function \(I\). Given a source \(S = (T, \preceq, \text{Obj}, I)\) and an object \(o \in \text{Obj}\), the *index of \(o\) in \(S\)*, \(\text{ind}_S(o)\), is given by the terms in whose interpretation \(o\) belongs, i.e.:

\[
\text{ind}_S(o) = \{t \in T \mid o \in I(t)\}.
\]

Some interpretations better reflect the semantics of subsumption.

Definition 6 (Models of a source) Given two interpretations \(I, I'\) of the same terminology \(T\),

- \(I\) is a *model* of the taxonomy \((T, \preceq)\) if \(q \preceq q'\) implies \(I(q) \subseteq I(q')\);
- \(I\) is smaller than \(I'\), \(I \leq I'\), if \(I(t) \subseteq I'(t)\) for each term \(t \in T\);
- \(I\) is a *model* of a source \(S = (T, \preceq, \text{Obj}, I')\) if it is a model of \((T, \preceq)\) and \(I' \leq I\).

The notion of model of a source can be used to obtain a simpler, but equivalent, notion of source, in which (non-trivial) subsumption relationships relate conjunctive queries to terms. The equivalence is based on the observation that the propositional formula:

\[
(C_1 \lor \ldots \lor C_n) \rightarrow (t_1 \land \ldots \land t_m)
\]

where each \(C_i\) in the left hand-side is any propositional formula, is logically equivalent to the formula:

\[
(C_1 \rightarrow t_1) \land (C_1 \rightarrow t_2) \land \ldots \land (C_1 \rightarrow t_m) \land \ldots \land (C_n \rightarrow t_1) \land (C_n \rightarrow t_2) \land \ldots \land (C_n \rightarrow t_m),
\]

that is, the two formulae have the same models. Formally, the *simplification* of a taxonomy \((T, \preceq)\), is the taxonomy \((T, \sigma(\preceq))\), where \(\sigma(\preceq)\) is the reflexive and transitive closure of the following relation:

\[
\{(C, t) \mid ((C \lor \ldots \lor C_n, t_1 \land \ldots \land t_m) \in \preceq'\}.
\]

\[2\text{The transitive reduction of a binary relation } R \text{ on a set } X, \text{ is defined as } [17] R' = R_1 \setminus R_1^2, \text{ where } R_1 = R \setminus \{(a, a) \mid a \in X\} \text{ and } R_1^2 = R_1 \circ R_1. \text{ In practice, } R' \text{ is } R \text{ without reflexive and transitive relationships, and its graphical rendering is generally known as the Hasse diagram of } R.\]
Correspondingly, the simplification of a source $S = (T, \preceq, \text{Obj}, I)$ is the source $\sigma(S) = (T, \sigma(\preceq), \text{Obj}, I)$. It is not difficult to see that:

Proposition 1 J is a model of a source S if and only if it is a model of $\sigma(S)$. □

Based on the last Proposition, from now on we will use the terms “taxonomy” and “source” as synonyms of “simplified taxonomy” and “simplified source”, respectively. Formally, (T, \preceq) and S will stand for $(T, \sigma(\preceq))$ and $\sigma(S)$, respectively.

A second usage of the notion of model is to define the query-answering function ans on sources.

Definition 7 (Answer) Given a source $S = (T, \preceq, \text{Obj}, I)$ and a query $q \in \mathcal{L}_T$, the answer of q in S, $\text{ans}(q, S)$, is given by $\text{ans}(q, S) = \{ o \in \text{Obj} \mid o \in J(q) \text{ for all models } J \text{ of } S \}$.

Indeed, we only need to consider term queries, because non-term queries can be embedded in the taxonomy. Specifically:

Proposition 2 For all sources $S = (T, \preceq, \text{Obj}, I)$ and non-term queries $q \in \mathcal{L}_T$, let $t_q \not\in T$ and

- $T^q = T \cup \{t_q\}$
- $(\preceq^q)^r = \preceq^r \cup \{t_1 \land \ldots \land t_m, t_q \mid t_1 \land \ldots \land t_m \text{ is a disjunct of } q\}$
- $I^q = I \cup \{(t_q, \emptyset)\}$.

Then, $\text{ans}(q, S) = \text{ans}(t_q, S^q)$ where $S^q = (T^q, \preceq^q, \text{Obj}, I^q)$. □

In practice, the terminology T^q includes one additional term t_q, which has an empty interpretation and subsumes each query disjunct $t_1 \land \ldots \land t_m$ of q. The size of S^q is clearly polynomial in the size of S and q.

In light of the last Proposition, the problem of query evaluation amounts to determine $\text{ans}(t, S)$ for given term t and source S, while the corresponding decision problem consists in checking whether $o \in \text{ans}(t, S)$, for a given object o.

Query evaluation is strictly related to the unique minimal model of a source.

Proposition 3 For all sources $S = (T, \preceq, \text{Obj}, I)$ and terms $t \in T$, the unique minimal model of S, \bar{I}, is given by

$$\bar{I}(t) = \bigcup \{I(u) \mid u \in T, \ u \preceq t\} \cup \bigcup \{\bar{I}(q) \mid q \preceq t, \ q = t_1 \land \ldots \land t_m, \ m > 1\}.$$

Moreover, $\text{ans}(t, S) = \bar{I}(t)$. □

3.2 Foundations

In this Section, we consider the computational foundations of query evaluation, starting from those of the more fundamental decision problem.

3.2.1 The decision problem

Given a source $S = (T, \preceq, \text{Obj}, I)$, $o \in \text{Obj}$, and $t \in T$, the decision problem $o \in \text{ans}(t, S)$ is P-complete in the size of the taxonomy. The hardness part of the proof is based on the following polynomial time reduction from the decision problem $P \models A$ in propositional datalog, known to be P-complete [15]:

- the terminology T is given by the letters occurring in P;
– ≤ is the reflexive and transitive closure of the binary relation, defined as follows:
\[\{(t_1 \land \ldots \land t_m, t_0) \mid t_0 \leftarrow t_1, \ldots, t_m \in P\}. \]

– \(\text{Obj} = \{1\} \);

– the interpretation function \(I \) is defined as follows: for each term \(t_0 \in T \),
\[I(t_0) = \begin{cases} \{1\} & \text{if } t_0 \leftarrow \in P \\ \emptyset & \text{otherwise} \end{cases} \]

It is easy to see that \(P \models A \) if and only if \(1 \in \text{ans}(A, (T, \leq, \text{Obj}, I)) \), thus obtaining hardness in the size of the program \(P \).

For the membership part of the proof, we rely on an opposite reduction, which will also be used later. Let \(S = (T, \leq, \text{Obj}, I) \) be a source, \(o \in \text{Obj} \) and \(t \in T \). Define \(P_S \) to be the following propositional datalog program:
\[
P_S = C_S \cup I_S \cup Q_S
\]
where
\[
C_S = \{ t_0 \leftarrow t_1, \ldots, t_m \mid (t_1 \land \ldots \land t_m, t_0) \in \leq^r \} \\
I_S = \{ u \leftarrow \mid u \in \text{inds}(o) \} \\
Q_S = \{ \leftarrow t \}
\]

The size of \(P_S \) is polynomial in the size of the taxonomy. It is easy to see that:

Lemma 1 For all sources \(S = (T, \leq, \text{Obj}, I) \), \(o \in \text{Obj} \) and \(t \in T \), \(o \in \text{ans}(t, S) \) iff \(P_S \) is unsatisfiable. \(\square \)

This proves the membership of the decision problem in \(P \), hence its \(P \)-completeness. From the \(P \)-completeness in the size of the taxonomy of the decision problem, the \(P \)-completeness in the size of the information source of the query evaluation problem follows.

From an algorithmic point of view, the decision problem relies on directed B-hypergraphs, which are introduced next. We will mainly use definitions and results from [21].

A directed hypergraph is a pair \(H = (\mathcal{V}, \mathcal{E}) \), where \(\mathcal{V} = \{v_1, v_2, \ldots, v_n\} \) is the set of vertices and \(\mathcal{E} = \{E_1, E_2, \ldots, E_m\} \) is the set of directed hyperedges, where \(E_i = (\tau(E_i), \chi(E_i)) \) with \(\tau(E_i), \chi(E_i) \subseteq \mathcal{V} \) for \(1 \leq i \leq m \). \(\tau(E_i) \) is said to be the tail of \(E_i \), while \(\chi(E_i) \) is said to be the head of \(E_i \). A directed hypergraph (or simply B-graph) is a directed hypergraph, where the head of each hyperedge \(E_i \), denoted as \(h(E_i) \), is a single vertex.

A taxonomy can naturally be represented as a B-graph whose hyperedges represent one-to-one the subsumption relationships of the transitive reduction of the taxonomy. In particular, the taxonomy B-graph of a taxonomy \((T, \leq)\) is the B-graph \(H = (T, \mathcal{E}_\leq) \) where
\[
\mathcal{E}_\leq = \{(\{t_1, \ldots, t_m\}, u) \mid (t_1 \land \ldots \land t_m, u) \in \leq^r \}
\]

Figure I left presents a taxonomy, whose B-graph is shown in the same Figure right.

A path \(P_{st} \) of length \(q \) in a B-graph \(H = (\mathcal{V}, \mathcal{E}) \) is a sequence of nodes and hyperedges
\[
P_{st} = (s = v_1, E_{i_1}, v_2, E_{i_2}, \ldots, E_{i_q}, v_{q+1} = t)
\]
where: \(s \in \tau(E_{i_1}) \), \(h(E_{i_q}) = t \) and \(h(E_{i_{j-1}}) = v_j \in \tau(E_{i_j}) \) for \(2 \leq j \leq q \). If \(P_{st} \) exists, \(t \) is said to be connected to \(s \). If \(t \in \tau(E_{i_q}) \), \(P_{st} \) is said to be a cycle: if all hyperedges in \(P_{st} \) are distinct, \(P_{st} \) is said to be simple. A simple path is also elementary if all its vertices are distinct.

A B-path \(\pi_{st} \) in a B-graph \(H = (\mathcal{V}, \mathcal{E}) \) is a minimal (with respect to deletion of vertices and hyperedges) hypergraph \(H_{\pi} = (\mathcal{V}_{\pi}, \mathcal{E}_{\pi}) \), such that:

\[\text{The size of an information source comprises the size of its taxonomy and the size of its interpretation, i.e., what is called combined complexity, in the database literature.} \]
Vertex y is said to be B-connected to vertex x if a B-path π_{xy} exists in \mathcal{H}.

B-graphs and satisfiability of propositional Horn clauses are strictly related. The B-graph associated to a set of Horn clauses has 3 types of directed hyperedges to represent each clause:

- the clause $p \leftarrow q_1 \land q_2 \land \ldots \land q_s$ is represented by the hyperedge $(\{q_1, q_2, \ldots, q_s\}, p)$;
- the clause $\leftarrow q_1 \land q_2 \land \ldots \land q_s$ is represented by the hyperedge $(\{q_1, q_2, \ldots, q_s\}, false)$;
- the clause $p \leftarrow$ is represented by the hyperedge $(\{true\}, p)$.

The following result is well-known:

Proposition 4 ([21]) A set of propositional Horn clauses is satisfiable if and only if in the associated B-graph, $false$ is not B-connected to $true$. \qed

We now proceed to show the role played by B-connection in query evaluation. For a source $S = (T, \preceq, Obj, I)$ and an object $o \in Obj$, the object decision graph (simply the object graph) is the B-graph $\mathcal{H}_o = (T, \mathcal{E}_o)$, where

$$\mathcal{E}_o = \mathcal{E}_{\preceq} \cup \bigcup \{(\{true\}, u) \mid u \in ind_S(o)\}.$$

Figure 2 presents the object graph for the taxonomy shown in Figure 1 and an object o such that $ind_S(o) = \{c_1, c_2, c_3\}$.

We can now prove:

Proposition 5 For all sources $S = (T, \preceq, Obj, I)$, terms $t \in T$, and objects $o \in Obj$, $o \in \text{ans}(t, S)$ iff t is B-connected to $true$ in the object graph \mathcal{H}_o.

Figure 1: A taxonomy and its B-graph

Figure 2: An object graph

1. $\mathcal{E}_\pi \subseteq \mathcal{E}$
2. $\{s, t\} \subseteq \mathcal{V}_\pi$
3. $x \in \mathcal{V}_\pi$ and $x \neq s$ imply that x is connected to s in \mathcal{H}_π by means of a cycle-free simple path.

Proposition 4 ([21]) A set of propositional Horn clauses is satisfiable if and only if in the associated B-graph, false is not B-connected to true. \qed
Proof: From Lemma\ref{lem:ans}, \(o \in \text{ans}(t, S) \) iff \(P_o \) is unsatisfiable iff (by Proposition\ref{prop:b-connected}) false is \(B \)-connected to true in the associated \(B \)-graph. By construction, \(H_o \) is the \(B \)-graph associated to \(P_o \), where \(t \) plays the role of false. \hfill \qed

3.2.2 Foundation of query evaluation

The basic reason why the decision problem can be efficiently solved, is that it requires traversing any hyperedge of the taxonomy \(B \)-graph at most once. In other words, when deciding membership of an object to a query answer, any (non-trivial) subsumption relationship needs to be used no more than once. However, this is not the case for query evaluation, for in this case all objects must be considered at once as potential candidates for the answer, and therefore a hyperedge can be traversed more than once, in different ways. From a more technical point of view, in deciding whether candidates for the answer, and therefore a hyperedge can be traversed more than once, in different ways.

Let us assume \(u \) that belong to at least one object index.

From a more technical point of view, in deciding whether \(\min \) \(\term \) \(\ans \) \(\obj \), we need to consider a much larger hypergraph, call it \(H_{\obj} \), in which \(\true \) is connected to all terms in \(T \) that belong to at least one object index. \(H_{\obj} \) is made up of all cycle-free simple paths from any term in \(\text{ind}_S(o) \) to \(t \). These paths make up the \(B \)-path \(H_o \). Instead, in computing \(\ans(t, S) \), we need to find all these paths, which may be exponentially many in the size of the taxonomy. As an illustration, let us consider the taxonomy whose \(B \)-graph contains the following hyperedges:

\[
\begin{align*}
 h_1 : \{(u_1, v_1), u_2\} & \quad h_2 : \{(u_2, v_2), u_3\} & \quad h_3 : \{(u_3, v_3), u_4\} & \quad h_4 : \{(u_4, v_4), u_5\} & \quad h_5 : \{(u_5, v_5), t\} \\
 g_1 : \{(u_1, v_1), v_2\} & \quad g_2 : \{(u_2, v_2), v_3\} & \quad g_3 : \{(u_3, v_3), v_4\} & \quad g_4 : \{(u_4, v_4), v_5\}
\end{align*}
\]

Let us assume \(t \) is the query term. It is easy to verify that there are \(2^4 \) cycle-free simple paths connecting \(u_1 \) to \(t \), one for each sequence of the form

\[
(u_1, f_1, x_2, f_2, x_3, f_3, x_4, f_4, x_5, h_5, t)
\]

where \(f_i \) can be either \(h_i \) (in which case \(x_{i+1} = u_{i+1} \)) or \(g_i \) (in which case \(x_{i+1} = v_{i+1} \)) for \(1 \leq i \leq 4 \). In fact, any object \(o \) whose index \(\text{ind}_S(o) \) contains either both \(u_i \) and \(v_j \) (for some \(1 \leq j \leq 5 \)) or \(t \), is in the answer of the query, and so there is an exponential number of indices which qualify for the query. In order to avoid examining all these indices, a smart query evaluation algorithm could try to generate only the minimal ones, which in our case are just \(6 \). However, finding all minimal qualifying indices is an NP hard problem.

In proof, let us define an answer set \(A \) for a term query \(t \) to a source \(S = (T, \subseteq, \obj, I) \), to be a set of terms \(A \subseteq T \), such that if the index of an object \(o \), \(\text{ind}_S(o) \), has all the terms in \(A \), then \(o \) is an answer for \(t \) in \(S \); formally, \(A \subseteq \text{ind}_S(o) \) implies \(o \in \text{ans}(t, S) \). We now present a polynomial time reduction from MINIMAL HITTING SET, a problem known to be NP-complete, to the problem of finding a minimal answer set for \(t \) in \(S \). We recall the notion of hitting set: Given a collection \(C \) of subsets of a set \(C \), a hitting set for \(C \) is a set \(C' \subseteq C \) such that \(C' \) contains at least one element from each subset in \(C \). The basic working of the reduction is exemplified in Figure\ref{fig:hitreduction}, the left part of which shows the collection \(C \), while the right part shows the corresponding taxonomy. The query is \(t \). In general, letting \(C = \{C_1, \ldots, C_k\} \) be a collection of subsets of a set \(C \), the corresponding source \(S_C = (T_C, \subseteq_C, \emptyset, \emptyset) \) and term query \(t_C \) are defined as follows:

\[
\begin{align*}
 - T_C & = C \cup \{t, u_1, \ldots, u_k\} \text{ where } t \not\in C \text{ and } u_i \not\in C \text{ for all } 1 \leq i \leq k. \\
 - \subseteq_C & = \bigcup_{1 \leq j \leq k} \{(x, u_j) \mid x \in C_j\} \cup \{(u_1 \land \ldots \land u_k, t)\} \\
 - t_C & = t.
\end{align*}
\]

It can be easily proved that this is a polynomial time reduction and, of course, it holds that \(\subseteq_C \) is reflexive and transitive. Moreover, the terms from which each term \(u_i \) can be reached in the taxonomy \(B \)-graph are those of the \(i \)-th collection in \(C \), plus the element \(u_i \). Consequently, each hitting set for \(C \) contains a sub-term of each \(u_i \), therefore it is an answer set for \(t_C \) and \(S_C \); in addition, the minimality of the former implies that of the latter. The converse is not true, because a minimal answer set \(X \) for \(t_C \) and \(S_C \) may contain a “foreign” term \(u_i \). However, this is harmless, for \(u_i \) can be replaced in \(X \) by any of its sub-terms and the result is still a minimal hitting set for \(C \). This proves the NP-hardness.
This set is used to guarantee that the interpretation of \(S \), the present study, namely one whose taxonomy has only one hyperedge. Also, we have left the domain and the interpretation of \(S_C \) empty in order to stress that they play no role in the reduction.

It is not difficult to prove membership of the problem in NP, from which the NP-completeness in the size of the taxonomy of finding one minimal answer set follows. However, query evaluation requires finding all minimal answer sets, thus the complexity of this latter problem is much worse, in fact we believe that it is PSPACE-complete.

We now turn to the derivation of an algorithm for query evaluation, whose complexity is polynomial in the size of the information source (which may be exponentially higher than that of the taxonomy, of course).

3.3 Query evaluation

Proposition\(^5\) does not directly lead to a simple method for query evaluation, as it may yield a recursive set of equations. As an illustration, let us consider the query \(b1 \) in our example source. We have:

\[
\bar{I}(b1) = I(b1) \cup I(c1) \cup I(c2) \cup \bar{I}(b1 \land b3) \\
\bar{I}(b1 \land b3) = \bar{I}(b1) \cap \bar{I}(b2).
\]

The standard datalog approach to solve this problem is to map the program into a system of equations on relations, which is then solved by applying an iterative method (see Chapter 13 of \[5\]). Given the simplified form of datalog programs that we are dealing with, we propose a simpler method to perform query evaluation, based on B-graphs. Our method relies on the following result, which is just a re-phrasing of Proposition\(^5\).

Corollary 1 For all sources \(S = (T, \preceq, Obj, I) \), \(o \in Obj \) and term queries \(t \in T \), \(o \in ans(t, S) \) if and only if either \(o \in I(t) \) or there exists a hyperedge \(\{\{u_1, \ldots, u_r\}, t\} \in \mathcal{E}_\preceq \) such that \(o \in \bigcap\{ans(u_i, S) \mid 1 \leq i \leq r\} \). \(\square\)

This corollary simply “breaks down” Proposition\(^5\) based on the distance between \(t \) and \textit{true} in the object graph \(\mathcal{H}_o \). If \(o \in I(t) \), then \(t \in \text{ind}_o(o) \), hence there is a hyperedge (in fact, a simple arc) from \textit{true} to \(t \) in \(\mathcal{H}_o \), which are 1 hyperedge distant from each other. If \(o \notin I(t) \), then there are at least two hyperedges in between \textit{true} and \(t \). Let us assume that \(h \) is the one whose head is \(t \). Since \(t \) is \textit{B}-connected to \textit{true}, each term \(u_i \) in the tail of \(h \) is \textit{B}-connected to \textit{true}. But this simply means, again by Proposition\(^5\), that \(o \in ans(u_i, S) \) for all the terms \(u_i \), and so we have the Corollary. Notice that, by point 3 in the definition of B-path, \(t \) is connected to each \(u_i \) by a cycle-free simple path; this fact is used by the procedure QE in order to correctly terminate in presence of loops in the taxonomy B-graph \(\mathcal{H} \).

The procedure QE, presented in Figure\(\[3\] computes \(ans(t, S) \) for a given term \(t \) (and an implicitly given source \(S \)) by applying in a straightforward way Corollary\(\[4\]. To this end, QE must be invoked as QE\(\{t, \{\}\}\). The second input parameter of QE is the set of terms on the \textit{path} from \(t \) to the currently considered term \(x \). This set is used to guarantee that \(t \) is connected to all terms considered in the recursion by a cycle-free simple path. QE accumulates in \(R \) the result. The correctness of QE can be established by just observing that, for all objects \(o \in Obj \), \(o \) is in the set \(R \) returned by QE\(\{t, \{\}\}\) if and only if \(o \) satisfies the two conditions expressed by Corollary\(\[4\].
QE(x : term; A : set of terms):
1. \(R \leftarrow I(x) \)
2. for each hyperedge \(\{u_1, ..., u_r\}, x \) in \(\mathcal{H} \) do
 3. if \(\{u_1, ..., u_r\} \cap A = \emptyset \) then \(R \leftarrow R \cup \left(\text{QE}(u_1, A \cup \{u_1\}) \cap \ldots \cap \text{QE}(u_r, A \cup \{u_r\}) \right) \)
4. return\((R) \)

Figure 4: The procedure QE

<table>
<thead>
<tr>
<th>Call</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{QE}(a_2, {a_2}))</td>
<td>(I(a_2) \cup \text{QE}(b_3, {a_2, b_3}) \cup (\text{QE}(b_1, {a_2, b_1}) \cap \text{QE}(b_2, {a_2, b_2})))</td>
</tr>
<tr>
<td>(\text{QE}(b_3, {a_2, b_3}))</td>
<td>(I(b_3))</td>
</tr>
<tr>
<td>(\text{QE}(b_1, {a_2, b_1}))</td>
<td>(I(b_1) \cup \text{QE}(c_1, {a_2, b_1, c_1}) \cup \text{QE}(c_2, {a_2, b_1, c_2}))</td>
</tr>
<tr>
<td>(\text{QE}(b_2, {a_2, b_2}))</td>
<td>(I(b_2) \cup (\text{QE}(c_2, {a_2, b_2, c_2}) \cap \text{QE}(c_3, {a_2, b_2, c_3})))</td>
</tr>
<tr>
<td>(\text{QE}(c_1, {a_2, b_1, c_1}))</td>
<td>(I(c_1))</td>
</tr>
<tr>
<td>(\text{QE}(c_2, {a_2, b_1, c_2}))</td>
<td>(I(c_2))</td>
</tr>
<tr>
<td>(\text{QE}(c_3, {a_2, b_2, c_3}))</td>
<td>(I(c_3))</td>
</tr>
<tr>
<td>(\text{QE}(c_1, {a_2, b_2, c_1}))</td>
<td>(I(c_1))</td>
</tr>
<tr>
<td>(\text{QE}(b_3, {a_2, b_2, c_3}))</td>
<td>(I(b_3))</td>
</tr>
<tr>
<td>(\text{QE}(b_1, {a_2, b_2, c_2}))</td>
<td>(I(b_1) \cup \text{QE}(c_1, {a_2, b_2, c_2, b_1}))</td>
</tr>
<tr>
<td>(\text{QE}(c_2, {a_2, b_2, c_2}))</td>
<td>(I(c_2))</td>
</tr>
</tbody>
</table>

Table 1: Evaluation of \(\text{QE}(a_2, \{a_2\}) \)

As an example, let us consider the sequence of calls made by the procedure QE in evaluating the query \(a_2 \) in the example source, as shown in Table 1. The calls marked with a * are those in which the test in line 3 gives a negative result. Upon evaluating \(\text{QE}(c_2, \{a_2, b_1, c_2\}) \) the procedure realizes that the only incoming hyperedge in \(c_2 \) is \(\{b_1, b_3\}, c_2 \), whose tail \(\{b_1, b_3\} \) has a non-empty intersection with the current path \(\{a_2, b_1, c_2\} \); so the hyperedge is ignored. In this case, the cycle \((b_1, c_2, b_1) \) is detected and properly handled. Analogously, upon evaluating \(\text{QE}(b_1, \{a_2, b_2, c_2, b_1\}) \), the cycle \((c_2, b_1, c_2) \) is detected and properly handled. Also notice the difference between the calls \(\text{QE}(c_2, \{a_2, b_1, c_2\}) \) and \(\text{QE}(c_2, \{a_2, b_2, c_2\}) \). The both concern \(c_2 \), but in the former case, \(c_2 \) is encountered upon descending along the path \(\{a_2, b_1, c_2\} \) whose next hyperedge is \(\{b_1, b_3\}, c_2 \); following that hyperedge, would lead the computation back to the node \(b_1 \), which has already been met, thus the result of the call is just \(I(c_2) \). In the latter case, \(c_2 \) is encountered upon descending along the path \(\{a_2, b_2, c_2\} \), thus the hyperedge leading to \(b_1 \) and \(b_3 \) must be followed, since none of the terms in its tail have been touched upon so far.

From a complexity point of view, QE visits all terms that lie on a cycle-free simple path ending at the query term \(t \) in the taxonomy B-graph \(\mathcal{H} \). As shown in Section 3.2.2, the number of such terms can be exponential in the size of the taxonomy. For each term, QE performs set-theoretic operations on sets of objects, which have polynomial time complexity. Thus, though QE operates in exponential time in the size of the taxonomy, it has polynomial time complexity in the size of the information source.

From a more practical point of view, there is an obvious alternative to QE for computing \(ans(t, S) \), that is to solve the decision problem for each object \(o \in \text{Obj} \). However, this method is not practically applicable to peer-to-peer networks, thus we do not take it into consideration any longer.

3.4 Negation

In this section we deal with negation. We first consider the addition of negation to the taxonomy of the source, then the simpler case in which negation is used in queries only.
3.4.1 Adding negation to the taxonomy

If the queries in taxonomy relationships have negation, then the source corresponds to a datalog program with rules that contain negation in their bodies, and it is well known (e.g. see [41]) that such programs may not have a unique minimal model. This is illustrated by the source shown in Figure 5: the left part shows with rules that contain negation in their bodies, and it is well known (e.g. see [41]) that such programs may not have a unique minimal model. This is illustrated by the source shown in Figure 5: the left part shows the source taxonomy, while the right part shows the source interpretation, I, and two minimal models I_a and I_b.

<table>
<thead>
<tr>
<th>query</th>
<th>I</th>
<th>I_a</th>
<th>I_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_2 \land \neg a_1 \rightarrow b_1$</td>
<td>b_2</td>
<td>{1}</td>
<td>{1}</td>
</tr>
<tr>
<td>a_2</td>
<td>{1}</td>
<td>{1}</td>
<td>{1}</td>
</tr>
<tr>
<td>b_1</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>{1}</td>
</tr>
<tr>
<td>b_2</td>
<td>{1}</td>
<td>{1}</td>
<td>{1}</td>
</tr>
<tr>
<td>$b_2 \land \neg b_1$</td>
<td>{1}</td>
<td>{1}</td>
<td>\emptyset</td>
</tr>
<tr>
<td>$a_2 \land \neg a_1$</td>
<td>{1}</td>
<td>\emptyset</td>
<td>{1}</td>
</tr>
</tbody>
</table>

Figure 5: A source with no unique minimal model

The lack of a unique minimal model turns out to be a serious drawback. Let \mathcal{L}_T^\neg be the language of conjunctive queries in which negations of terms may occur, i.e. \mathcal{L}_T^\neg is given by (as usual, t is a term in T):

$q ::= d \mid q \lor d$ (q is a query)
$d ::= l \mid l \land d$ (d is a disjunct)
$l ::= t \mid \lnot t$ (l is a literal).

Moreover, let C_T^\neg be the sub-language of \mathcal{L}_T^\neg consisting of just disjuncts. A neg-extended taxonomy is a pair (T, \preceq^\neg), where T is a terminology and $\preceq^\neg (C_T^\neg \times C_T^\neg)$ is reflexive and transitive, such that if $q_1 \preceq^\neg q_2$ and $q_1 \neq q_2$, then $q_2 \neq t$ for some term $t \in T$. A neg-extended source S is a 4-tuple $(T, \preceq^\neg, \text{Obj}, I)$, where (T, \preceq^\neg) is a neg-extended taxonomy and I is an interpretation for it.

It can be proved that:

Proposition 6 Deciding whether an object $o \in \text{Obj}$ is in the answer of a query $q \in \mathcal{L}_T^\neg$ in a neg-extended source S, $o \in \text{ans}(q, S)$, is a coNP-hard problem.

The proof is based on the following polynomial reduction from SAT. Let α be a CNF formula of propositional logic over an alphabet V, that is:

$$\alpha = \bigwedge_{i=1}^{n} \alpha_i = \bigvee_{j=1}^{m} l_{ij}$$

where l_{ij} is either a positive literal, that is a letter $v \in V$, or a negative literal, that is $\lnot u$ where $u \in V$. We map α into a neg-extended source $S_\alpha = (T_\alpha, \preceq_\alpha, \text{Obj}_\alpha, I_\alpha)$, and a query q_α as follows:

- $T_\alpha = V$;
- $\text{Obj}_\alpha = \{1\}$;
- the query q_α is given by

$$\bigvee \{v_1 \land \ldots \land v_k \mid \neg v_1 \lor \ldots \lor \neg v_k \ \text{is a conjunct } \alpha_i \ \text{in } \alpha \ (v_i \in V)\}.$$
2. if α_i is $l_1 \lor \ldots \lor l_k$ for $k \geq 2$, where at least one literal is positive, say w.l.o.g. l_1 is the positive literal u, then the subsumption relationship $(\overline{l_2} \land \ldots \land \overline{l_k}, u)$ is in \preceq^α.

For instance, the propositional formula
\[
\alpha = a2 \land b2 \land (a1 \lor \neg a2 \lor b1) \land (a1 \lor b1 \lor \neg b2) \land \neg a1 \land \neg b1
\]
is mapped into the source shown in Figure 4 and the query $q_\alpha = a1 \lor b1$. We now show the following

Lemma $1 \in \text{ans}(q_\alpha, S_\alpha)$ iff α is unsatisfiable.

In fact, we prove the equivalent form: $1 \not\in \text{ans}(q_\alpha, S_\alpha)$ iff α is satisfiable.

(→) Suppose α is satisfiable, and let f be a truth assignment over V satisfying it. Let J be the interpretation of the taxonomy $(T_\alpha, \preceq_\alpha)$ such that, for each term $t \in V$,
\[
J(t) = \begin{cases}
\{1\} & \text{if } f(t) = T \\
\emptyset & \text{otherwise}
\end{cases}
\]

We have that $I_\alpha \subseteq J$, since for each $t \in V$, either $I_\alpha(t)$ is empty, or $I_\alpha(t) = \{1\}$. In the former case, $I_\alpha(t) \subseteq J(t)$ for any $J(t)$. In the latter case, we have that $\alpha_j = t$ for some $1 \leq j \leq n$, which implies $f(t) = T$ (since f satisfies α) which implies $J(t) = \{1\}$ and again $I_\alpha(t) \subseteq J(t)$. Moreover, $(q, u) \in \preceq_\alpha$ implies $J(q) \subseteq J(u)$. In proof, $(q, u) \in \preceq_\alpha$ iff $\alpha_k = -q \lor u$ for some $1 \leq k \leq n$, which implies $f(-q \lor u) = T$ (since f satisfies α) and therefore: either $f(-q) = T$ and by construction $J(q) = \emptyset$, or $f(u) = T$ and by construction $J(u) = \{1\}$; in both cases $J(q) \subseteq J(u)$. Hence J is a model of S_α. However, $1 \not\in J(q_\alpha)$. In fact, by construction, for any disjunct d in q_α, there exists $\alpha_j = -d$ for some $1 \leq j \leq n$. Since f satisfies α, it follows that f satisfies $\neg d$ so $f(d) = F$. But then $J(d) = \emptyset$ for each disjunct d in q_α, which implies $J(q_\alpha) = \emptyset$. So, $1 \not\in J(q)$ for a model J, that is $1 \not\in \text{ans}(q_\alpha, S_\alpha)$.

(←) Suppose $1 \not\in \text{ans}(q_\alpha, S_\alpha)$, and let J be a model of S_α such that $1 \not\in J(q_\alpha)$. Let f be the truth assignment over V defined as follows, for each letter $t \in V$,
\[
f(t) = \begin{cases}
T & \text{if } 1 \in J(t) \\
F & \text{otherwise}
\end{cases}
\]

By a similar argument to the one developed in the if part of the proof, it can be proved that f satisfies α, and this completes the proof of the Lemma.

From the last Lemma and the NP-completeness of SAT, the coNP-hardness of deciding query re-writing in neg-extended sources follows.

We observe that it is essential for the reduction that the query language allows negation. Otherwise, propositional formulae which do not have a conjunct consisting of all negative literals, such as $\neg v_1 \lor \ldots \lor \neg v_k$, could not be reduced.

3.4.2 Adding negation in queries

In this Section, we consider the evaluation of queries containing negation over a source. To this end, we need first to define the extension of a negative literal in an interpretation I. The obvious way of doing so is as follows: $I(\neg t) = \text{Obj} \setminus I(t)$. However, as it is well-known, if we maintain our definition of query answer, as $\text{ans}(q, S) = \{o \in \text{Obj} \mid o \in J(q) \text{ for all models } J \text{ of } S\}$, a negative literal in a query is equivalent to the false clause, because there is not enough information in the taxonomy of a source to support a negative fact.

In order to derive an intuitive and, at the same time, logically well-grounded evaluation procedure for extended queries, we need an alternative query semantics (i.e. ans). In order to define it, let us consider a logical reformulation of the problem in terms of datalog. We map each term t_i into two predicate symbols:

- an extensional one, denoted c_{t_i}, representing the interpretation of t_i, i.e. $I(t_i)$; and
an intensional one, denoted \(Y_{t_i} \), representing \(t_i \) in the rules encoding the subsumption relation.

The obvious connection between \(C_{t_i} \) and \(Y_{t_i} \) is that all facts expressed via the former are also true of the latter, and this is captured by stating a rule (named “extensional” below) of the form \(C_{t_i}(x) \rightarrow Y_{t_i}(x) \) for each term \(t_i \).

Definition 8 (Source program) Given a source \(S = (T, \preceq, \text{Obj}, I) \), the source program of \(S \) is the set of clauses \(P_S \) given by \(P_S = TR_S \cup ER_S \cup FS \), where:

\[
\begin{align*}
TR_S &= \{ Y_{t_i}(x) : \neg Y_{t_i}(x), \ldots, Y_{t_m}(x) \mid t_1 \wedge \ldots \wedge t_m \preceq^* t \} \text{ are the terminological rules of } P_S; \\
ER_S &= \{ Y_{t_i}(x) : \neg C_{t_i}(x) \mid t_i \in T \} \text{ are the extensional rules of } P_S; \\
FS &= \{ C_o(o) \mid o \in I(t_i) \} \text{ are the facts of } P_S, \text{ stated in terms of constants } o \text{ which are one-to-one with the elements of } \text{Obj} \text{ (unique name assumption).}
\end{align*}
\]

Next, we translate queries in the language \(\mathcal{L}_T \).

Definition 9 (Query program) Given a query \(q \in \mathcal{L}_T \) to a simple source \(S = (T, \preceq, \text{Obj}, I) \), the query program of \(q \) is the set of clauses \(P_q \) given by:

\[
\{ q(x) : \neg Y_{t_1}(x), \ldots, Y_{t_k}(x) \mid t_1 \wedge \ldots \wedge t_k \text{ is a disjunct of } q \},
\]

where \(q \) is a new predicate symbol.

In order to show the equivalence of the original model with its datalog translation, we state the following:

Proposition 7 For each source \(S = (T, \preceq, \text{Obj}, I) \), and query \(q \in \mathcal{L}_T \), \(\text{ans}(q, S) = \{ o \in \text{Obj} \mid P_S \cup P_q \models q(o) \} \).

Let us consider this mapping in light of the new query language \(\mathcal{L}_T \). The source program \(P_S \) remains a pure datalog program, while the query program \(P_q \) of any query \(q \in \mathcal{L}_T \) against \(S \) becomes:

\[
\{ q(x) : \neg L_{v_1}(x), \ldots, L_{v_k}(x) \mid v_1 \wedge \ldots \wedge v_k \text{ is a disjunct of } q \}
\]

where each \(L_{v_i} \) is either \(Y_{v_i} \), if \(v_i = t_i \), or \(\neg Y_{v_i} \), if \(v_i = \neg t_i \) (\(t_i \in T \)).

This kind of queries are dealt with by using an approximation of CWA, which can be characterized either procedurally, in terms of program stratification, or declaratively, in terms of perfect model. We will adopt the former characterization. In fact, \(P_q \) is a datalog\(^\ast\) program, and so is the program \(P_S \cup P_q \). The latter program is stratified, by the level mapping \(l \) defined as follows:

\[
l(\text{pred}) = \begin{cases}
1 & \text{if } \text{pred} \text{ is } q \\
0 & \text{otherwise}
\end{cases}
\]

It follows that \(P_S \cup P_q \) has a minimal Herbrand model \(M_S^q \) given by \([12]\) the least fixpoint of the transformation \(T_{P_S} \cup M_{P_S} \) where \(M_{P_S} \) is the least Herbrand model of the datalog program \(P_S \), and \(T_P \) is the extension to datalog\(^\ast\) of the classical \(T_P \) operator, on which the standard semantics of pure datalog is based. The model \(M_S^q \) is found from \(M_{P_S} \) in one iteration since only instances of \(q \) are added at each iteration, and \(q \) does not occur in the body of any rule. The following definition establishes an alternative notion of answer for queries including negation.

Definition 10 (Extended answer) Given an extended query \(q \) to a source \(S = (T, \preceq, \text{Obj}, I) \), the extended answer to \(q \) in \(S \), denoted \(\varepsilon(q, S) \), is given by: \(\varepsilon(q, S) = \{ o \in \text{Obj} \mid M_S^q \models q(o) \} \)

We conclude by showing how extended answers can be computed.
Proposition 8 For each source $S = (T, \preceq, \text{Obj}, I)$, and query $q \in \mathcal{L}_T$, $\varepsilon(q, S)$ is given by:

1. $\varepsilon(q \lor d, S) = \varepsilon(q, S) \cup \varepsilon(d, S)$,
2. $\varepsilon(l \land d, S) = \varepsilon(l, S) \cap \varepsilon(d, S)$,
3. $\varepsilon(t, S) = \overline{I}(t)$,
4. $\varepsilon(\neg t, S) = \text{Obj} \setminus \varepsilon(t, S)$.

From a practical point of view, computing $\varepsilon(\neg t_1 \land \ldots \land \neg t_k)$ requires computing:

$$\text{Obj} \setminus (\overline{I}(t_1) \cup \ldots \cup \overline{I}(t_k))$$

which in turn requires knowing Obj, i.e. the whole set of objects of the network. As this knowledge may not be available, or may be too expensive to obtain, one may want to resort to a query language making a restricted usage of negation, for instance by forcing each query disjunct to contain at least one positive term.

3.5 Disjunctive information sources

In this section we consider disjunctive sources, whose taxonomies allow subsumption relationships between queries. Formally, a disjunctive taxonomy is a pair (T, \preceq_d) where T is a terminology and $\preceq_d \subseteq (\mathcal{L}_T \times \mathcal{L}_T)$ is reflexive and transitive. A disjunctive source S is a 4-tuple $(T, \preceq_d, \text{Obj}, I)$ where (T, \preceq_d) is a disjunctive taxonomy and (Obj, I) is an interpretation for it.

Disjunctive sources may not have a unique minimal model. As an example, the source $(T, \preceq_d, \text{Obj}, I)$ where:

- $T = \{a_1, a_2, b_1, b_2\}$
- $\preceq_d = \{(a_2, a_1 \lor b_1), (b_2, a_1 \lor b_1)\}$
- $\text{Obj} = \{1\}$ and
- $I = \{(a_2, \{1\}), (b_2, \{1\})\}$

has two minimal models, $I_1 = I \cup \{(a_1, \{1\})\}$ and $I_2 = I \cup \{(b_1, \{1\})\}$.

Loosing the uniqueness of the minimal model is enough to make query evaluation for this kind of sources computationally difficult.

Proposition 9 Deciding whether an object $o \in \text{Obj}$ is in the answer of a query $q \in \mathcal{L}_T$ in a disjunctive source S, $o \in \text{ans}(q, S)$, is a coNP-hard problem.

The proof is similar to that of Proposition 8. For brevity, we just show the reduction from SAT. Let α be as in the proof of Proposition 8. We map α into a disjunctive source $S_\alpha = (T_\alpha, \preceq_\alpha, \text{Obj}_\alpha, I_\alpha)$, and a query q_α as follows:

- $T_\alpha = V$;
- $\text{Obj}_\alpha = \{1\}$;
- the query q_α is given by

$$\bigvee \{v_1 \land \ldots \land v_k \mid v_1 \lor \ldots \lor v_k \text{ is a conjunct in } \alpha (v_i \in V)\} \lor \bigvee \{\neg u_1 \land \ldots \land \neg u_k \mid u_1 \lor \ldots \lor u_k \text{ is a conjunct in } \alpha (u_i \in V)\}$$
If there are no such conjuncts \(-v_1 \vee \ldots \vee -v_k\) or \(-u_1 \wedge \ldots \wedge -u_k\) in \(\alpha\), then let \(\alpha_1 = l_1 \vee \ldots \vee l_k\); we then set \(q_\alpha = l_1 \wedge \ldots \wedge l_k\), where \(-u = u\) and \(-v = -v\).

- for each remaining conjunct \(\alpha_i\) in \(\alpha\),
 1. if \(\alpha_i\) is a letter \(v\), then \(I_{\alpha_i}(v) = \{1\}\); if for no conjunct \(\alpha_i\), \(\alpha_i = v\), then \(I_{\alpha_i}(v) = \emptyset\);
 2. if \(\alpha_i\) is \(-u_1 \vee \ldots \vee -u_j \vee v_1 \vee \ldots \vee v_m\) where \(j, m \geq 1\) then the subsumption relationship \((u_1 \wedge \ldots \wedge u_j, v_1 \vee \ldots \vee v_m)\) is in \(\succeq^\alpha\).

In the present case, the propositional formula
\[
\alpha = a_2 \wedge b_2 \wedge (a_1 \vee -a_2 \vee b_1) \wedge (a_1 \vee b_1 \vee -b_2) \wedge -a_1 \wedge -b_1
\]
is mapped into the source shown in the previous example.

It can be shown that \(1 \in \text{ans}(q_\alpha, S_\alpha)\) iff \(\alpha\) is unsatisfiable.

4 Networks of Information Sources

In this Section we introduce networks of information sources. The model is first outlined, and then query evaluation is considered.

4.1 The model

In order to be a component of a networked information system, a source is endowed with additional subsumption relations, called articulations, which relate the source terminology to the terminologies of other sources of the same kind.

Definition 11 (Articulation) Given two terminologies \(T\) and \(U\), an articulation from \(T\) to \(U\), \(\preceq_{TU}\), is a non-empty binary relation from \(L_U\) to \(T\), such that \(q \preceq_{TU} t\) implies that \(q\) is a conjunctive query. □

An articulation relationship is not syntactically different from a subsumption relationship, except that its head may be a term of a different terminology than the one where the terms making up its tail come from.

Definition 12 (Articulated Source) An articulated source \(S\) over \(k \geq 0\) disjoint terminologies \(T_1, \ldots, T_k\), is a 5-tuple \(S = (T_S, \preceq_S, Obj, I_S, R_S)\), where:

- \((T_S, \preceq_S, Obj, I_S)\) is a source;
- \(R_S\) is a set of articulations \(R_S = \{\preceq_{t_S,t_1}, \ldots, \preceq_{t_S,t_k}\}\).

Articulations are used to connect an articulated source to other articulated sources, so creating a networked information system. An articulated source \(S\) with an empty stored interpretation, i.e. \(I_S(t) = \emptyset\) for all \(t \in T_S\), is called a mediator in the literature.

Definition 13 (Network) A network of articulated sources, or simply a network, \(\mathcal{N}\) is a non-empty set of articulated sources \(\mathcal{N} = \{S_1, \ldots, S_n\}\), where each \(S_i\) is articulated over the terminologies of some of the other sources in \(\mathcal{N}\) and all terminologies \(T_{S_1}, \ldots, T_{S_n}\) of the sources in \(\mathcal{N}\) are disjoint. □
Notice that the domain of the interpretation of an articulated source is independent from the source, thus the same for any articulated source. This is not necessary for our model to work, just reflects a typical situation of networked resources such as URLs. Relaxing this constrain would have no impact on the results reported in the present study.

Since in a network: (a) there is no source acting at the global level, (b) all sources store data, and (c) as we will see, data are exchanged via direct communication, each source can be seen as, and will in fact be called, a peer, and the network as a peer-to-peer information system. Articulations of the network peers will also be referred as P2P mappings.

An intuitive way of interpreting a network is to view it as a single source which is distributed along the nodes of a network, each node dealing with a specific vocabulary. The global source can be logically constructed by removing the barriers which separate local sources, as if (virtually) collecting all the network information in a single repository. The notion of network source captures this interpretation of a network.

Definition 14 (Network source) The network source S_N of a network of articulated sources $\mathcal{N} = \{S_1, \ldots, S_n\}$, is the source $S_N = (T_N, \sqsubseteq, \text{Obj}, I_N)$, where:

- $T_N = \bigcup_{i=1}^n T_{S_i}$;
- $I_N = \bigcup_{i=1}^n I_{S_i}$
- $\sqsubseteq = (\bigcup_{i=1}^n \sqsubseteq_{S_i})^*$

where \sqsubseteq_{S_i} is the total subsumption of the source S_i, given by the union of the subsumption relation \preceq_{S_i} with all articulations of the source, that is:

$$\sqsubseteq_{S_i} = \preceq_{S_i} \cup \bigcup R_{S_i}$$

and A^* denotes the transitive closure of the binary relation A. A network query is a query over T_N. □

It is not difficult to see that \sqsubseteq is reflexive and transitive, and every non-trivial subsumption relationship in it relates a conjunctive query in anyone of the terminologies T_{S_1}, \ldots, T_{S_n} to a single term. Thus, S_N is indeed a source. Such source emerges in a bottom-up manner from the articulations of the peers. This distinguishes peer-to-peer systems from federated distributed databases.

A network query q is a query in anyone of the query languages supported by the network, that is $q \in \mathcal{L}_{T_{S_i}}$ for some $i \in [1, n]$. As it will be evident, the method that we will set up only requires minor modifications to be able to evaluate also queries in the language \mathcal{L}_{T_N}, that is queries that mix terms from different terminologies. We do not provide this facility because it does not seem to make much sense in our vision.

The answer to a network query q, or network answer, is given by $\text{ans}(q, S_N)$.

Figure 6 presents the taxonomy of a network source S_N, where \mathcal{N} consists of 3 peers $\mathcal{N} = \{P_a, P_b, P_c\}$. As it can be verified, this is the same taxonomy as the one shown in Figure 1 except that now some of its subsumption relationships are elements of articulations.

![Figure 6: A network taxonomy](image-url)
4.2 Network query evaluation

This Section presents a network query evaluation procedure based on the method devised in the centralized case. First, a functional model of each peer is introduced, then the algorithms corresponding to the operations on the interface of the peer are given. Correctness and complexity of these algorithms are discussed in Section 4.3 while Section 5 concludes by considering optimization issues.

4.2.1 The functional model of a peer

In order to illustrate our query evaluation procedure, we now define a peer from a functional point of view. In this respect, we see a peer as a software component uniquely identified in the network by a peer ID. The interface of a peer exposes just one method:

- **Query**, which takes as input a network query \(q \) and evaluates it, returning the set of objects \(ans(q, S_N) \).

The user (whether human or application program) is supposed to use this method for the evaluation of network queries. We assume that \(q \) is expressed in the query language of the peer. As it will be argued in due course, this assumption can be relaxed without any substantial change to our framework.

In addition to Query, a peer has methods for sending to or receiving messages from other peers. We do not enter into the details of these methods: there are several options, which do not make any difference from the point of view of our model. Instead, we detail the types of messages that can be exchanged between peers. These can be of one of the following 2 types:

- **Ask**: by sending a message of this kind to a peer \(P \), the present peer asks \(P \) to evaluate a term query on \(P \)'s query language. The receiving peer \(P \) processes Ask messages according to the QE procedure (Figure 4), as we will see in detail below. An Ask message has the following fields:
 - \(PID \): the id of the present peer, which is sending the message;
 - \(QID \): the id of the query that \(PID \) is sending for evaluation;
 - \(t \): the query term of \(QID \);
 - \(A \): the set of already visited terms. These two last parameters are those of the QE procedure.

- **Tell**: by sending a message of this kind to a peer \(P \), the present peer returns to \(P \) the result of the evaluation of a term query which had previously been Ask-ed by \(P \). A Tell message has the following fields:
 - \(QID \): the ID of the query whose result is being returned;
 - \(RES \): the set of objects resulting from the evaluation of \(QID \).

We will denote the sending of a message of one of these two kinds \(m \) to the peer \(P \) as \(P: m(field \ values) \). By decoupling the request of evaluation from the return of the result, we aim at minimizing the number of sessions open at any time between peers, thus removing a serious obstacle towards scalability. Query does not follow this paradigm since it involves only a local interaction.

Each peer processes the incoming messages depending on their type and content. In order to carry out this work, the peer keeps a (query) log, that is a set of objects, each associated to a query in whose evaluation the peer is currently involved. A log object has the following attributes:

- \(PID \): the id of the peer who sent the query (can be the local peer itself);
- \(QID \): the id of the query;
- \(t \): the query term (we recall that we need to deal only with term queries);
- \(n \): the number of open calls in \(QID \) (see next paragraph);
- \textit{QP}: the query program representing the current status of evaluation of \textit{QID}. A query program is a set of sub-programs \{\textit{SP}$_1$, \ldots, \textit{SP}$_k$\} where each sub-program \textit{SP}$_j$ is a set of calls. A call is a sub-query of \textit{QID}, and can be:

- \textit{open}, meaning that the sub-query is being evaluated, in which case the call is the sub-query id; or
- \textit{closed}, meaning the sub-query has been evaluated, in which case the call is the resulting set of objects.

Since no two log objects can have the same query id, we will represent a log object as a 5-tuple \((\textit{PID}, \textit{QID}, \textit{t}, n, QP)\).

4.2.2 Query

Let us assume that the input query \(q\) posed to a peer \(S\), is given by

\[q = \bigvee C_i \]

where each \(C_i\) is a conjunctive query. As a first step, \textbf{QUERY} reduces \(q\) to a term query \(t\) by generating a new term \(t\) not in \(T_N\) and inserting a new hyperedge \((C_i, t)\) into the local taxonomy B-graph (i.e. that corresponding to \((T_S, \sqsubseteq_S)\)), for each conjunctive query \(C_i\) in \(q\). This work is carried out by the function \textbf{MODIFY-TAXONOMY}, which returns the newly generated term \(t\). A new query id for \(t\) is subsequently obtained by \textbf{QUERY}, and an \textbf{ASK} message is sent to the peer itself for evaluating \(t\). As required by \textbf{QE}, the set of already visited terms consists just of \(t\) itself. At this point \textbf{QUERY} hangs on the log, until the log object associated to the query \(t\) is closed, that is the number of its open call is 0. Notice that this object is created only after the \textbf{ASK} message sent on line 3 is processed, but this creates no problem, as all \textbf{QUERY} has to do in the meantime is wait. When the log object is finally closed, \textbf{QUERY} retrieves it and deletes it from the log, by using the function \textbf{DELETE}, which returns the object itself. When the object is closed, its query program, that is the value of the last field, equals to \(\textit{ans}(t, \sqsubseteq_S)\). This value is assigned to the variable \(R\). On line 6, the subsumption relationships inserted by \textbf{MODIFY-TAXONOMY} are removed by \textbf{CLEANUP-TAXONOMY}, and \(R\) is finally returned.

\begin{verbatim}
QUERY(q : query):
1. t ← MODIFY-TAXONOMY(q)
2. ID ← NEW-QUERY-ID
3. self: ASK(self, ID, t, \{t\})
4. wait until ID is closed then
5. (PID, QID, t, n, R) ← DELETE(ID)
6. CLEANUP-TAXONOMY(t)
7. return(R)
\end{verbatim}

Figure 7: The QUERY procedure

As an example, let us consider the network shown in Figure 4, whose corresponding B-graph is shown in Figure 5, and the query \((a2 \land a3)\) on peer \(P_a\). When given as input to \textbf{QUERY}, this query is passed on to \textbf{MODIFY-TAXONOMY}, which adds the hyperedge \(\{(a2, a3), t\}\) to the taxonomy B-graph and returns the newly generated term \(t\). Let us assume that \(q1\) is the id of the new query. \textbf{QUERY} then sends the message \textbf{ASK}(\(P_a, q1, t, \{t\}\)) to itself, and gets into the wait loop until the query is evaluated.

4.2.3 Ask

For readability, we will describe \textbf{ASK} and \textbf{TELL} as if they were methods whose parameters are the message fields. \textbf{ASK} (Figure 9) uses the following variables:

- \(n\) : counts how many sub-queries the input query \textit{QID} generates;
- QP: is the initial query program of QID;
- Q: is a queue holding the information to send the Ask messages required to evaluate QID;
- C: is the query sub-program being currently computed.

After initialization, Ask performs (line 2) the same test as QE, looking for a hyperedge h in the local B-graph whose head is the given term t and whose tail is disjoint from A. If no such hyperedge is found, then n remains 0, the test on line 10 fails, and the result of the evaluation of the given term query t is just $I(t)$ (as QE establishes), which Ask returns by sending a Tell message to the invoking peer PID (line 15). If instead a hyperedge h is found, then the intersection of the evaluation of each term u_i in its tail should be added to the result, according to QE. In order to achieve the same behavior, Ask enters a loop in which it processes each term u_i to the end of constructing in C the query sub-program associated to h. First, a new query id ID is generated (line 5) to denote the sub-query on u_i; the newly generated id is then added to C. On line 7, the number of open calls is increased by one, and on line 8 the required information to evaluate the query u_i is enqueued in Q. This information is:

- the id of the peer P_h holding the terms in the tail of the hyperedge h; we assume this information is stored with the hyperedge just for convenience, the peer can also store it separately;
- the ID of the sub-query;
- the query term u_i and
- the set of the visited terms $A \cup \{u_i\}$, as in QE.

Each sub-program so generated is added to QP, after considering all relevant hyperedges (line 9). At this point, if the number of open calls is positive, Ask uses the function Persist in order to create the log object representing the query QID, and to persist it in the log. Once the log object is successfully persisted, Ask must launch the evaluation of the generated sub-queries, which it does in the loop on lines 12-14. Until Q is empty, it dequeues the information for constructing an Ask message for each sub-query, and sends such message to the peer P_h. The value of the first message field is the peer identity (self), as the invoking peer.

At this point, it can be easily verified that the assumption that all terms in the tail of a hyperedge are from the same terminology, namely that of peer P_h, can be relaxed without any impact on the query evaluation procedure. In logical terms, this is the assumption that the conjunctive queries on the left-hand side of subsumption relationships are from the query language of one peer. We have made this assumption because it fits our vision of a network. But Ask can easily work also with hyperedges whose tails have terms from different terminologies: all that is required is to store the id of the peer holding each term, rather than the id of the peer holding the whole hyperedge.

Let us resume our running example. Upon processing the message $(P_a, q1, t, \{t\})$, Ask finds that the hyperedge $h = (\{a2, a3\}, t)$ passes the test on line 2, and enters the loop on the tail of h. For term $a2$, assuming the generated query id is $q2$, the record $(P_a, q2, a2, \{t, a2\})$ is enqueued in Q, while for term $a3$, (generated id $q3$) it is enqueued the record $(P_a, q3, a3, \{t, a3\})$. As there are no more hyperedges and $n = 2$, a new log object is created to represent the query t. The attributes of this object are:
Ask(PID,QID: ID; t : term; A : set of terms);
1. n ← 0; QP, Q ← ∅
2. for each hyperedge h = (\{u_1, ..., u_r\}, t) such that \{u_1, ..., u_r\} ∩ A = ∅ do
3. C ← ∅
4. for each u_i do
5. ID ← New-query-id
6. C ← C ∪ \{ID\}
7. n ← n + 1
8. Enqueue(Q, (P_h, ID, u_i, A ∪ \{u_i\}))
9. QP ← QP ∪ \{C\}
10. if n > 0 then
11. Persist(PID, QID, t, n, QP)
12. until Q = ∅ do
13. (P_h, ID, u, B) ← Dequeue(Q)
14. P_h : Ask(self, ID, u, B)
15. else PID: Tell(QID, I(t))

Figure 9: The procedure to process Ask messages

- PID = P_a
- QID = q1
- t = t
- n = 2
- QP = \{\{q2, q3\}\}.

Now two Ask messages are send to P_a:

1. (P_a, q2, a2, \{t, a2\}), and
2. (P_a, q3, a3, \{t, a3\}).

Let us see how the latter message is processed. Since there are no incoming hyperedges into term a3, n remains 0, and the processing of the message is concluded by the sending of the message Tell(q3, I(a3)) to P_a.

4.2.4 Tell

When a peer receives a Tell(QID,R) message (see Figure 10), QID is an open call of some log object in the peer’s log, in the program of some term (sub)query t with id QID_1. Then, as a first action, the peer retrieves this object by using the Delete1 function, which takes as input QID, returns the object and deletes it from the log. Notice that there is exactly one object having QID as open call, since Ask generates a new id for each sub-query it identifies, as we have already seen. After retrieving the log object, Tell uses Close to modify the query program QP in it, by closing the open call QID: this means to replace QID by R, obtaining a new query program QP_1. On line 3, the number of open calls of the log object is tested: if it is 1, then the just closed call was the last one to be open in query QID_1; in this case, the result of QID_1 is computed in S by Compute-answer. For a given program:

\[QP = \{SP_1, ..., SP_m\}\]

where each sub-program \(SP_j\) is given by a collection of object sets:

\[SP_j = \{R_{j1}, ..., R_{jm} \}\]

Compute-answer returns:

\[S = \bigcup_{1 \leq j \leq m} SP_j\]
$S \cup I(t)$ is exactly what the QE procedure computes. If t is not in the terminology of the peer ($t \notin T_{self}$) then it follows that QID_1 is the id of the original query q. Thus, $I(t) = \emptyset$ and $S = ans(t, S_N)$. Therefore, the object $(PID, QID_1, t, 0, S)$ is persisted in the log (line 5), indicating to $\text{QUERY}(q)$ (Figure 7) that the evaluation of the query q has finished. Otherwise, the so obtained result $S \cup I(t)$ is TELL-ed to the peer PID which, according to the log object, was the one to ASK the evaluation of QID_1. Notice that this may fire another TELL message, in case QID_1 is the last open call of some other query. If the test on line 3 fails, then there are still open calls in the log object, which is therefore persisted back by PERSIST on line 6, after decreasing the number of open calls in it and replacing the query program QP by the updated one QP_1.

\begin{align*}
\text{TELL}(QID: \textbf{ID}: R : \text{set of objects}): \\
1. \quad (PID, QID_1, t, n, QP) \leftarrow \text{DELETE1}(QID) \\
2. \quad QP_1 \leftarrow \text{CLOSE}(QP, QID, R) \\
3. \quad \text{if } n = 1 \text{ then} \\
4. \quad \quad S \leftarrow \text{COMPUTE-ANSWER}(QP_1) \\
5. \quad \quad \text{if } t \notin T_{self} \text{ then} \text{PERSIST}(PID, QID_1, t, 0, S) \\
6. \quad \quad \text{else} \text{PID:TELL}_{self}(QID_1, t, S \cup I(t)) \\
7. \quad \text{else} \text{PERSIST}(PID, QID_1, t, n - 1, QP_1)
\end{align*}

Figure 10: The procedure to process TELL messages

In our example, the message TELL$(q3, I(a3))$ is received by peer P_a. The function DELETE1 returns the log object $(P_a, q1, t, 2, \{\{q2, q3\}\})$, the only one that has the open call $q3$. CLOSE produces the new query program $\{\{q2, I(a3)\}\}$, and since n is not 1, the following modified log object is persisted:

\[(P_a, q1, t, 1, \{\{q2, I(a3)\}\})\]

The example is completed in appendix.

4.3 Correctness and complexity

As it has been argued, the combined action of the procedures processing ASK and TELL messages is equivalent to the behavior of the procedure QE. To see why in more detail, it suffices to consider the following facts:

1. An ASK message is generated for each recursive call performed by QE and vice-versa, that is whenever QE would perform a recursive call, an ASK message is generated. This is guaranteed by the fact that the test on line 2 of ASK is the same as the test on line 3 of QE. Therefore, the number of ASK messages is the same as the number of terms that can be found on a B-path from t.

2. For each ASK message, at most one log object is generated and persisted.

3. For each ASK message, a TELL message results, and no more. This can be observed by considering that, for each processed ASK message, there can be two cases:

 (a) no hyperedge is found that passes the test on line 2 of ASK: in this case, no subsequent ASK message is generated, and a TELL message is generated;

 (b) at least one hyperedge passes the test: in this case a number of sub-queries is generated and registered in the query program of the log object. Each such sub-query is evaluated by issuing an ASK message with a larger set of visited terms. Since the B-graph is finite, eventually each sub-query will lead to a term falling in the previous case (this is how QE terminates). When all sub-queries of a given term query t are closed, the number of open calls of t goes down to 0, and TELL issues another TELL message on t. This will propagate closure up, until all open calls are closed.

4. Finally, the COMPUTE-ANSWER procedure performs the same operation on the result of sub-queries as QE does on the results of its recursive calls.
As a consequence of these facts we have the correctness of the network query evaluation procedure, and also its efficiency. In fact, the total number of messages generated is twice the number of terms visited by QE, and the number of log objects is no larger than that.

5 Optimization issues

So far, we have focused on correctness. In this Section we discuss optimization. There are many techniques that are potentially useful to this end. For instance, when sub-queries return large results, their closing (performed by CLOSE) and the computation of their results (COMPUTE-ANSWER) should be done with care. However, dealing with all the relevant optimization techniques goes beyond the scope of this paper. Instead, we focus on caching (Section 5.1), which is applicable to all situations, and on exploiting data structures employed in structured P2P systems, namely Distributed Hash Tables (like in Chord [36]). This latter issue is tackled in Sections 5.2 and 5.3 besides showing how to further improve the efficiency of the system, the ensuing discussion hints at how to extend the applicability of our model, and highlights the relationship with a large part of the literature on P2P systems. More on related work can be found in Section 6.

5.1 Caching

A strong point of our model is that the adoption of caches could significantly speed up the evaluation of queries, by reducing both the latency time and the network throughput. This is because the set of queries that a peer can send to its articulated peers is bounded in size and can be pre-determined: it comprises all “foreign” queries of the peer, i.e. queries that appear as left-hand sides in the peer’s articulations. Note that the number of queries that a peer can propagate to its neighbors is unbounded in other models of P2P systems, for example in Gnutella, where each peer propagates whatever query it receives. It follows that the caches of our model will enjoy higher hit ratios compared to other P2P models, for the same cache size. The subsequent subsections present three caching policies, namely:

- caching answers of local terms,
- caching answers of local terms and pushing answers of articulation tails, and
- caching answers of articulation heads.

5.1.1 Caching answers of local terms

According to this caching policy, each peer \(S \) caches pairs of the form \((t, ans(t, S_N))\), where \(t \) is a term in the peer’s terminology \(T_S \). If there are no memory limitations for caches, then after a while each peer will have cached its whole terminology, and query evaluation reduces to locally calculating the extension of the query by union-ing and intersecting the extensions of the peer’s terms. In other words, any peer will be able to evaluate network queries over its own taxonomy without sending any message to the network. This is of course the idealistic case. In general, only some terms (possibly none) will be cached in each peer. Under these circumstances, when a peer \(S \) receives an Ask message for a term query \(t \), the Ask procedure checks which of the answers for the term (sub)queries needed for the evaluation of \(t \) are in the cache, and issues Ask messages only for evaluating the remaining terms.

The modified query evaluation algorithms for supporting this caching policy are parts of the algorithms for the more general policy that is described in Section 5.1.2.

Footnotes:

4 FreeNet tries to improve the situation by forwarding queries (and new objects too) only to those peers that, according to the contents of the cache, have similar keys. In this way, each cache tends to have entries about similar keys and this tends to improve the quality of routing over time.

5 Apart those required for re-evaluating queries when updates occur.
\text{Ask}(PID, QID; ID; t : \text{term}; A : \text{set of terms})

1. \text{if} \ t \ \text{is cached} \ \text{then} \ \text{PID:Tell}(QID, t, \text{ans}(t, S_N))
2. \text{else if} \ |A| = 2 \ \text{then add} \ t \ \text{into to-be-cached log} // \ t \ \text{is a term of the original query} \ q
3. \ n \leftarrow 0; \ \text{QP, Q, S} \leftarrow \emptyset
4. \ \text{for each} \ \text{hyperedge} \ h = \langle \{u_1, \ldots, u_r\}, t \rangle \ \text{such that} \ \{u_1, \ldots, u_r\} \cap A = \emptyset \ \text{do}
5. \ \text{if} \ P_h \neq \text{self} \ \text{and} \ u_i \ \text{is cached} \ \text{then} \ \text{C} \leftarrow \{\text{ans}(u_1 \ldots \wedge u_r, S_N)\}
6. \ \text{else} \ C \leftarrow \emptyset
7. \ \text{for each} \ u_i \ \text{do}
8. \ \text{if} \ P_h = \text{self} \ \text{and} \ u_i \ \text{is cached} \ \text{then}
9. \ \text{C} \leftarrow \text{C} \cup \{\text{ans}(u_i, S_N)\}
10. \ \text{else}
11. \ \text{ID} \leftarrow \text{NEW-QUERY-ID}
12. \ \text{C} \leftarrow \text{C} \cup \{\text{ID}\}
13. \ n \leftarrow n + 1
14. \ \text{ENQUEUE}(Q, \{P_h, \text{ID}, u_i, A \cup \{u_i\})\})
15. \ \text{QP} \leftarrow \text{QP} \cup \{\text{C}\}
16. \ \text{if} \ n > 0 \ \text{then}
17. \ \text{PERSIST}(PID, QID, t, n, QP)
18. \ \text{until} \ Q \neq \emptyset
19. \ {P_h, \text{ID}, u, B} \leftarrow \text{DEQUEUE}(Q)
20. \ {P_h, \text{Ask}, \text{self}, \text{ID}, u, B}
21. \ \text{else if} \ \text{QP} \neq \emptyset \ \text{then} \ S \leftarrow \text{COMPUTE-ANSWER}(QP)
22. \ \text{PID:Tell}(QID, t, S \cup I(t))

Figure 11: The procedure to process Ask messages with cache

5.1.2 Caching answers of local terms and pushing answers of articulation tails

A complementary scenario, best suited for a P2P system that offers recommendation services in push-style manner, is to assume that each peer \ S \ knows also the articulations \ t_1 \ldots \wedge t_r \leq u \ from other peers \ S' \ to \ S \ (called foreign articulations). In this case, if all the terms \ t_1, \ldots, t_r \ are cached in \ S, \ then \ S \ can send to \ S' \ the pair \ (t_1 \ldots \wedge t_r, \text{ans}(t_1 \ldots \wedge t_r, S_N)) \ to be stored in the cache of \ S'. This can be done because from Proposition 3 and Definition 4 it follows that

\[\text{ans}(t_1 \ldots \wedge t_r, S_N) = \bigcap \{\text{ans}(t_i, S_N) \mid 1 \leq i \leq r\} \]

The cache is exploited by the modified Ask procedure (Ask_\text{c}), shown in Figure 11. The modified with caching TELL procedure (Tell_\text{c}) is shown in Figure 12. The modifications are indicated by bold line numbers and are described in a semi-formal way, in order to abstract from irrelevant details.

The cache of a peer \ S \ consists of two kinds of pairs:

- \ (t', \text{ans}(t', S_N)) \ where \ t' \ is a term in the peer’s terminology \ T_S. Pairs of this kind are inserted into the cache by the \text{Tell}_c(QID, t', R) procedure \text{c} when the peer \ S \ is \text{Tell}-ed the answer \ R \ for a term query \ t', \ initiated by an Ask message of type

\[\text{Ask}(PID, QID, t', \{u, t'\}) \]

where \ u \ is a new term created by \text{QUERY}(q) to represent the original (complex) query \ q, \ posed to peer \ S. \ This means that the term \ t' \ appears in \ q \ and is not evaluated in the context of the evaluation of a more general term. For example, this is the case of the Ask messages presented at the end of Section 5.2.\text{c}\text{.}^6

1. \ (P_a, q2, a2, \{t, a2\}), and

\text{Note that TELL}(QID, t', R) takes an extra argument \ t', which is the term query corresponding to query id QID.\text{\textendnote{6}}
TELL_{c}(QID; ID; t' : term; R : set of objects):

1. if t' in TO-BE-CACHED log then // t' is a term of the original query q
2. delete t' from TO-BE-CACHED log
3. CACHE($(t, R))
4. for each foreign articulation $t_1 \land \ldots \land t_r \preceq u$ from another peer S to self do
5. if $t' \in \{t_1, \ldots, t_r\}$ and all t_1, \ldots, t_r are cached then
6. forward to S the pair $(t_1 \land \ldots \land t_r, \text{ans}(t_1 \land \ldots \land t_r, S'_N))$ for caching
7. $(\text{PID}, QID_1, t, n, \text{QP}) \leftarrow \text{DELETE1}(QID)$
8. $\text{QP}_1 \leftarrow \text{CLOSE}(\text{QP}, \text{QID}, R)$
9. if $n = 1$ then
10. $S \leftarrow \text{COMPUTE-ANSWER}(\text{QP}_1)$
11. if $t \notin \text{self}$ then \text{PERSIST}(\text{PID}, QID_1, t, 0, S)
12. else \text{PID}:TELL_{c}(QID_1, t, S \cup I(t))
13. else \text{PERSIST}(\text{PID}, QID_1, t, n - 1, \text{QP}_1)

Figure 12: The procedure to process TELL messages with cache

2. $(P_a, q3, a3, \{t, a3\})$.

In this way, based on the correctness of the QUERY procedure (Section 13.3), it is guaranteed that $R = \text{ans}(t', S'_N)$, i.e., the received answer R is the full answer for t' and not a subset of it, reduced due to cycles in the taxonomy (T'_N, \preceq'_N). Thus, the pair (t', R) can be safely cached.

- $(t_1 \land \ldots \land t_r, \text{ans}(t_1 \land \ldots \land t_r, S'_N))$ where $t_1 \land \ldots \land t_r \preceq u$ is an articulation from S to S', i.e., $u \in T_S$ and $t_1, \ldots, t_r \in T_S$. Each such pair is forwarded to S by the TELL_{c} procedure executed at the peer S', upon realizing that all the terms involved in the left-hand side of the articulation are stored in the local to S' cache. In particular, this check is made immediately after a pair $(t', \text{ans}(t', S'_N))$ is added in the cache of S', where $t' \in \{t_1, \ldots, t_r\}$ (see lines 3-6 of TELL_{c}).

Below are the main differences of ASK_{c}(PID, QID, t, A) with respect to the cache-less ASK:

- If the answer to the term query t ASK-ed by peer PID is in the cache, then the answer is immediately TELL-ed to peer PID. Otherwise, if $|A| = 2$ then t is added in the TO-BE-CACHED log (t is a term of the original query q). The TO-BE-CACHED log is checked by TELL_{c}(QID, t', R). If t' is found in the TO-BE-CACHED log then (t', R) is added to the local cache through the CACHE(t', R) command (line 3 of TELL_{c}).

- Before processing the tail of a hyperedge h which passes the test on line 4, a test is performed, to ascertain whether the query corresponding to the tail, given by $u_1 \land \ldots \land u_r$, is in the cache (this test is needed only if $P_h \neq \text{self}$, i.e. h corresponds to an articulation hyperedge). If yes, the only action taken is the insertion of $\text{ans}(u_1 \land \ldots \land u_r, S'_N)$ into the query sub-program QP being built (line 15). If the query is not in the cache, then for each u_i, it is checked if its answer is in the cache (this test is needed only if $P_h = \text{self}$). If not, then the execution proceeds normally.

- If all sub-queries are cached, then when all relevant hyperedges have been processed (line 16), n is zero but QP is not empty. In this case the test on line 21 is passed, and the result of QID is computed in S as if closing QP in a TELL. S is subsequently returned along with I(t). If QP is empty, then no hyperedge has been found and $S = \emptyset$. So, the result returned to the user is simply I(t).

We would like to note that our algorithms can further be extended such that TELL_{c} caches the answer $S \cup I(t)$ for term sub-queries t before TELL-ing them to the requesting peer PID (line 12 of TELL_{c}), as long as it is certain that $S \cup I(t) = \text{ans}(t, S'_N)$. This is the case if (i) for each term u of a peer S' encountered during the evaluation of t (including t itself), all hyperedges $(\{u_1, \ldots, u_r\}, u)$ of the taxonomy B-graph of S' pass the test of line 4 of ASK_{c}, or (ii) u is cached. Thus, (i) no evaluation path of u is eliminated due to cycles in the taxonomy (T_N, \preceq_N) or (ii) $\text{ans}(u, S'_N)$ is immediately retrieved from the cache.
ASK\textsubscript{ext}(PID,QID; ID: t : term; A : set of terms);
1. if t is cached then PID:TELL\textsubscript{ext}(QID,t, ans(t,S\textsubscript{N})), full)
2. else if |A| = 2 then add t into to-be-cached log // t is a term of the original query q
3. n ← 0; QP, Q, S ← ∅; flag =full
4. for each hyperedge h = \{(u\textsubscript{1},...,u\textsubscript{r})\} do
5. if \{u\textsubscript{1},...,u\textsubscript{r}\} ∩ A = ∅ then
6. if P\textsubscript{h} \neq self and u\textsubscript{i} ∧ ... ∧ u\textsubscript{r} is cached then C ← \{ans(u\textsubscript{i} ∧ ... ∧ u\textsubscript{r}, S\textsubscript{N})\}
7. else C ← ∅
8. for each u\textsubscript{i} do
9. if P\textsubscript{h} = self and u\textsubscript{i} is cached then
10. C ← C ∪ \{ans(u\textsubscript{i}, S\textsubscript{N})\}
11. else
12. ID ← NEW-QUERY-ID
13. C ← C ∪ \{ID\}
14. n ← n + 1
15. ENQUEUE(Q, (P\textsubscript{h}, ID, u\textsubscript{i}, A ∪ \{u\textsubscript{i}\}))
16. QP ← QP ∪ \{C\}
17. else flag = partial
18. if n > 0 then
19. PERSIST(PID, QID, t, n, QP, flag)
20. until QU \neq ∅
21. (P\textsubscript{h},ID,u,B) ← DEQUEUE(Q)
22. P\textsubscript{h}:ASK\textsubscript{ext}(self, ID, u, B)
23. else if QU \neq ∅ then S ← COMPUTE-ANSWER(QP)
24. PID:TELL\textsubscript{ext}(QID,t, S ∪ I(t), flag)

Figure 13: The extended procedure to process ASK messages with cache

For this reason PERSIST(PID,QID,t,n,QU) and TELL\textsubscript{c}(QID,t',R) should be extended with an extra field flag that takes the values full or partial. A (query) log object (PID,QID,t,n,QU,flag), where flag = full, of a peer S indicates that (i) for all closed term sub-queries of QU, full answers have been received and (ii) all hyperedges \{(u\textsubscript{1},...,u\textsubscript{r})\} of the taxonomy B-graph of S have passed the test of line 4 of ASK\textsubscript{c}. If this is not the case, flag = partial. A message TELL\textsubscript{c}(QID,t',R,flag), where flag = full, indicates that R = ans(t',S\textsubscript{N}), whereas a message TELL\textsubscript{c}(QID,t',R,flag), where flag = partial, indicates that R \subseteq ans(t',S\textsubscript{N}). Thus, based on the flag information, the TELL\textsubscript{c} procedure executed at a peer will always be able to know if the computed answer S ∪ I(t) for a term sub-query t requested by peer PID is a full or partial answer. In the case of a full answer and if t is the head of an articulation hyperedge then (t,S ∪ I(t)) is cached. We want to note that the latter condition is not a strong condition and is needed only in order to reduce the cache size, while taking the most advantage of caching.

The extended ASK\textsubscript{c} procedure (ASK\textsubscript{ext}) and the extended TELL\textsubscript{c} procedure (TELL\textsubscript{ext}) are given in Figures 13 and 14 respectively. The modifications are indicated by bold line numbers. Note that TELL\textsubscript{ext} calls the procedure CACHE\&FORWARD (Figure 15), when a pair (t, ans(t,S\textsubscript{N})) is going to be stored in the cache. Additionally, TELL\textsubscript{ext} uses the function min(flag, flag') (lines 8, 11), which returns the minimum of the flag values flag, flag', based on the ordering partial ≤ full. This guarantees that the flag value of the TELL\textsubscript{ext} message in line 8 and the log object in line 11 is correct.

5.1.3 Caching answers of articulation heads

The previous algorithms will cache the most frequently used terms, taking full advantage of caching with no extra cost for computing cached answers. However, caches may get filled very quickly. Below we investigate the case that we cache only the heads of articulation hyperedges, as the cached answer of these terms is the most beneficial for speeding-up query answering. For instance, in the example of Figure 16, we want to cache only a\textsubscript{0} on Peer P\textsubscript{a}, b\textsubscript{1} and b\textsubscript{2} on Peer P\textsubscript{b}, and c\textsubscript{2} on Peer P\textsubscript{c}.

For this alternative caching case, a top algorithm can be easily designed such that whenever a peer
\textsc{Tell}_{c}^{ext}(QID; ID; t': \text{term}; R: \text{set of objects}; \text{flag':\{full, partial\}});
1. if t' in TO-BE-CACHED log then // t' is a term of the original query q
2. \text{CACHE\&Forward}(t', R)
3. $(PID, QID_{1}, t, n, QP, \text{flag}) \leftarrow \text{DELETE1}(QID)$
4. $QP_{1} \leftarrow \text{CLOSE}(QP, QID, R)$
5. if $n = 1$ then
6. \begin{align*}
S & \leftarrow \text{COMPUTE-ANSWER}(QP_{1})
\end{align*}
7. if $t \not\in T_{self}$ then \text{PERSIST}(PID, QID_{1}, t, 0, S, \text{full})
8. \begin{align*}
\text{else PID:TEL}_{c}^{ext}(QID_{1}, t, S \cup I(t), \text{min}(\text{flag, flag'}))
\end{align*}
9. if $\text{min}(\text{flag, flag'})=\text{full}$ and t is the head of an articulation hyperedge then
10. \text{CACHE\&FORWARD}(t, S \cup I(t))
11. \text{else PERSIST}(PID, QID_{1}, t, n - 1, QP_{1}, \text{min}(\text{flag, flag'}))

Figure 14: The extended procedure to process Tell messages with cache

\textsc{CACHE\&FORWARD}(t: \text{term}; R: \text{set of objects});
// It stores the pair (t, R) in the local cache and checks if related (foreign articulation)
query-answer pairs can be forwarded to other peers for caching
1. \text{CACHE}(t, R)
2. if t in TO-BE-CACHED log then delete t from TO-BE-CACHED
3. \text{for each} foreign articulation $t_{1} \land \ldots \land t_{r} \leq u$ from another peer S to self do
4. if $t \in \{t_{1}, \ldots, t_{r}\}$ and all t_{1}, \ldots, t_{r} are cached then
5. forward to S the pair $(t_{1} \land \ldots \land t_{r}, \text{ans}(t_{1} \land \ldots \land t_{r}, S_{N})$ for caching

Figure 15: The procedure Cache\&Forward

\textsc{Ask}_{c}^{alt}(PID, QID; ID; t: \text{term}; A: \text{set of terms});
1. if t is cached then PID:\text{Tell}(QID, t, \text{ans}(t, S_{N}))
2. \text{else } n \leftarrow 0; QP, Q, S \leftarrow \emptyset
3. \text{for each} hyperedge $h = \{(u_{1}, \ldots, u_{r}), t\}$ such that \{u_{1}, \ldots, u_{r}\} $\cap A = \emptyset$ do
4. \begin{align*}
C & \leftarrow \emptyset
\end{align*}
5. \text{for each} u_{i} do
6. if u_{i} is cached then
7. \begin{align*}
C & \leftarrow C \cup \{\text{ans}(u_{i}, S_{N})\}
\end{align*}
8. \begin{align*}
\text{else ID} & \leftarrow \text{NEW-QUERY-ID}
\end{align*}
9. \begin{align*}
C & \leftarrow C \cup \{ID\}
\end{align*}
10. $n \leftarrow n + 1$
11. $\text{ENQUEUE}(Q, (Ph, ID, u_{i}, A \cup \{u_{i}\}))$
12. $QP \leftarrow QP \cup \{C\}$
13. if $n > 0$ then
14. $\text{PERSIST}(PID, QID, t, n, QP)$
15. \text{until $Q \neq \emptyset$}
16. $(Ph, ID, u_{i}, B) \leftarrow \text{DEQUEUE}(Q)$
17. Ph,$\text{Ask}_{c}^{ext}(self, ID, u, B)$
18. \text{else if $QP \neq \emptyset$ then \text{S} \leftarrow \text{COMPUTE-ANSWER}(QP)$
19. PID:\text{Tell}(QID, S \cup I(t))$

Figure 16: An alternative procedure to process Ask messages with cache
receives an external query q, it finds the local terms that are heads of articulation hyperedges and are
needed for the evaluation of the query. Then, for each such term t, if t is not cached, it calls the \text{QUERY}(t)
procedure (Figure 7) and it caches t along with the received answer R, as it is certain that $R = \text{ans}(t, S_N)$. This
will fill the needed caches. The answer of the original query is then computed locally (e.g. by a version of the \text{QE}
procedure, modified with caching). Note that \text{QUERY}(t)$, in this case, should call \text{ASK}_{alt}^c$ (Figure 10) which is a simplified version of \text{ASK}_c that issues \text{ASK}_{alt}^c and \text{TELL} messages. Though this approach has
the extra cost of requiring full answers for terms that do not belong to the original query q, it is the most
beneficial with respect to the trade-off cache size versus speed.

Of course, another alternative is if the above mentioned top algorithm asks for the answers of foreign
terms t (through \text{QUERY}(t)) that appear in the body of articulation hyperedges, instead of asking for the
answers of (local) terms t that are heads of articulation hyperedges.

5.1.4 Synopsis

Above we described three caching policies. Overall, four query evaluation modes can be supported by our
model. The three caching policies result in faster query evaluation, but possibly not very updated results,
since taxonomies, interpretations and articulations change. The mode without cache results in fresher results
but with a slower query evaluation.

In case there are memory limitations for caches, various update policies could be employed, e.g. keep in
cache only the answers of the most frequently used terms, or keep in cache only some parts of the answers, for
instance “popular” objects according to some external information collected for this purpose (object-ranking
techniques similar to page-ranking techniques for the Web could be employed to this end).

5.2 Querying for object descriptions

The query language of our model is term-centered, in the sense that users can extract information from a
source only by asking (Boolean combinations of) terms. But sometimes it would be useful for the user to
better understand the contents of an object, or the meaning or usage of terms. In these cases, a user would
like to be able to ask “what are the terms that are used for describing this object?” This question can be
modulated in different ways, depending whether or not only local terms are desired, and whether or not
only most specific terms are desired. Correspondingly, an enhanced query language would offer 4 types of
queries, for a given object o:

- the most specific, local terms describing o; assuming the local source is $S = (T, \preceq, \text{Obj}, I)$, the semantics
 of this query would be $\text{inds}(o)$;
- the local terms describing o, that is \{ $t \in T \mid o \in \text{ans}(t, S)$\};
- the most specific terms describing o in the network; assuming N is the network, this query would
 return $\bigcup\{ \text{inds}_{S_i}(o) \mid S_i \in N \}$;
- the terms describing o in the network, that is $\bigcup\{ t \in T_N \mid o \in \text{ans}(t, S_N) \}$.

The last two queries clearly make sense only if the objects are shared amongst the peers, otherwise their
results would be the same as that of the previous two, respectively.

Assuming the peers are willing to share their interpretation, an efficient way of answering queries of these
kinds would be to “invert the network”, that is to assign each object o to one peer. The designated peer can
store all terms that have been assigned to o by any peer of the network, i.e. $\text{inds}_{S_{alt}}(o)$. Interestingly, much
work on P2P systems has focused on the design of data structures for solving this kind of problems (see
Section 6). The existence of a Distributed Hash Table (DHT) as an additional data structure (considering
\text{Obj} as the set of keys) would allow checking whether $t \in \text{inds}_{S_{alt}}(o)$ for any t and o very efficiently, by
exchanging $O(\log K)$ messages where $K \simeq n$.

7as opposed to assign each term t to one peer.
5.3 Supporting tacit name-based articulations

In a complementary way to the network inversion discussed in the previous subsection, suppose that each element of T_N has a unique global identity and meaning, i.e. if the taxonomies of two peers S_1 and S_2 contain two terms having the same name, say train$_1$ and train$_2$, then these two correspond to the same “concept” train. Making the above assumption means that T_N exists before the formation of the network and that T_N comprises elements that have the same meaning for all sources that will form the network6 e.g. T_N could be the set of all Greek words, or all terms of the CACM taxonomy. Note that structured P2P systems (like Chord and CAN) are based on this assumption (i.e. that there is a globally accepted set of keys). In contrast, our model considers that if the same term (e.g. word) appears in the taxonomies of two different peers, then these occurrences do not denote the same concept; for example train$_1$ could mean “wagon train”, while train$_2$ could mean “instruct”. So in our model all agreements should be represented explicitly in articulations.

However, we could extend our model so that to be able to also capture a preexisting globally accepted terminology T_N, as follows: If a term t appears in two peers S_1 and S_2, then we could assume that S_1 has in its articulation the relationship $t_2 \preceq t_1$, and that S_2 has in its articulation the relationship $t_1 \preceq t_2$. Note that this would result in symmetric articulations, i.e. it is like assuming that we have one two-way articulation $t_1 \sim t_2$ (that is known by both S_1 and S_2). Although we could capture in this way the existence of a globally accepted terminology T_N, in practice the definition of articulations would be problematic: how could a peer discover that another peer uses the same term?

This problem could be solved by employing a DHT that stores the terms and the addresses of the peers that use these terms. Specifically, for each term t in T_N there will be one peer that stores the addresses of all peers that have t in their taxonomies. It follows, that a peer can exploit the DHT in order to get efficiently the implicit (term-to-term) articulations of its terms (without having to discover by itself the online peers that happen to use terms that it uses too).

Specifically, if t is a term of a peer P and t is involved in the query evaluation procedure (that takes place in P), then P should ask the DHT in order to get that addresses of the peers that also use t. It follows that the calls to the DHT should be issued in the context of the Ask procedure, so as the resulting terms to be taken into account as articulation hyperedges. For example, if $\{1, 3, 5\}$ is the set of addresses returned by the DHT, then the peer behaves as if its articulation contained the relationships $t_1 \preceq t$, $t_3 \preceq t$, $t_5 \preceq t$.

Also note that a special prefix could be used for discriminating global terms from non global terms, e.g. global: train. This could be extended to support several name spaces (e.g. transportation: train, education: train).

Overall, we can exploit a DHT of this kind in order to support efficient query evaluation in cases where both implicitly defined articulations (e.g. name-based) and explicitly defined articulations (like those discussed in this paper) are desired.

6 Related work

In this paper we studied the problem of evaluating content-based retrieval queries in an entirely pure P2P architecture (without any form of structuring), where each peer can have its own conceptual model expressed as a taxonomy.

To evaluate a query q posed to a peer S, peer S propagates the incoming query (which is always expressed over its own taxonomy) only to those peers to which S has an articulation and who can contribute to the answer of the query (the latter is determined by the taxonomy and the articulations of S). Specifically, S does not propagate the original query q, but a set of queries each one expressed in the query language (here vocabulary) of the recipient peer. Note that there is not any form of centralized index (like in Napster8), nor any flooding of queries (like in Gnutella9), nor any form of partitioned global index (like in Chord36).

6 In other words, it is assumed that there is already a set of agreements between all peers on a common vocabulary. These agreements are not represented explicitly within the network (they are external).
and CAN \cite{23}). Instead we have a query propagation mechanism that is query and articulation dependent (note that Semantic Overlay Networks \cite{13} is a very simplistic approach to this). In case the objects of the domain happen to have a unique global identity (like URI), then automatic techniques can be applied for the construction of articulations (e.g. see \cite{35}), and we can also obtain more rich object descriptions by aggregating the descriptions that have been associated to each object.

Moreover note that the peers of our model are quite autonomous in the sense that they do not have to share or publish their stored objects, taxonomies or mappings with the rest of the peers (neither to one central server, nor to the on-line peers). To participate in the network, a peer just has to answer the incoming queries by using its local base, and to propagate queries to those peers that according to its “knowledge” (i.e. taxonomy + articulations) may contribute to the evaluation of the query. However both of the above tasks are optional and at the “will” of the peer.

The literature about information integration distinguishes two main approaches: the local-as-view (LAV) and the global-as-view (GAV) approach (see \cite{10, 28} for a comparison). In the LAV approach the contents of the sources are defined as views over the mediator’s schema, while in the GAV approach the mediator’s virtual contents are defined as views of the contents of the sources. The former approach offers flexibility in representing the contents of the sources, but query answering is “hard” because this requires answering queries using views (\cite{10, 28, 12}). On the other hand, the GAV approach offers easy query answering (expansion of queries until getting to source relations), but the addition/deletion of a source implies updating the mediator view, i.e. the definition of the mediator relations. In our case, and if the articulations contain relationships between single terms, then we have the benefits of both GAV and LAV approaches, i.e. (a) the query processing simplicity of the GAV approach, as query processing basically reduces to unfolding the query using the definitions specified in the mapping, so as to translate the query in terms of accesses (i.e. queries) to the sources, and (b) the modeling scalability of the LAV approach, i.e. the addition of a new underlying source does not require changing the previous mappings. On the other hand, term-to-query articulations resemble the GAV approach. In a P2P setting, the cycles create more complex emergent relationships. For example suppose a peer \(A\) having an articulation \(b_1 \land b_2 \leq a_1\) to a peer \(B\) (this is a GAV definition for \(a_3\) of \(A\)) and a peer \(B\) having an articulation \(a_1 \land a_2 \leq b_3\) to the peer \(A\) (this is a GAV definition for \(b_3\) of \(B\)). However by taking into account the entire network, we result in the “mixed” relationship \(b_1 \land b_2 \land a_2 \leq b_3\).

Recently, there have been several works on P2P systems endowed with logic-based models of the peers’ information bases and of the mappings relating them (called P2P mappings). These works can be classified in 2 broad categories: (1) those assuming propositional or Horn clauses as representation language or as a computational framework, and (2) those based on more powerful formalisms. With respect to the former category (e.g., see \cite{6}), our work makes an important contribution, by providing a much simpler algorithm for performing query answering than those based on resolution. Indeed, we do rely on the theory of propositional Horn clauses, but only for proving the correctness of our algorithm. For implementing query evaluation, we devise an algorithm that avoids the (unnecessary) algorithmic complications that plague the methods based on resolution. As an example, after appropriate transformations our framework can be seen as a special case of that in \cite{6}. Then, query evaluation can be performed by first computing the prime implicates of the negation of each term in the query, using the resolution-based algorithms presented in \cite{6}. As the complexity of this problem is exponential w.r.t. the size of the taxonomy and polynomial w.r.t. the size of \(Obj\), there is no computational gain in using this approach. Instead, there is an algorithmic loss, since the method is much more complicated than ours.

As for the second category above, works in this area have focused on providing highly expressive knowledge representation languages in order to capture the widest range of applications. Notably, \cite{11} proposes a model allowing, among other things, for existential quantification both in the bodies and in the heads of the mapping rules. Inevitably, such languages pose computational problems: deciding membership of a tuple in the answer of a query is undecidable in the framework proposed by \cite{11}, while disjunction in the rules’ heads makes the same problem coNP-hard already for datalog with unary predicate (i.e. terms), as we have proved in Section \S 5.5. These problems are circumvented in both approaches by changing the semantics of a P2P network, in particular by adopting an epistemic reading of mappings.

Below, we review in more detail several works dealing with the problem of answering (union of) conjunctive queries posed to a peer in logic-based P2P frameworks.
In [9], a query answering algorithm for simple P2P systems is presented where each peer \(S \) is associated with a local database, an (exported) peer schema, and a set of local mapping rules from the schema of the local database to the peer schema. P2P mapping rules are of the form \(cq_1 \leadsto cq_2 \), where \(cq_1, cq_2 \) are conjunctive queries of the same arity \(n \geq 1 \) (possibly involving existential variables), expressed over the union of the schemas of the peers, and over the schema of a single peer, respectively. Note that this representation framework partially subsumes our network source framework, since in our case \(cq_1, cq_2 \) are of arity 1, \(cq_1 \) is a conjunctive query of the form \(u_1(x) \land \ldots \land u_r(x) \) over the terminology of a single peer \(\mathcal{P} \) and \(q_2 \) is a single atom query \(t(x) \) over the terminology of the peer that the mapping (articulation) belongs to. However, simple P2P systems cannot express the local to a peer \(S \) taxonomy \(\preceq_S \) of our framework. Query answering in simple P2P systems according to the first-order logic (FOL) semantics is in general undecidable. Therefore, the authors adopt a new semantics based on epistemic logic in order to get decidability for query answering. Notably, the FOL semantics and epistemic logic semantics for our framework coincide. In particular, in [9], a centralized bottom-up algorithm is presented which essentially constructs a finite database \(RDB \) which constitutes a “representative” of all the epistemic models of the P2P system. The answers to a conjunctive query \(q \) are the answers of \(q \) w.r.t. \(RDB \). However, though this algorithm has polynomial time complexity, it is centralized and it suffers from the drawbacks of bottom-up computation that does not take into account the structure of the query.

The work in [9] is extended in [11], where a more general framework for P2P systems is considered, which fully subsumes our framework and whose semantics is based on epistemic logic. In particular, in [11], a peer is also associated with a set of (function-free) FOL formulas over the schema of the peer. A top-down distributed query answering algorithm is presented which is based on synchronous messaging. Essentially, the algorithm returns to the peer where the original query is posed, a datalog program by transferring the full extensions of the relevant to the query, peer source predicates along the paths of peers involved in query processing. The returned datalog program is used for providing the answers to the query. Obviously, our algorithm has computational advantages w.r.t. the algorithm in [11], since during query evaluation only the full or partial answer to a term (sub)query is transferred to the peer that posed the (sub)query, and not the full extensions of all terms involved in its evaluation.

The framework in [34], extends our framework by considering (i) \(n \)-ary (instead of unary) predicates (i.e. P2P mappings are general datalog rules) and (ii) a set of domain relations (also suggested in [35]), mapping the objects of one peer to the objects of another peer. A distributed query answering algorithm is presented based on synchronous messaging. However, the algorithm will perform poorly in our restricted framework since when a peer receives a (sub)query, it iterates through the relevant P2P mappings and for each one of them, sends a (sub)query to the appropriate peer (waiting for its answer), until fixpoint is reached. In our case, when a peer receives a (sub)query, each relevant P2P mapping is considered just once and no iteration until fixpoint is required.

A P2P framework similar to [9] is presented in [25], where query answering according to FOL semantics is investigated. Since in general, query answering is undecidable, the authors present a centralized algorithm (employed in the Piazza system [23]), which however is complete (the algorithm is always sound), only for the case that polynomial time complexity in query answering can be achieved. This includes the condition that inclusion P2P mappings are acyclic. However, such a condition severely restricts the modularity of the system. Note that our algorithm is sound and complete even in the case that there are cycles in the term dependency path and it always terminates. Thus, our framework allows placing articulations between peers without further checks. This is quite important, because the actual interconnections are not under the control of any actor in the system.

In [20], the authors consider a framework where each peer is associated with a relational database, and P2P mapping rules contain conjunctive queries in both the head and the body of the rule (possibly with existential variables), each expressed over the alphabet of a single peer. Again the semantics of the system is defined based on epistemic logic [18]. In these papers, a peer database update algorithm is provided allowing for subsequent peer queries to be answered locally without fetching data from other nodes at query

9Note that P2P mapping rules of this kind can accommodate both GAV and LAV-style mappings, and are referred in the literature as GLAV mappings.

10Recall that this restriction can be easily relaxed.

11In our framework, domain relations correspond to the identity relation.
time. The algorithm (which is based on asynchronous messaging) starts at the peer which sends queries to all neighbour peers according to the involved mapping rules. When a peer receives a query, the query is processed locally by the peer itself using its own data. This first answer is immediately replied back to the node which issued the query and sub-queries are propagated similarly to all neighbour peers. When a peer receives an answer, (i) it stores the answer locally, (ii) it materializes the view represented in the head on the involved mapping rule, and (ii) it propagates the result to the peer that issued the (sub)query. Answer propagation stops when no new answer tuples are coming to the peer through any dependency path, that is until fixpoint is reached. In our case, the database update problem for a peer \(S \) amounts to invoking \(S' : \text{QUERY}(q) \) for each articulation \(q \preceq t \) from \(S \) to another peer \(S' \) and storing the answer locally to \(S \). Note that our query answering algorithm is also based on asynchronous messaging. However, since it considers a limited framework, it is much simpler and no computation until fixpoint is required. In particular, for each term (sub)query issued to a peer through \(\text{ASK} \), only one answer is returned through \(\text{TELL} \).

7 Conclusions

This study presents a model of a P2P network consisting of sources based on taxonomies. A taxonomy states subsumption relationships between negation-free DNF formulas on terms and negation-free conjunctions of terms. The language for querying such sources offers Boolean combinations of terms, in which negation can be efficiently handled by adopting a closed-world reading of the information. An efficient, hypergraph-based query evaluation method is presented for such sources, resting on results coming from the theory of propositional clauses. It is also shown that extending the expressive power of the taxonomy language by adding negation or full disjunction, leads to the intractability of the decision problem.

A model of a P2P network, having sources as nodes, is subsequently presented. The essential feature of the model is the possibility of relating the assumed disjoint peer terminologies by means of subsumption relationships of the same type as those in the taxonomies of the sources. The resulting system subscribes to the universally accepted notion of P2P information system, recently postulated also in the context of the so-called emergent semantics [4]. It is also shown that the results presented in the paper do apply also if the subsumption relationships are formed by arbitrarily mixing terms from different terminologies.

An efficient query evaluation procedure for queries stated against such a network is presented, and proved correct. The procedure is a distributed version of the centralized procedure, based on an asynchronous, message-based interaction amongst the peers aimed at favoring scalability. Some optimization techniques are also discussed, namely one based on caching, for which the algorithms for message processing are given.

Finally, the work is related to the most relevant papers in the area of P2P systems. It remains to be seen, whether the same efficiency can be obtained by allowing full datalog as a representation language for information sources and for articulations. Yet, it is evident that the B-graph based algorithm presented in this paper does not extend immediately to the general datalog case, due to the presence of multiple variables in the rules and unification.

Acknowledgments

We thank Nicolas Spyratos for inspiring this work. We also thank ERCIM for offering Yannis Tzitzikas a fellowship in the course of which the work was started, and the DELOS Network of Excellence Exchange Programme, for supporting Carlo Meghini’s visit to the Institute of Computer Science of FORTH, in the course of which the work was completed.

References

A Completion of the example

We resume the example from the processing of the message \(P_a:\text{Tell}(q3, I(a3)) \).

- \(P_a:\text{Tell}(q3, I(a3)) \)
 - \(\text{Tell} \) finds the object in the log and updates it. The old log on \(P_a \) was:

 \[
 (P_a, q1, t, 2, \{q2, q3\})
 \]

 The new log is:

 \[
 (P_a, q1, t, 2, \{q2, I(a3)\})
 \]

- \(P_a:\text{Ask}(P_a, q2, a2, \{t, a2\}) \)
 - Since there are two incoming hyperedges in \(a2 \), both in \(P_b \), \(\text{Ask} \) enqueues 3 \(\text{Ask} \) messages to \(P_b \), one for each involved term:
 - \(P_b:\text{Ask}(P_a, q4, b3, \{t, a2, b3\}) \)
 - \(P_b:\text{Ask}(P_a, q5, b1, \{t, a2, b1\}) \)
 - \(P_b:\text{Ask}(P_a, q6, b2, \{t, a2, b2\}) \)
 - It then persists the corresponding log object. The new log is:

 \[
 (P_a, q1, t, 1, \{q2, I(a3)\})
 \]

 \[
 (P_a, q2, a2, 3, \{q4, q5, q6\})
 \]

 and issues the 3 enqueued messages.

- \(P_a:\text{Tell}(q4, I(b3)) \)
 - Since there are no incoming hyperedges in \(b3 \), the message \(P_a:\text{Tell}(q4, I(b3)) \) is produced.

- \(P_a:\text{Tell}(q4, I(b3)) \)
 - \(\text{Tell} \) finds the object in the log and updates it. The updated log is:

 \[
 (P_a, q1, t, 1, \{q2, I(a3)\})
 \]

 \[
 (P_a, q2, a2, 2, \{I(b3), q5, q6\})
 \]

- \(P_a:\text{Ask}(P_a, q5, b1, \{t, a2, b1\}) \)
 - Since there are two incoming hyperedges in \(b1 \), \(\text{Ask} \) enqueues 2 \(\text{Ask} \) messages to \(P_c \), one for each involved term:
 - \(P_c:\text{Ask}(P_a, q7, c1, \{t, a2, b1, c1\}) \)
 - \(P_c:\text{Ask}(P_b, q8, c2, \{t, a2, b1, c2\}) \)
 - It then persists the corresponding log object. The log is now:

 \[
 (P_a, q5, b1, 2, \{q7, q8\})
 \]

- \(P_b:\text{Ask}(P_a, q6, b2, \{t, a2, b2\}) \)
 - Since there is one incoming hyperedge in \(b2 \), \(\text{Ask} \) enqueues 2 \(\text{Ask} \) messages to \(P_c \), one for each involved term:
 - \(P_c:\text{Ask}(P_a, q9, c2, \{t, a2, b2, c2\}) \)
 - \(P_c:\text{Ask}(P_b, q10, c3, \{t, a2, b2, c3\}) \)
 - It then persists the corresponding log object. The log is now:

 \[
 (P_a, q5, b1, 2, \{q7, q8\})
 \]

 \[
 (P_a, q6, b2, 2, \{q9, q10\})
 \]

- \(P_a:\text{Ask}(P_b, q7, c1, \{t, a2, b1, c1\}) \)
 - Since there are no incoming hyperedges in \(c1 \), \(\text{Ask} \) generates \(P_b:\text{Tell}(q7, I(c1)) \).

- \(P_b:\text{Tell}(q7, I(c1)) \)
 - \(\text{Tell} \) finds the object in the log and updates it. The new log is:

 \[
 (P_a, q5, b1, 1, \{I(c1), q8\})
 \]

 \[
 (P_a, q6, b2, 2, \{q9, q10\})
 \]
\[P_5: \text{Ask}(P_5, q8, c2, \{t, a2, b1, c2\}) \]

Since there is one incoming hyperedge in c2 but its tail has a non-empty intersection with the set of visited terms, just a TELL message results: \(P_5; \text{Tell}(q8, I(c2)) \).

\[P_5: \text{Tell}(q8, I(c2)) \]

\(\text{Tell} \) finds the object in the log and updates it. The new log is:

\[
\begin{align*}
P_5 & \log \\
(& P_5, q5, b1, 0, \{I(c1)\}, \{I(c2)\}) \\
(& P_5, q6, b2, 2, \{q9, q10\})
\end{align*}
\]

There are no more open calls in the updated log object, therefore the answer to the query \(q5 \) can be computed as \(I(c1) \cup I(c2) \). Then the object is deleted permanently from the log and the message \(P_5; \text{Tell}(q5, I(b1) \cup I(c1) \cup I(c2)) \) is issued.

\[P_6: \text{Tell}(q5, I(b1) \cup I(c1) \cup I(c2)) \]

\(\text{Tell} \) finds the object in the log and updates it. The new log is:

\[
\begin{align*}
P_6 & \log \\
(& P_6, q1, t, 1, \{q2, I(a3)\}) \\
(& P_6, q2, a2, 1, \{I(b3)\}, \{I(b1) \cup I(c1) \cup I(c2), q6\})
\end{align*}
\]

- \(P_5: \text{Ask}(P_5, q9, c2, \{t, a2, b2, c2\}) \)

Since there is one incoming hyperedge in c2, \text{Ask} enqueues 2 \text{Ask} messages to \(P_6 \), one for each involved term:

\[- P_5: \text{Ask}(P_5, q11, b1, \{t, a2, b2, c2, b1\}) \]

\[- P_5: \text{Ask}(P_5, q12, b3, \{t, a2, b2, c2, b3\}) \]

It then persists the corresponding log object. The updated log is:

\[
\begin{align*}
P_5 & \log \\
(& P_5, q9, c2, 2, \{q11, q12\}) \\
(& P_5: \text{Ask}(P_5, q10, c3, \{t, a2, b2, c3\}) \\
(& P_5: \text{Tell}(q10, I(c3)) \\
(& P_5, q6, b2, 1, \{q9, I(c3)\}) \\
\end{align*}
\]

- \(P_5: \text{Ask}(P_5, q11, b1, \{t, a2, b2, c2, b1\}) \)

There are two incoming hyperedges in b1, but the one having c2 in the tail generates no \text{Ask} messages. The only \text{Ask} enqueued is therefore:

\[- P_5: \text{Ask}(P_5, q13, c1, \{t, a2, b2, c2, b1, c1\}) \]

It then persists the corresponding log object. The updated log is:

\[
\begin{align*}
P_5 & \log \\
(& P_5, q6, b2, 1, \{q9, I(c3)\}) \\
(& P_5, q11, b1, 1, \{q13\}) \\
\end{align*}
\]

- \(P_5: \text{Ask}(P_5, q12, b3, \{t, a2, b2, c2, b3\}) \)

Since there are no incoming hyperedges in b3, it results: \(P_5: \text{Tell}(q12, I(b3)) \).

\[- P_5: \text{Tell}(q12, I(b3)) \]

\(\text{Tell} \) finds the object in the log and updates it. The new log is:

\[
\begin{align*}
P_5 & \log \\
(& P_5, q9, c2, 1, \{q11, I(b3)\}) \\
\end{align*}
\]

- \(P_5: \text{Ask}(P_5, q13, c1, \{t, a2, b2, c2, b1, c1\}) \)

Since there are no incoming hyperedges in c1, \text{Ask} issues \(P_5: \text{Tell}(q13, I(c1)) \).

\[- P_5: \text{Tell}(q13, I(c1)) \]

\(\text{Tell} \) finds the object in the log and updates it. The new log is:

\[
\begin{align*}
P_5 & \log \\
(& P_5, q6, b2, 1, \{q9, I(c3)\}) \\
(& P_5, q11, b1, 0, \{I(c1)\}) \\
\end{align*}
\]

There are no more open calls in the updated log object, therefore the answer to the query \(q11 \) can be computed as \(I(c1) \). Then the object is permanently deleted from the log and the message \(P_5; \text{Tell}(q11, I(b1) \cup I(c1)) \) is issued.
\[- P_b: \text{Tell}(q11, I(b1) \cup I(c1))
\]
\text{Tell} finds the object in the log and updates it. The updated log is:
\[
(P_b, q9, c2, 0, \{ \{ I(b1) \cup I(c1) \} \})
\]
There are no more open calls in the updated log object, therefore the answer to the query \(q9 \) can be computed. Then the object is permanently deleted from the log and the message \(P_b: \text{Tell}(q9, [I(b1) \cup I(c1)] \cap I(b3)] \cup I(c2)) \) is issued.

\[- P_a: \text{Tell}(q9, [(I(b1) \cup I(c1)) \cap I(b3)] \cup I(c2))
\]
\text{Tell} finds the object in the log and updates it. The updated log is:
\[
(P_a, q6, b2, 0, \{ \{ [I(b1) \cup I(c1)] \cap I(b3)] \cup I(c2), I(c3)] \})
\]
There are no more open calls in the updated log object, therefore the answer to the query \(q6 \) can be computed. Then the object is permanently deleted from the log and the message \(P_a: \text{Tell}(q6, [X \cap I(c3)] \cup I(b2)) \) is issued, where
\[
X = [(I(b1) \cup I(c1))] \cap I(b3)] \cup I(c2)
\]

\[- P_a: \text{Tell}(q6, [X \cap I(c3)] \cup I(b2))
\]
\text{Tell} finds the object in the log and updates it. The updated log is:
\[
(P_a, q1, t, 1, \{ \{ q2, I(a3) \} \})
\]
\[
(P_a, q2, a2, 0, \{ \{ I(b3), \} \cup I(c1) \cup I(c2), [X \cap I(c3)] \cup I(b2)] \})
\]
There are no more open calls in the updated log object, therefore the answer to the query \(q2 \) can be computed. Then the object is permanently deleted from the log and the message \(P_a: \text{Tell}(q2, I(a2) \cup I(b3) \cup (Y \cap Z)) \) is issued, where
\[
Y = (I(b1) \cup I(c1) \cup I(c2)
\]
\[
Z = [X \cap I(c3)] \cup I(b2)
\]

\[- P_a: \text{Tell}(q2, I(a2) \cup I(b3) \cup (Y \cap Z))
\]
\text{Tell} finds the object in the log and updates it. The new log is:
\[
(P_a, q1, t, 0, \{ \{ I(a3) \cap (I(a2) \cup I(b3) \cup (Y \cap Z))] \})
\]
There are no more open calls in the updated object and \(q1 \notin T_{Pa} \). Therefore, \(q1 \) must be a user (external) query. The \text{QUERY} procedure will realize that \(q1 \) is complete, and return the answer to the user, thus concluding query evaluation.