
Springer Nature 2021 LATEX template

Querying Knowledge Graphs through Positive

and Negative Examples and Feedback

Akritas Akritidis1,2 and Yannis Tzitzikas1,2*

1Institute of Computer Science, Foundation for Research and
Technology - Hellas (FORTH), N. Plastira 100, Voutes,

Heraklion, Greece.
2Department of Computer Science, University of Crete,

Heraklion, Crete, Greece.

*Corresponding author(s). E-mail(s): tzitzik@ics.forth.gr;
Contributing authors: akritas@ics.forth.gr;

Abstract

The formulation of structured queries over Knowledge Graphs is not
an easy task. To alleviate this problem, we propose a novel interac-
tive method for SPARQL query formulation, for enabling users (plain
and advanced) to formulate gradually queries by providing examples
and various kinds of positive and negative feedback, in a manner that
does not pre-suppose knowledge of the query language or the contents
of the Knowledge Graph. In comparison to other example-based query
approaches, distinctive features of our approach is the support of neg-
ative examples, and the positive/negative feedback on the generated
constraints. We detail the algorithmic aspect and we present an inter-
active user interface that implements the approach. The application of
the model on real datasets from DBpedia (Movies, Actors) and other
datasets (scientific papers), showcases the feasibility and the effectiveness
of the approach. A task-based evaluation that included users that are not
familiar with SPARQL, provided positive evidence that the interaction is
easy-to-grasp and enabled most users to formulate the desired queries.

Keywords: Query by Example, Knowledge Graphs

1

Preprint of:
A. Akritidis and Y. Tzitzikas, Querying Knowledge Graphs through Positive and Negative
Examples and Feedback, Journal of Intelligent Information Systems (JIIS), 2024
(accepted for publication).

Springer Nature 2021 LATEX template

2 Querying Knowledge Graphs through Examples and Feedback

1 Introduction

The formulation of structured queries has always been considered a challenging
task. Especially in Knowledge Graphs where there are no specific constraints
or limitations regarding the structure of their contents. The user must either
have a prior understanding of the current structure of the graph, or the query
language to acquire that understanding. An additional difficulty is the syntax
of the query language itself, that makes the formulation of queries from plain
users infeasible. Consequently plain users need training to formulate queries.
For these reasons, several methods and tools have been developed over the
years that try to assist the user to formulate queries either by providing helpful
information while the user writes the query or by hiding the text based nature
of the query behind a dynamic visual interface. Most of these approaches
benefit both plain and knowledgeable users in formulating SPARQL queries
without requiring much familiarity with the knowledge graph or the query
language or both.

In this paper we present “SPARQL by Example” an interactive exam-
ple based method for formulating queries that utilizes a feedback loop. The
approach is inspired by the Query-by-Example paradigm [33] that was devel-
oped in the context of Relational Databases, as well as by the relevance feedback
mechanisms in Information Retrieval. The main idea is the following: The user
provides one or more entities, that she has discovered while browsing or by
keyword search. Then we compute a query whose result contains the provided
entity, plus other ones that have commonalities with the entities provided by
the user. Subsequently the user can refine the formulated answer (and query)
by providing interactively positive/negative feedback, by selecting/rejecting
constraints that are given to the user, as well as more positive or negative
examples.

To grasp the idea, Figure 1 shows the start of the interaction loop. The
user selects (through keyword search) as starting examples the films “The
Prestige” and “The Dark Knight” using simple keyword search. The system
then generates a list of selected common constraints and returns all entities
that comply with them. The user then has the option to either access the results
and the generated SPARQL query or continue refining the results by giving
feedback. In our case the user by typing the titles of two movies, managed
to formulate the query “movies with Christian Bale and Michael Caine, with
director Christoopher Nolan and producer Emma Thomas, and can directly
see the answer of that query (the movies “Batman Begins” and The “Dark
Knight Rises” as shown in Figure 1(right)), as well as the SPARQL query,
as shown in Figure 2. If the user is not interested in the involvement of the
actor “Christian Bale” the constraint “dbp:starring = Christian Bale” can be
flagged as unwanted. The system will then generate a new list of constraints
that still describe all the given examples but ignore the actor.

Although there are some works that aim at offering a QBE-like interaction
over Knowledge Graphs in RDF, i.e. [2, 17, 19], our approach has some dis-
tinctive characteristics. In particular, “Qbees” [19] neither supports negative

Springer Nature 2021 LATEX template

Querying Knowledge Graphs through Examples and Feedback 3

Fig. 1 Running Example: Finding movies through examples and feedback (via
SPARQL-QBE)

1PREFIX dbo: <http://dbpedia.org/ontology/>
2PREFIX dbr: <http://dbpedia.org/resource/>
3

4SELECT ?x WHERE {
5 ?x rdf:type dbo:Film .
6 ?x dbo:director dbr:Christopher_Nolan .
7 ?x dbo:producer dbr:Emma_Thomas .
8 ?x dbo:starring dbr:Christian_Bale .
9 ?x dbo:starring dbr:Michael_Caine .

10}

Fig. 2 The formulated SPARQL example of the running example

examples nor produces a pure SPARQL query, “Query from examples” [17]
requires the user to answer a number of questions, while “Reverse engineering
SPARQL queries” [2] cannot receive feedback on the generated constraints.

In a nutshell, the contributions of this work are: (a) a novel interactive
method for formulating SPARQL by example, (b) an analysis of the process,
(c) an implementation of the model that proves its feasibility, and (d) an
evaluation of the model with users with promising results. The basic idea
has been described in the demo paper [1]. In comparison to that work, the
current paper: (i) describes in more detail the related work and the placement
of the current work, (ii) provides examples for making clear the benefits of
the interaction, (iii) details the process, and the corresponding algorithmic
aspects, (iv) includes application results from several datasets.

The rest of this paper is organized as follows: Section 2 describes the context
and related work, Section 3 introduces the method and the corresponding algo-
rithms. Section 4 describes the implementation of the approach, i.e. the system
SPARQL-QBE, and discuss its expressive power and scalability. Section 5 is about
evaluation, specifically it reports the results of a task-based evaluation with

Springer Nature 2021 LATEX template

4 Querying Knowledge Graphs through Examples and Feedback

Fig. 3 An Overview of Access Methods over RDF

users, compares the functionality of the approach with other “example-based”
systems, and discusses when the proposed method in beneficial in comparison
to other methods for query formulation, as well as applicability and limita-
tions. Finally Section 6 concludes the paper and identifies issues for further
research.

2 Context and Related Work
Section 2.1 discusses the placement of this work in the spectrum of access
methods over RDF, Section 2.2 discusses SPARQL formulators, Section 2.3
describes example-based SPARQL works, while Section 2.4 discusses cases
from different domains where the notion of “example” is used.

2.1 Context. Overview of Access Methods over RDF
There are several access methods over RDF, as it can be seen in Fig. 3. In par-
ticular, they can be divided in four different categories, a) Structured Query
Languages (like SPARQL and various extensions of the language), b) Keyword
Search (e.g. [21]), c) Interactive Information Access that includes plain brows-
ing, similarity-based browsing [4], faceted search [29], and query builders, and
d) Natural Language Interfaces (like QA [20]).
Our Placement. Our work falls in the category of Interactive Information
Access, specifically on assistants for query formulation.

2.2 SPARQL Query Formulators in General
The tools that aid the formulation of SPARQL queries could be divided into
two categories Query Builders and Faceted Search.

Query Builders like SPARQL Assist [18] and YASGUI [24] simply assist
the user to write the query with the main interface being a text field for
SPARQL. More visual Query builders, like SPARKLIS [10], ResearchSpace

Springer Nature 2021 LATEX template

Querying Knowledge Graphs through Examples and Feedback 5

[22], Sparnatural [11], and Assistive Query Building (A-QuB) [16], enable the
user to construct a query step by step using interactive graphical interfaces.
For instance SPARKLIS [10], enables the user to inspect the schema and select
elements through which to formulate the desired query. To hide the complexity
of the schema, systems like ResearchSpace [22], Sparnatural [11], and Assis-
tive Query Building (A-QuB) [16] enable the user to formulate a query over
an abstraction of the schema, and assist the user by providing autocomplete
fields, dropdown lists and other similar elements. The queries that are formu-
lated over that view are then translated to SPARQL queries over the original
schema. This approach is very useful in cases the ontology is big and complex
(like CIDOC CRM [7]), since it would be almost impossible for the user to
formulate directly one of the derived SPARQL queries. However, the abstrac-
tion of the model has to be configured by the designer. The formulators, like
RDF Explorer [30] allow the user to freely explore an interactive visual graph,
with the assistance of various components (search panel, visual query editor,
node detail view, node editor, SPARQL query editor), that will lead to the
formulation of a query (see [13] for an overview of older visual query builders
published prior to 2015).

Faceted Search systems over RDF (see [29] for a survey), have a more
exploratory nature, showing also the entities at each state and offering to the
user only options that lead to non empty results. For a recent Faceted Search
system over RDF Knowledge Graphs that supports also analytic queries, see
[23]. Somehow relevant are the extensions of SPARQL with similarity, like
[9, 31] enabling the formulation of criteria that would be hard to express in
SPARQL.
Our Placement. Our work differs since the main input from the user a set of
(positive and negative) entities.

2.3 Example-based SPARQL Query Formulators

There have been other works where examples are used as the starting point for
finding a desired set of results. Although the term “example” is used in every
case (i.e. in the context of each such work) the definition of the term is differ-
ent. In our work, the notion of “example” has 4 different types: positive and
negative entities, and positive and negative property-value pairs (constraints).

In “Query from examples” [17] the user provides examples in a form of
dataset-result pairs, however they may not be part of the final results. The
system then starts a feedback loop with the user by asking specific generated
questions.

In “Qbees: query by entity examples” [19] the examples are entities but
only positive, there is no support for negative examples. The results are directly
generated based on ranking of common properties without the formulation of
corresponding SPARQL query.

In “Reverse engineering SPARQL queries” [2] (and in works that use the
same technique, i.e. SPARQLByE [6]), the examples are positive and nega-
tives entities, there is no support for specific property-value pairs. The system

Springer Nature 2021 LATEX template

6 Querying Knowledge Graphs through Examples and Feedback

generates a query based on the given examples with an optional feedback loop
where the user can adjust the given examples in every step.
Our Placement. Our work most resembles the “Reverse engineering SPARQL
queries”, however the techniques described in that paper cannot integrate
property-value pairs as possible positive or negative examples. The addition of
property-value pair examples, especially the negative ones, can greatly improve
the feedback since it saves the user from having to find counter-examples.
Counter-examples are difficult to find and may not be interpreted by the
system as intended.

2.4 “Example”-based Approaches in other Domains and
Tasks

Query by Example in Relational Databases. In the context of rela-
tional databases, almost 50 years ago, Moshé M. Zloof developed the
Query-by-Example language [33]. The goal of the language was to allow non-
programmers to query relational databases. The user is provided a visual area
with empty tables where the user could add rows and fill cells. Every table
provided corresponded to a table in the database with the same columns and
column names but with none of the existing rows. In the simplest cases, the
user constructs example rows with a combination of constants and variables
in some of the columns. Then the system provides values for the variables
that conform with the example rows. The variables can be referenced and are
shared between all the example rows of each table which allows the creation of
complex queries that support implicit joining of tables. The language was also
extended to support more operations than just querying [34] [32]. A study of
real users (of that era) trying to solve problems using Query-by-Example [27]
has shown promising results. However the number of tables/columns of the
database was relatively small in comparison to the number of concepts and
relationships of a knowledge graph. For instance, if we map each concept to a
table, and each incoming/outgoing property of that entity to a column of that
table, then we would get a big number of tables, each having a big number of
columns, something that would not be handy for direct manipulation through
interaction by the user. Many graphical front-ends for databases use the ideas
from QBE (Query By Example) today.

It should be noted that in Moshé M. Zloof’s papers [33] the “examples”
are effectively a combination of constraints that describe the expected results.
Note that relational databases are value-based, however RDF is graph-based
and has explicit entities. To this end, we use entities instead of values, and as
we shall see this is more flexible (and economical) for the user than values,
since an entity is associated with several values.

Information Retrieval (IR). In IR we have Relevance Feedback [26] where
the user provides positive and negative feedback to the hits returned to the
initial query, which are used for improving the query. The updated query is
aimed at returning better results, however it is larger (and more expensive

Springer Nature 2021 LATEX template

Querying Knowledge Graphs through Examples and Feedback 7

to evaluate), and can lead to some unexpected results (low explainability). In
our case we do not have this problem, since we use the input for the common
constraints and the user selectes the desired.

Schema Mappings. The notion of example has also been used for construct-
ing mappings between schemas. For instance, according to the ostensive method
for schema mappings [28], two systems exchange sets of objects and try to
compute and return the best approximate queries that describe these objects,
and this enables the two parties to establish mappings between their terms
and queries.

3 SPARQL by Example: Problem Statement,
Principles and Algorithms

Section 3.1 states the problem, Section 3.2 introduces the proposed process,
that we call SPARQL-QBE, accompanied with examples, Section 3.3 describes
extended constraints, and Section 3.4 provides the full algorithm.

3.1 Problem Statement

We shall first describe the general idea and principles, and then (in Section
3.2) we will provide examples.

Given a set of positive and negative examples, EP and EN respectively
(where EP ∩EN = ∅), the objective is to compute a query q, such that answer
of the q (strictly) contains the positive examples, i.e. ans(q) ⊃ EP and does
not contain the negative examples, i.e. EN ∩ans(q) = ∅. We confine ourselves
to conjunctive queries, where each conjunct c is a property-value pair.

Of course there may be several such queries, or no query at all. Since the
user provides the set EP as a set of indicative examples, to provide him/her
with more entities, it is reasonable to try finding those conditions that the
elements of EP satisfy, and suggest to the user those (more) entities that satisfy
these constraints. Since there may be several common constraints, there is
a need for methods for selecting those to be included in the query. Since we
are in the context of an interactive system, this selection can be based on the
following desiderata: (a) the selection should support gradual enlargement of
the answer, (b) the selection should be transparent and explainable (i.e. the
user should understand why he gets more entities). For this reason, we propose
computing and showing the common constraints in a way that enables the user
to declare any of the constraints as wanted or unwanted creating in this way
the sets of positive and negative constraint examples, CP and CN respectively
(where CP ∩ CN = ∅).

As regards the negative entity examples, i.e. the entities in EN , they are
used to exclude certain combinations of common constraints. Note that it is
possible for the entities of EN to satisfy some of the common constraints but
not all the constraints that will be included in the final query q. Essentially,

Springer Nature 2021 LATEX template

8 Querying Knowledge Graphs through Examples and Feedback

we would like a function that takes as input the aforementioned examples, and
returns the desired query q, i.e. SPARQL-QBE(EP , EN , CP , CN) = q

3.2 The Exact Process of SPARQL-QBE

Positive Examples. Let K be the set of RDF triples of the underly-
ing Knowledge Graph. Let hereafter use EP to denote the initial positive
examples, i.e. one or more URIs selected by the user as indicative exam-
ples. Let CC(EP) be the set of common constraints of the selected entities,
defined as: CC(EP) = { (p, v) | ∀e ∈ EP , (e, p, v) ∈ K} For exam-
ple, assuming two movies EP = {m1,m2}, we may have CC(EP) =
{(director,Maria), (starring, James), (year, 2022)}. This is the initial query
q0, and we can show to the user the constraints of this query q0 = CC(EP) =
{c1, . . . , ck} as well as the answer of q0, denoted by ans(q0), as shown in the
upper right part of Figure 1.

Positive/Negative Feedback on Constraints. The user can proceed and
provide positive or negative feedback on the constraints, i.e. the user can define
the set of wanted and/or unwanted constraints, either from CC(EP), and/or
from inspecting the descriptions of the entities of the current answer, ans(q0).
The latter set is defined as: D(ans(q0)) = { (p, v) | (s, p, v) ∈ K ∀s ∈
ans(q0) } In this way the user can interactively select a set of positive con-
straints CP and and a set of negative constraints CN . Each is a subset of
CC(EP)∪D(ans(q0)), that is, the common constraints are not related only to
EP but also on the answer obtained by the first query. In our running example
suppose that:
CP = {(director,Maria), (genre, comedy)} and CN = {(starring, James)}.
The first constraint in CP comes from CC(EP), while the second (i.e.
(genre,comedy)), comes by inspecting D(ans(q0)). With this feedback we can
define CC ′ as CC ′ = (CC(EP) ∪ CP) \ CN , i.e. in our example:
CC ′ = {(director,Maria), (genrne, commedy), (year, 2022)}, and this is the
new query, i.e. q1 = CC ′.

Negative Examples. So far we have seen negative feedback on constraints.
Let’s suppose the user has provided negative examples, i.e. a set EN . We will
use this to exclude from the powerset of CC ′ (i.e. from all possible conjunctive
queries) those queries that would include any entity of EN in their results.
The exclusion will indirectly remove the negative examples from the results of
the final query and possibly remove other entities too.

Continuing our example, suppose the user provides
one negative example EN = {m3} where D({m3}) =
{(director,George), (genre, comedy), (year, 2022)}. From the 8 possible sub-
sets of CC ′ = {(director,Maria), (genre, comedy), (year, 2022)} we exclude
all possible subsets of D({m3}) found in CC ′ which are {(genre, comedy)},
{(year, 2022)}, their union {(genre, comedy), (year, 2022)} and the empty set,

Springer Nature 2021 LATEX template

Querying Knowledge Graphs through Examples and Feedback 9

so the remaining 4 subsets, let’s call them candidate queries, are:

Q1 = {{ (director,Maria), (genre, comedy), (year, 2022)},
{ (director,Maria), (genre, comedy) },
{ (director,Maria), (year, 2022) },
{ (director,Maria) }}

Now suppose the user gives one more negative example m4, therefore now we
have EN = {m3,m4} where
D({m4}) = {(director,Maria), (genre, drama), (year, 2022)}. From this we
have to exclude {(director,Maria)}, {(year, 2022)} and their union, ending
up to a Q2 that has two possible queries:

Q2 = {{ (director,Maria), (genre, comedy), (year, 2022) },
{ (director,Maria), (genre, comedy) }}

For these two possible queries, we need a ranking method to select one of
them. So the full process (from a logical point of view) is (we use P (C) to
denote the powerset of C):

CC = CC(EP)

C = (CC ∪ CP) \ CN

Q = {q | q ∈ P (C),∀n ∈ EN , n /∈ ans(q)} = {q | q ∈ P (C), ans(q) ∩ EN = ∅}
q = Rank(Q)

Ranking. As regards the last step, i.e. ranking, one approach is to select
the query with the higher number of constraints, thus we could write: q =
argq maxq∈Q(| q |). Instead of getting the query with the max number of
constraints, and also for resolving ties, we can rank the elements of Q according
to the expected size of their answer. Below we describe two main methods for
ranking the elements of Q: a fast but approximate methodMfreq and a more
accurate but more expensive method Mconj .
Method Mfreq. At first we introduce some notations. We shall use pri

to denote the number of instances of a property pr and analogously we use
(pr, vl)i to denote the number of instances of a property pr with a value vl
(where superscript i stands for instances):

pri = | {(s, p, o) ∈ K | p = pr} |
(pr, vl)i = | {(s, p, o) ∈ K | p = pr, o = vl} |

We can define the frequency of a constraint c = (pr, vl) as freq((pr, vl)) =
(pr,vl)i

pri We can use this metric to rank each constraint by either promoting

the most frequent ones or the most rare ones (or the user could select the
desired option at interaction time). In the running example of the introductory

Springer Nature 2021 LATEX template

10 Querying Knowledge Graphs through Examples and Feedback

Table 1 Frequencies in our running example

freq((pr, vl))−1 pr vl (pr, vl)i pri

6884 ’dbo:director’ ’dbr:Christopher Nolan’ 15 103261
6423 ’dbo:producer’ ’dbr:Emma Thomas’ 10 64237
2554 ’dbp:starring’ ’dbr:Christian Bale’ 49 125130
1026 ’dbp:starring’ ’dbr:Michael Caine’ 122 125130

Table 2 The method Mconj

| ans(q) | q

4 ’dbp:starring = Michael Caine, dbp:starring = Christian Bale, dbo:producer
= dbr:Emma Thomas, dbo:director = dbr:Christopher Nolan, rdf:type =
dbo:Film’

7 ’dbp:starring = Michael Caine, dbo:producer = dbr:Emma Thomas,
dbo:director = dbr:Christopher Nolan, rdf:type = dbo:Film’

9 ’dbo:producer = dbr:Emma Thomas, dbo:director = dbr:Christopher Nolan,
rdf:type = dbo:Film’

10 ’dbo:producer = dbr:Emma Thomas, rdf:type = dbo:Film’
15 ’dbo:director = dbr:Christopher Nolan, rdf:type = dbo:Film’
49 ’dbp:starring = Christian Bale, rdf:type = dbo:Film’
122 ’dbp:starring = Michael Caine, rdf:type = dbo:Film’

section, the frequencies are those shown in Table 1. For example ‘Michael
Caine’ has starred in over double the number of movies than ‘Christian Bale’,
which makes the corresponding constraints to have a different effect in the
expected answer size, so if we want to gradually increase the answer size then
we can select “Chistian Bale” (that appears in 49 movies), and then “Michael
Caine” (that appears in 122 movies). It follows that we can use the ranking
of Mfreq in two ways. Firstly, for a q ∈ Q, we can define scorefreq(q) =∑

c∈q freq(c), and we can rank in this way the elements of Q. Secondly, we
can reduce the set Q by removing the queries q ∈ Q which contain one of the
lowest ranked constraints. The advantage of this method is that it is fast,
the required frequencies can be pre-computed (like the histograms in relational
databases [14]). One weakness of the method is that from these frequencies, we
cannot predict accurately the impact of each constraint when combined with
the others, i.e. the size of the answer of the formulated query.
Method Mconj . To tackle the weakness of Mfreq, for each member q of Q,
we can compute | ans(q) | that is, the size of the answer if q is used. The
advantage of this method, let’s call it Mconj , is that the user can see the size
of the answer of that possible query, hence we could rank these suggested con-
junctions of constraints, based on | ans(q) |, to offer a kind of “guaranteed
query relaxation functionality”, enabling the user to gradually get more enti-
ties. Table 2 shows the elements of Q ordered with respect to their answer size.
We can see suggestions whose answer ranges from 4 to 122.

One weak point of this method is that it is more expensive thanMfreq to
compute, since it is exponential with respect to | C |, so it can be used only
if | C | is small. However, since the constraints of each query are combined by
logical conjunction, the computation of ans(q) is not expensive: we compute

Springer Nature 2021 LATEX template

Querying Knowledge Graphs through Examples and Feedback 11

and keep stored ans({c}) for each c ∈ C where {c} a query with a single
constrain c, and compute ans(q) by taking the intersection of all ans({c}) for
each c ∈ q As regards ties, if two possible queries, say q and q′ have the
same answer size, we could select the one with the more constraints or the one
with less constraints, to promote accordingly a more or less descriptive query
based on the existing dataset, or show both options to allow the user to make
that choice. Currently, we select the query with the most constraints which
implicitly gives the user more information and control.
Proposed Ranking Policy: Let us now compare the time complexity of
these two ranking methods. Let C be the set of common constraints computed
at line 2 of Algorithm 1. With no special indexing or caching, to compute the
ranking based on Mfreq, we have to compute | C | simple (property-object)
queries for getting the frequencies that are required, for approximating the
answer size of each q ∈ Q. Consequently, the cost is | C | simple (property-
object) queries and | Q | additions. Instead, for computing the ranking
according toMconj , we have to compute ans(q) for each query in Q. The size
(in terms of property-object constraints) of each such query ranges from 1 to
| C |. Consequently, in the worst case (where | Q |= 2|C|) we have to evaluate
2|C| queries. Therefore, at system level, it is better to start fromMfreq (that
is applicable even in big KGs) in order to remove some of the lowest ranked
constraints. After reaching a number of constraints where Q is not that big,
the system could switch to Mconj .
Case: No Extra Entities. If ans(q) = EP , i.e. if the user does not get any
extra entities (apart from EP), the system should try to relax the query. This
can be achieved by deleting some of the constraints or even selecting a new
set of constrains. To do so, we extend the use ofMfreq andMconj . In case of
Mfreq we delete the constraint with the smallest frequency, and if the results
of the query do not change, we repeat the process and delete more constrains
until we see a change in the results. In case of Mconj , we simply select the
next query in the rank.
Case: Single Positive Example. If Ep = {e}, i.e. if the user has selected
a single positive example, the system will consider all properties of e as the
set of common constrains CC({e}) = { (p, v) | (e, p, v) ∈ K }. Not all of
them will be included in the generated query, those that will be included in the
query depend on the two ranking methods described earlier. However the user,
through the negative feedback, can direct the system to different constraints
(if the top ranked ones are not the desired ones).

3.3 Extended Constraints

We have defined a constraint as property value pair and an entity e satisfies a
constraint c = (p, v) when (e, p, v) exists in the knowledge graph.
Operators. In order to extend the expressiveness of the constraints we include
an operator for every constraint. The operator describes the condition between
the value of the constraint and the value of the corresponding property of an
entity that is required for the entity to satisfy the constraint. The previous

Springer Nature 2021 LATEX template

12 Querying Knowledge Graphs through Examples and Feedback

behaviour is denoted as the operator “=” so that (p, v) is now represented
as (p,=, v). We define the operators {<,≤, 6=,≥, >} as the operations of the
corresponding math operators.
Property paths. The second extension is the replacement of the first ele-
ment of the constraint from a single property to a property path. The property
path is defined similarly to a SPARQL property path where a constraint
c = ({p1, p2},=, v) is satisfied by an entity e when a linking entity l exists such
that both (e, p1, l) and (l, p2, v) also exist in the knowledge graph. We also
extend the possible user feedback on the constraints to cover also property
path-value pairs. Note that we cannot proactively compute such path-value
pairs and display them to the user, since their number can be extremely high.
For this reason, we let the user to expand a path towards the desired direction.
A related screenshot is shown later in Figure 7.

3.4 Algorithm

We support a session-based interaction scheme, allowing the user to
refine/change his/her query gradually. As stated earlier, the process starts by
selecting (by browsing, keyword search or any other access method) at least
two positive examples EP . Then it enters into an interaction loop. The sys-
tem accepts 4 kinds of input: the positive EP and negative EN set of entities,
and the positive CP and negative CN set of constraints. Given a dataset and
the 4 inputs, the system will output the same query q (stateless), and the
answer of the query A. The steps of the above process are shown in Alg. 1.
In particular, in each loop of the interaction, the user after inspecting the
answer A of the current query, can either: (i) provide positive or negative
feedback to the entities of the answer received by selecting elements of A,
E′

P = (EP ∪ EPadded
) \ EPdeleted

, E′
N = (EN ∪ ENadded

) \ ENdeleted
), (ii) delete

one of the constraints c of the original query q, and this changes the set of
unwanted constraints, i.e. CN ′ = CN ∪{c}, (iii) add a new constraint by click-
ing on the (p,=, v) values of the elements of the answer; they can also add
such a constraint in negated form (p 6= v), and get CP ′ = CP ∪ {(p, op, v)}.

Algorithm 1 QBE Interactive Loop

1: function QBE-Interactive(EP , EN : sets of entities, CP , CN : sets of con-
straints)

2: C ← (CC(EP) ∪ CP) \ CN

3: Q← {q | q ∈ P (C), ans(q) ∩ EN = ∅}
4: q ← Rank(Q)[1] . the first query in the rank
5: while ans(q) = EP do . no extra entities
6: q ← next element of Rank(Q) . The next in the rank query
7: end while
8: show A = ans(q)
9: Receive any input from the user and get E′

P , E′
N , C′

P , C′
N

10: call QBE-Interactive (E′
P , E′

N ,C′
P , C′

N)
11: end function

Springer Nature 2021 LATEX template

Querying Knowledge Graphs through Examples and Feedback 13

4 Application

At first we describe the implementation of the model (Section 4.1), and then
we discuss its expressive power (Section 4.2), and scalability (Section 4.3).

4.1 Functionality and Implementation of SPARQL-QBE

We have implemented a proof-of-concept prototype that we call SPARQL-QBE.
The application supports the scenario described in section 1. It starts in a
keyword search mode for enabling the user to find the starting examples, an
example is shown in Figure 4.

Fig. 4 SPARQL-QBE: Step 1: Keyword Search and marking positive and negative examples

The user can continue in this way for providing more examples, as shown
in Figure 4(bottom part). After the user selects any number of examples and
exits the keyword search mode, i.e. it presses “Query Formulation” at the
top bar, the application provides the first list of constraints and the corre-
sponding results. The user can delete unwanted constraints, can provide more
positive/negative examples, as shown in Figure 5.

Moreover the tool makes evident the constraints that each entity satisfies
(marked green), and enables positive/negative constraints through the entities,
as shown in Figure 6.

For the support of property paths, every property value can be extended
to display all of its property-value pairs in an indented second list as shown in
Figure 7. The user can then create a property path constraint by selecting one

Springer Nature 2021 LATEX template

14 Querying Knowledge Graphs through Examples and Feedback

Fig. 5 SPARQL-QBE: Step 2: Negative feedback on common constraints, and more posi-
tive/negative examples

Fig. 6 SPARQL-QBE: Making evident constraint satisfaction, and constraint feedback
through entities

of the second list property value pairs. This behaviour is supported recursively,
i.e. the user can extend a property value from the second list into a indented
third list.

Implementation. The implementation of SPARQL-QBE is a JavaScript applica-
tion, with no need for a server for the time being. All the triples are contained
in a text files packaged with the application that the user loads once with the
first load of the application.

Springer Nature 2021 LATEX template

Querying Knowledge Graphs through Examples and Feedback 15

Fig. 7 The extension of SPARQL-QBE with path expressions

Datasets. We have tested various datasets. For the needs of the task-
based evaluation with users we selected a dataset containing most well
documented films and actors from DBpedia whose size is 1,083,029 triples.
These triples describe 112,668 films and 43,157 actors. More statistics about
this dataset are given in the second column of Table 3. A deployment of
SPARQL-QBE with this dataset is accessible through https://demos.isl.ics.forth.
gr/SPARQL-QBE/(dataset option: MoviesActors). Note that several works
include KGs for movie recommendations, e.g. [25].

Table 3 Statistics of the Dataset about Films and Actors, and the Dataset about Papers

Metric Dataset about Films and
Actors

Dataset about Papers

triples 1,083,029 513,426
entities 155,825 23,548
unique types 2 (dbo:Film, dbo:Actor) 1 (dbo:Paper)
unique subjects 155,825 23,548
unique properties 118 4 (dbp:cited, rdf:type,

rdfs:label, dbp:ref)
unique values 322,270 207,448
unique subject-property pairs 707,236 87,974
unique property-value pairs 349,867 221,965

Efficiency. Overall, for the datasets described earlier, we have real time
interaction. The following time measurements performed with Intel Core
i5-8250U/8GB RAM using Chromium v96.0.4664.45.

At the initialization of the system the more time consuming task is the
downloading of the dataset from the server to the browser of the client (for the
compressed movie dataset: 6.4MB ∼ 2.5s). Below we report execution times
assuming a dataset with one 1 million of RDF triplets. The two main operations
are the “Keyword search” with average time 126ms and the “Query execution”
with average time 103ms. For the two ranking methods Mconj and Mfreq

with caching we achieve executions under 10ms, however for the first time
their execution is equivalent to a “Query execution” for each of the constraint
that they evaluate. Overall, a single feedback loop of the system, which mainly
consists of the two methods initially last from one up to an average of 8 “Query
executions” (∼ 103-824 ms), then after a couple of feedback loops (with the

https://demos.isl.ics.forth.gr/SPARQL-QBE/
https://demos.isl.ics.forth.gr/SPARQL-QBE/

Springer Nature 2021 LATEX template

16 Querying Knowledge Graphs through Examples and Feedback

utilization of the caches) the time decreases down to the same time as a single
“Query execution” (∼ 103ms). An analysis of the time (with and without
caching) is shown in Figure 8, where we can see the impact of caching for the
ranking methods.

Fig. 8 Single feedback loop times in milliseconds (with and without caching)

4.2 Expressive Power

The system enables the formulation of single variable single class conjunctive
queries. Although the system supports different classes, all the examples must
be of the same class (or have a common superclass), and the first constraint of
the generated query will refer to that class. Note that the system is designed
with the single class query in mind since from a collection of positive examples
that belong to different classes it would not be clear how to interpret such a
feedback. Apart from the class restrictions, the generated queries consist of a
set of constrains in conjunction where each constrain can be a positive or neg-
ative match of property with a single value. With the extended constraints,
more general conditions with property paths and values are supported, mean-
ing that even if all the examples are of the same class, the property paths
indirectly allow for constraints that relate to multiple other classes.

The simplicity of the form, even with the extended constraints, allows for a
straightforward visual representation of the query as a single list of constraints.
However the conjunctions are between constraints that are not required to
match to a single SPARQL statement. Some of that constrains could be a hid-
den complex SPARQL statement labeled with a user friendly notation without
changing the feedback interface (eg. “(year ≥ 1980 ∧ year ≤ 1989) ∨ year =
80s” labeled as “year = 80s”).

4.3 Scalability

All operations have execution times that linearly depend on the number of
entities and properties that are given as examples. Referring to the lines of the
algorithm as shown in Alg. 1: Line 2 performs linear operations in the given
input sets. Line 3 generates the set of valid queries. In worst case the size
of the generated set is equal to the number of valid constraints raised to the
power of 2. For the negative example check, there is no need for the query to
be executed in the whole dataset since using the negative examples set as the
target dataset is sufficient. Line 4 uses the two ranking methods as described
in the corresponding sectionsMfreq andMconj , the methods require a query
execution for every valid constraint and valid query accordingly, but they can
be partially precomputed or cached during a session. Lines 5-7 perform a single

Springer Nature 2021 LATEX template

Querying Knowledge Graphs through Examples and Feedback 17

query execution at each iteration of the loop. In the worst case there will be
as many iterations as the number of valid queries. Lines 8-10 describe the
interface and feedback operations and have no significant computation cost.

Ranking optimization: The first ranking method Mfreq does not require
whole queries and can also provide a ranking to single constraints. In order to
limit the exponential nature of the power set of Line 3, we perform an initial
reduction of the valid constraints using Mfreq.

In our JavaScript application we implement our own query execution oper-
ation which supports only the subset of SPARQL that can be generated. Since
the formulated queries are single variable conjunctive queries (see previous
section) this operation linearly depends on the number of entities.

5 Evaluation

Section 5.1 reports the results of a task-based evaluation with users. Section
5.2 compares the functionality of the approach with other “example-based”
systems. Section 5.3 discusses when the proposed method in beneficial in com-
parison to other methods for query formulation, as well as applicability and
limitations.

5.1 Task-based Evaluation with Users

We conducted a preliminary and small scale task-based evaluation with users
for checking whether users can use and/or like this interaction paradigm and
for collecting feedback for improving the GUI, as well as the process. We used
the 10 tasks shown in Table 4.

Table 4 Evaluation Tasks

ID Task
T1 1. From the series of Batman movies, like “Batman Begins” and “The Dark Knight”, try

to find the names of other such movies
T2 2a. You know about “Before Sunset” and its sequel “Before Midnight”, try to find the

name of the third film of the series. (continues)
T3 2b. Try to find movies that have some properties in common with “Before” movies (hinted

that if all results are flagged as wanted, the query will extend to contain more results).
T4 3a. What the movies “The Prestige” and “The Dark Knight” have in common other than

actors. (continues)
T5 3b. Count how many movies the director and producer of “The Prestige” and “The Dark

Knight” have made.
T6 4. Find the last Harry Potter movie “Harry Potter and the Deathly Hallows” and instead

of selecting the movies, select only the actors “Daniel Radcliffe” and “Emma Watson”.
Count in how many movies both actors participate.

T7 5. In the movies “Agent Carter” and “Captain America: The First Avenger” we know that
“Hayley Atwell” plays the character Agent Carter, try to find the name of other movies
possibly containing the character. (note that the movie “The Duchess” has no relation to
the character “Agent Carter”)

T8 6a. Count how many movies are in the “Wolverine” series with the actor “Hugh Jackman”.
(continues)

T9 6b. What all the movies with “Wolverine” have in common.
T10 7. Find a movie with “Michael Caine” and “Leonardo DiCaprio”

Springer Nature 2021 LATEX template

18 Querying Knowledge Graphs through Examples and Feedback

Task Selection. Notice that the tasks are not trivial (like “find the x property
of y”), but correspond to more complex information needs. The first two tasks
T1-2 require a simple query generation based on two examples. T3 requires the
user to give a feedback, i.e. to perform an action during the feedback loop. T4-
5 require the user to access more generated information than query results. T6
requires the use of the constraint examples instead of just entity examples. T7-
10 are more general and simulate tasks where the user have some pre-existing
knowledge and uses the system to retrieve related information.

Participants, Questionnaire and Results. We invited by email various
persons to participate in the evaluation voluntarily. The users were asked to
carry out the tasks and to fill (anonymously) the prepared questionnaire. No
training material was given to them, just a paragraph with basic instructions1

and the participation to this evaluation was optional (invitation by email).
Eventually, 22 persons participated (from April 14, 2022 to April 30, 2022).
The number was sufficient for our purposes since, according to [8], 20 evalua-
tors are enough for getting more than 95% of the usability problems of a user
interface. In numbers, the participants were 22.7% female and 77.3% male,
with ages ranging from 19 to 52 years; with 70% almost uniformly distributed
from 19 to 30. As regards occupation and skills, all have studied Computer Sci-
ence. In detail, 55% were undergraduate students, 41% of them postgraduate
computer science students, and the rest computer engineers, professionals and
researchers. Some participants were familiar with SPARQL however none were
familiar with the given knowledge graph. The questionnaire is shown below,
enriched with the results of the survey in the form of percentages written in
bold:

Q1 How would you rate the “Keyword Search” tab?: Very user friendly (50%),
User friendly (45.5%), Not user friendly (4.5%), Very difficult to use (0%)

Q2 Rate the usability of the “Query Formulation” tab: Very user friendly
(4.5%), User friendly (81.8%), Not user friendly (13.6%), Very difficult to
use (0%)

Q3 How would you describe the workflow?: Very Intuitive (9.1%), Intuitive
(77.3%), Unintuitive (13.6%), Very Unintuitive (0%)

Q4 How would you describe the constraint representation?: Very Intuitive
(22.7%), Intuitive (59.1%), Unintuitive (18.2%), Very Unintuitive (0%)

Q5 Would you prefer instead of the two tabs a single page with all the
functionality?: Yes (40.9%), Indifferent (18.2%), No (40.9%)

Q6 Would you use the app to formulate queries?: Yes (40.9%), Maybe (59.1%),
No (0%)

Q7 Would you use the app to find a movie? Yes (77.3%), Maybe (22.7%), No
(0%)

Q8 Have you ever formulated a SPARQL query? Never (22.7%), Only a few
times (without using SPARQL) (13.6%), Quite a lot (63.6%).

1Like the help page of the prototype.

Springer Nature 2021 LATEX template

Querying Knowledge Graphs through Examples and Feedback 19

Q9 How would you rate the entire system? Very Useful (27.3%), Useful
(72.7%), Little Useful (0%), Not Useful (0%)

Q10 You can report here errors, problems, or recommendations. (free text of
unlimited length)

5.1.1 Results Analysis and Discussion

The results were very positive: By summing the two positive options (Very
user-friendly/intuitive, user-friendly/intuitive), we can see that most users find
it user-friendly (86.3% in Q2), find the workflow intuitive (86.4% in Q3), they
liked the constraint representation (81.8% in Q3), they rated the system useful
(100% in Q9), and it is interesting that many would use the system to find
movies (Q7).
Task Performance. As regards task performance, from the 220 collected
responses (10 tasks x 22 participants), 65 (30%) reported failure to find the
requested information. In most cases of the failed responses, the participants
were able to find some answer which was either incomplete or wrong. Only in
a few cases (6 responses, i.e. ∼ 2%) the participants were unable to translate
the task into actions for the system and were unable to find any answer. As
shown in Figure 9, the participants faced problems mainly at task T8. The
task did not imply a clear course of actions and so 8 participants (36%) ended
up with correct answer, 10 (45%) with different answers and 4 (18%) failed
to answer. From the 4 participants that had never used SPARQL, we have
only 6 (15%) wrong responses however half of them reported that system is
somewhat unintuitive to work with but still useful and they would maybe use
it again in the future.

Fig. 9 Success Rate by Task

Free form Feedback. With respect to the free form feedback (Q10), the
users provided some suggestions about some icons and omissions related to the
dataset, not the system (e.g. omission of movies’ genre and list of characters).

5.2 Comparison with systems that support the notion of
”Example”

Compared to example-based systems like “Query from examples” [17], instead
of explicitly asking for more information from the user before a query is pro-
vided to the user, SPARQL-QBE provides the best query and then through the
feedback loop the user can provide more information of his own choosing. In
comparison to “Reverse engineering SPARQL queries” [2], that work cannot

Springer Nature 2021 LATEX template

20 Querying Knowledge Graphs through Examples and Feedback

Table 5 Comparison with other Example-based Systems

System Positive
Entity
Examples

Negative
Entity
Examples

Constraints
Feedback

Qbees: query by entity examples [17] X
Reverse engineering SPARQL queries [2] X X
SPARQL-QBE X X X

receive feedback on the generated constraints, therefore has lower interactiv-
ity. Note that some works, i.e. [2] and [6], produce queries that contain the
OPTIONAL operator of SPARQL. In SPARQL-QBE we do not produce such
queries since the examples given by the user are entities or constraints where
there are no null values, therefore the OPTIONAL operator is not needed.

5.3 Analytical Comparison

There are several tools, “example”-based or not, that can generate queries like
those that can be formulated by SPARQL-QBE. However the process that the user
has to follow is fundamentally different. A comparison follows.
Comparing to Relational QBE. In comparison to QBE approached over
relational databases, where the user has to fill in values in existing tables (after
first selecting these tables), in our case (in graph databases in general) we do
not have this limitation.
Comparing to non Example-Based Approaches (e.g. with Faceted
Search). In a non example-based approach, like Faceted Search, the first step
a user has to make is to provide/select a property, a value of that property,
or in general some constraint on that property. Even if a system provides
a list of all available properties and values of the KG, the user still has to
know the commonalities of the desired entities and how they are represented
in the context of the tool used. Instead, with the notion of example, the only
requirement for the user is to provide a single example (two examples are
suggested but not required), and then the feedback loop will assist him/her
to generate the desired query. Indeed, there are information needs where it is
easier for the user to point to examples than to find the conditions that entities
should satisfy, e.g. a user may point to two songs of a similar style of music
without knowing the actual name of that style. In addition, even if the user
can point to the desired constraints, the number of them could be more than
the number of examples that it is required through an example-based method.

Consequently, we could say that in general we have two possible starting
points: (a) single property constraints (for not example-based systems), and
(b) single examples (for example-based systems). The expressive power (or
restriction capability) of the two options are not equal. For instance, from
two examples a system may infer several (common) constraints, but from two
property constraints a system cannot infer anything more. Therefore, in cases
where the desired number of constraints is large, even if these constraints are
known, an example-based approach may be faster than non example-based

Springer Nature 2021 LATEX template

Querying Knowledge Graphs through Examples and Feedback 21

systems (like Faceted Search). We should also note that in SPARQL-QBE, apart
from the support of examples, if the user cannot provide any example, (s)he
can alternatively start by providing a wanted constraint and then continue
with the feedback loop; this is a distinctive feature of SPARQL-QBE in comparison
to other example-based systems.
The Value of Negative Feedback. We should note here that without the
possibility of providing negative feedback the system would behave like a hill
climbing algorithm [15] and the user could be trapped to the first hill. From this
perspective, the negative feedback can be conceived as a “step down” opera-
tion. In practice the user does not realize this “step down” since the interaction
contains the sequence Show Results > Negative Feedback > Step Down (remove
a constraint from the formulated query) > Step Up (new query considering
the feedback) > Show Results. We should also mention that since the system
makes decisions (as regards the common constraints to show) without asking
the user, and this selection is based on frequencies, there should be a way to
“undo” these decisions otherwise we will always end up with the constraints
determined the criterion used by the system for constraint ranking.
Applicability. The method has wide applicability. Not only it can be used as
a stand-alone method, but it can complement, browsing and keyword search
systems, e.g. the user can first pick the desired entities (and put them in a
cart) while browsing or searching with keywords, and then initiate the QBE
process.
To what kind of Datasets is this Suitable? By testing this interaction
over various datasets, we have realized that this approach is beneficial for the
user, in comparison to other approaches, in cases where the user is not sure
about the constraints that should be added to the desired query.

Apart from the movie-actors dataset, we generated a dataset with informa-
tion about published papers where each paper is described by three properties:
title, referenced papers and cited-by papers. In total, this dataset contains
513,426 triples, detailed statistics are given in the third column of Table 3.

The user with SPARQL-QBE over this dataset can find papers based on some
common properties of the example papers given.

In this context and through negative feedback, the system behaves more
like a paper discovery system than a query generator. An indicative scenario,
is described next, also shown in Figure 10:

1: The user starts with a reverse engineer SPARQL related paper, the system
based on the papers’ references generates a query that also returns a paper
related to queries. Assuming that the user wants papers specific to SPARQL,
flags the suggested paper as unwanted.

2: The system, based on the feedback, generates a new query that now sug-
gests an RDF related paper. The paper may not be about SPARQL but it’s
related, so this time the user flags the paper as wanted.

3: The system finally generates a query that suggests a SPARQL related paper.
The user could then continue this process until the system cannot suggest

Springer Nature 2021 LATEX template

22 Querying Knowledge Graphs through Examples and Feedback

any new papers or restart the process with one of the papers that have been
discovered.

Fig. 10 Discovery scenario with the papers dataset

Limitations. One limitation of the proposed approach is that it cannot sug-
gest any common constraint in case the positive examples have nothing in
common. In such cases, constraints that have the form of path expressions
could be identified and recommended to the user, or the user could expand
one or more values of an entity for giving positive/negative feedback on values
that are not directly connected with the entities of interest. This is an inter-
esting direction for further research, one could investigate the applicability of
techniques coming from works on RDF summarization [3, 12] and on Least
Common Subsumers [5].

6 Concluding Remarks

We proposed a novel interactive method for SPARQL query formulation, for
enabling users (plain and advanced) to formulate queries by providing exam-
ples and various kinds of positive and negative feedback, in a manner that
does not pre-suppose knowledge of the query language or the contents of the
Knowledge Graph. We have detailed the algorithmic aspects and presented an
interactive user interface that implements the approach2. We have applied it
in real datasets from DBpedia (Movies, Actors, etc), and other datasets (scien-
tific papers), and showcased the feasibility (in terms of efficiency, i.e. real-time

2A running prototype is accessible through https://demos.isl.ics.forth.gr/SPARQL-QBE/

https://demos.isl.ics.forth.gr/SPARQL-QBE/

Springer Nature 2021 LATEX template

Querying Knowledge Graphs through Examples and Feedback 23

interaction), and the effectiveness of the approach. As regards the latter, a
task-based evaluation that included users that are not familiar with SPARQL,
provided evidence that that the interaction is easy-to-grasp and enabled the
users to formulate the desired queries. In particular, all (100%) of the users
rated the system useful, most users (86.3%) find it user-friendly, and only 2%
of the participants were unable to translate an evaluation task into actions
for the system. The method could be applied not only to RDF, but on any
graph database and could complement and combined with the existing access
methods (i.e. keyword search and browsing).

There are several issues that are worth further work and research. For
instance, at system level, one could easily extend the interactive system for
specifying also the desired columns of the answer, as well as manual editing
of the SPARQL query (e.g. for turning a URI of a triple pattern to a vari-
able). Another interesting case (as described in the limitations), is to extend
the system for enabling the user to give positive/negative feedback on path
expressions.

Declarations

• Ethical Approval: Not applicable

• Availability of supporting data: The code of the running prototype, is pub-

licly accessible (https://demos.isl.ics.forth.gr/SPARQL-QBE/). With ”View Page

Source” one can see all the source code.

• Competing interests: None

• Funding: FORTH-ICS

• Authors’ contributions: All authors (Akritas Akrititis and Yannis Tzitzikas)

contributed to the study conception, design and writing of this work, including the

main manuscript text and the figures. Akritas Akrititis implemented the prototype

system. All authors reviewed the manuscript.

• Acknowledgements: FORTH-ICS

References

[1] Akritidis, A., Tzitzikas, Y.: Demonstrating interactive SPARQL formu-
lation through positive and negative examples and feedback. In: Demo
Paper, 26th International Conference on Extending Database Technology,
EDBT 2023 (2023). https://doi.org/10.48786/edbt.2023.71

[2] Arenas, M., Diaz, G.I., Kostylev, E.V.: Reverse engineering SPARQL
queries. In: Proceedings of the 25th International Conference on World
Wide Web (2016). https://doi.org/10.1145/2872427.2882989

[3] Čebirić, Š., Goasdoué, F., Kondylakis, H., Kotzinos, D., Manolescu,
I., Troullinou, G., Zneika, M.: Summarizing semantic graphs: a sur-
vey. The VLDB journal 28, 295–327 (2019). https://doi.org/10.1007/
s00778-018-0528-3

https://demos.isl.ics.forth.gr/SPARQL-QBE/
https://doi.org/10.48786/edbt.2023.71
https://doi.org/10.1145/2872427.2882989
https://doi.org/10.1007/s00778-018-0528-3
https://doi.org/10.1007/s00778-018-0528-3

Springer Nature 2021 LATEX template

24 Querying Knowledge Graphs through Examples and Feedback

[4] Chatzakis, M., Mountantonakis, M., Tzitzikas, Y.: RDFsim: similarity-
based browsing over DBpedia using embeddings. Information 12(11)
(2021). https://doi.org/10.3390/info12110440

[5] Colucci, S., Donini, F.M., Giannini, S., Di Sciascio, E.: Defining and com-
puting least common subsumers in rdf. Journal of Web Semantics 39
(2016). https://doi.org/10.1016/j.websem.2016.02.001

[6] Diaz, G., Arenas, M., Benedikt, M.: SPARQLByE: Querying RDF data
by example. Proceedings of the VLDB Endowment 9(13) (2016). https:
//doi.org/10.14778/3007263.3007302

[7] Doerr, M.: The CIDOC conceptual reference module: an ontological
approach to semantic interoperability of metadata. AI magazine 24(3)
(2003). https://doi.org/10.1609/aimag.v24i3.1720

[8] Faulkner, L.: Beyond the five-user assumption: Benefits of increased sam-
ple sizes in usability testing. Behavior Research Methods, Instruments, &
Computers 35(3) (2003). https://doi.org/10.3758/BF03195514

[9] Ferrada, S., Bustos, B., Hogan, A.: Extending SPARQL with similarity
joins. In: International Semantic Web Conference (2020). https://doi.org/
10.1007/978-3-030-62419-4 12. Springer

[10] Ferré, S.: Sparklis: An expressive query builder for SPARQL endpoints
with guidance in natural language. Semantic Web 8(3) (2017). https://
doi.org/10.3233/SW-150208

[11] Francart, T.: Sparnatural. https://sparnatural.eu/ (2021)
[12] Goasdoué, F., Guzewicz, P., Manolescu, I.: Rdf graph summarization for

first-sight structure discovery. The VLDB journal 29 (2020). https://doi.
org/10.1007/s00778-020-00611-y

[13] Grafkin, P., Mironov, M., Fellmann, M., Lantow, B., Sandkuhl, K.,
Smirnov, A.V.: SPARQL query builders: Overview and comparison. In:
BIR Workshops (2016)

[14] Ioannidis, Y.: The history of histograms (abridged). In: Proceedings 2003
VLDB Conference (2003). https://doi.org/10.1016/B978-012722442-8/
50011-2. Elsevier

[15] Jacobson, S.H., Yücesan, E.: Analyzing the performance of generalized
hill climbing algorithms. Journal of Heuristics 10 (2004). https://doi.org/
10.1023/B:HEUR.0000034712.48917.a9

[16] Kritsotakis, V., Roussakis, Y., Patkos, T., Theodoridou, M.: Assistive
query building for semantic data. In: SEMANTICS Posters&Demos
(2018)

[17] Li, H., Chan, C.-Y., Maier, D.: Query from examples: An iterative,
data-driven approach to query construction. Proceedings of the VLDB
Endowment 8(13) (2015). https://doi.org/10.14778/2831360.2831369

[18] McCarthy, L., Vandervalk, B., Wilkinson, M.: SPARQL assist language-
neutral query composer. BMC bioinformatics 13(1), 1–9 (2012). https:
//doi.org/10.1186/1471-2105-13-S1-S2

[19] Metzger, S., Schenkel, R., Sydow, M.: Qbees: query by entity exam-
ples. In: Proceedings of the 22nd ACM International Conference on

https://doi.org/10.3390/info12110440
https://doi.org/10.1016/j.websem.2016.02.001
https://doi.org/10.14778/3007263.3007302
https://doi.org/10.14778/3007263.3007302
https://doi.org/10.1609/aimag.v24i3.1720
https://doi.org/10.3758/BF03195514
https://doi.org/10.1007/978-3-030-62419-4_12
https://doi.org/10.1007/978-3-030-62419-4_12
https://doi.org/10.3233/SW-150208
https://doi.org/10.3233/SW-150208
https://sparnatural.eu/
https://doi.org/10.1007/s00778-020-00611-y
https://doi.org/10.1007/s00778-020-00611-y
https://doi.org/10.1016/B978-012722442-8/50011-2
https://doi.org/10.1016/B978-012722442-8/50011-2
https://doi.org/10.1023/B:HEUR.0000034712.48917.a9
https://doi.org/10.1023/B:HEUR.0000034712.48917.a9
https://doi.org/10.14778/2831360.2831369
https://doi.org/10.1186/1471-2105-13-S1-S2
https://doi.org/10.1186/1471-2105-13-S1-S2

Springer Nature 2021 LATEX template

Querying Knowledge Graphs through Examples and Feedback 25

Information & Knowledge Management (2013). https://doi.org/10.1007/
s10844-017-0443-x

[20] Nikas, C., Fafalios, P., Tzitzikas, Y.: Open domain question answering
over knowledge graphs using keyword search, answer type prediction,
SPARQL and pre-trained neural models. In: Proceedings of the 20th
International Semantic Web Conference (2021). https://doi.org/10.1007/
978-3-030-88361-4 14. Springer

[21] Nikas, C., Kadilierakis, G., Fafalios, P., Tzitzikas, Y.: Keyword search over
RDF: Is a single perspective enough? Big Data and Cognitive Computing
4(3), 22 (2020). https://doi.org/10.3390/bdcc4030022

[22] Oldman, D., Tanase, D.: Reshaping the knowledge graph by con-
necting researchers, data and practices in ResearchSpace. In: Inter-
national Semantic Web Conference (2018). https://doi.org/10.1007/
978-3-030-00668-6 20. Springer

[23] Papadaki, M.-E., Tzitzikas, Y.: RDF-ANALYTICS: Interactive analytics
over rdf knowledge graphs. In: Demo Paper, 26th International Conference
on Extending Database Technology, EDBT 2023 (2023). https://doi.org/
10.48786/edbt.2023.70

[24] Rietveld, L., Hoekstra, R.: The YASGUI family of SPARQL clients.
Semantic Web 8(3) (2017). https://doi.org/10.3233/SW-150197

[25] Sacenti, J.A., Fileto, R., Willrich, R.: Knowledge graph summarization
impacts on movie recommendations. Journal of Intelligent Information
Systems 58(1) (2022). https://doi.org/10.1007/s10844-021-00650-z

[26] Salton, G., Buckley, C.: Improving retrieval performance by rele-
vance feedback. Journal of the American society for information sci-
ence 41(4) (1990). https://doi.org/10.1002/(SICI)1097-4571(199006)41:
4〈288::AID-ASI8〉3.0.CO;2-H

[27] Thomas, J.C., Gould, J.D.: A psychological study of query by example.
In: Proceedings of the May 19-22, 1975, National Computer Conference
and Exposition. AFIPS ’75. ACM, New York (1975). https://doi.org/10.
1145/1499949.1500035

[28] Tzitzikas, Y., Meghini, C.: Ostensive automatic schema mapping
for taxonomy-based peer-to-peer systems. In: International Workshop
on Cooperative Information Agents (2003). https://doi.org/10.1007/
978-3-540-45217-1 6. Springer

[29] Tzitzikas, Y., Manolis, N., Papadakos, P.: Faceted exploration of RDF/S
datasets: a survey. Journal of Intelligent Information Systems 48(2)
(2017). https://doi.org/10.1007/s10844-016-0413-8

[30] Vargas, H., Aranda, C.B., Hogan, A.: RDF Explorer: A visual query
builderja for semantic web knowledge graphs. In: ISWC Satellites (2019).
https://doi.org/10.1007/978-3-030-30793-6 37

[31] Zheng, W., Zou, L., Peng, W., Yan, X., Song, S., Zhao, D.: Semantic
SPARQL similarity search over RDF knowledge graphs. Proceedings of
the VLDB Endowment 9(11) (2016). https://doi.org/10.14778/2983200.
2983201

https://doi.org/10.1007/s10844-017-0443-x
https://doi.org/10.1007/s10844-017-0443-x
https://doi.org/10.1007/978-3-030-88361-4_14
https://doi.org/10.1007/978-3-030-88361-4_14
https://doi.org/10.3390/bdcc4030022
https://doi.org/10.1007/978-3-030-00668-6_20
https://doi.org/10.1007/978-3-030-00668-6_20
https://doi.org/10.48786/edbt.2023.70
https://doi.org/10.48786/edbt.2023.70
https://doi.org/10.3233/SW-150197
https://doi.org/10.1007/s10844-021-00650-z
https://doi.org/10.1002/(SICI)1097-4571(199006)41:4<288::AID-ASI8>3.0.CO;2-H
https://doi.org/10.1002/(SICI)1097-4571(199006)41:4<288::AID-ASI8>3.0.CO;2-H
https://doi.org/10.1145/1499949.1500035
https://doi.org/10.1145/1499949.1500035
https://doi.org/10.1007/978-3-540-45217-1_6
https://doi.org/10.1007/978-3-540-45217-1_6
https://doi.org/10.1007/s10844-016-0413-8
https://doi.org/10.1007/978-3-030-30793-6_37
https://doi.org/10.14778/2983200.2983201
https://doi.org/10.14778/2983200.2983201

Springer Nature 2021 LATEX template

26 Querying Knowledge Graphs through Examples and Feedback

[32] Zloof, M.M.: Query-by-example: A data base language. IBM Systems
Journal 16(4), 324–343 (1977). https://doi.org/10.1147/sj.164.0324

[33] Zloof, M.M.: Query by example. In: Proceedings of the May 19-22, 1975,
National Computer Conference and Exposition (1975a)

[34] Zloof, M.M.: Query-by-Example: The invocation and definition of tables
and forms. In: Proceedings of the 1st Intern. Conf. on Very Large Data
Bases. VLDB ’75. ACM, New York (1975b). https://doi.org/10.1145/
1282480.1282482

https://doi.org/10.1147/sj.164.0324
https://doi.org/10.1145/1282480.1282482
https://doi.org/10.1145/1282480.1282482

	Introduction
	Context and Related Work
	Context. Overview of Access Methods over RDF
	SPARQL Query Formulators in General
	Example-based SPARQL Query Formulators
	``Example"-based Approaches in other Domains and Tasks

	SPARQL by Example: Problem Statement, Principles and Algorithms
	Problem Statement
	The Exact Process of SPARQL-QBE
	Extended Constraints
	Algorithm

	Application
	Functionality and Implementation of SPARQL-QBE
	Expressive Power
	Scalability

	Evaluation
	Task-based Evaluation with Users
	Results Analysis and Discussion

	Comparison with systems that support the notion of "Example"
	Analytical Comparison

	Concluding Remarks

