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Abstract

The formulation of analytical queries over Knowledge Graphs in RDF is a
challenging task that presupposes familiarity with the syntax of the cor-
responding query languages and the contents of the graph. To alleviate
this problem, we introduce a model for aiding users in formulating ana-
lytic queries over complex, i.e. not necessarily star-schema based, RDF
Knowledge Graphs. To come up with an intuitive interface, we leverage
the familiarity of users with the Faceted Search systems. In particular,
we start from a general model for Faceted Search over RDF data, and
we extend it with actions that enable users to formulate analytic queries,
too. Thus, the proposed model can be used not only for formulating
analytic queries but also for exploratory purposes, i.e. for locating the
desired resources in a Faceted Search manner. We describe the model
from various perspectives, i.e. (i) we propose a generic user interface for
intuitively analyzing RDF Knowledge Graphs, (ii) we define formally the
state-space of the interaction model and the required algorithms for pro-
ducing the user interface actions, (iii) we present an implementation of
the model that showcases its feasibility, and (iv) we discuss the results
of an evaluation with users that provides evidence for the acceptance
of the method by users. Apart from being intuitive for end users, an-
other distinctive characteristic of the proposed model is that it allows the
gradual formulation of complex analytic queries (including nested ones).
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1 Introduction

There are several Knowledge Graphs (KGs) expressed in RDF (Resource De-
scription Framework) that integrate data from various sources: from general
purpose like KGs like DBpedia [1] and Wikidata [2]), to domain specific repos-
itories (e.g., Europeana [3], DrugBank [4], GRSF [5], ORKG [6], WarSampo
[7] and other cultural datasets like [8]), COVID-19 related datasets [9–11],
Knowledge Graphs producible from file systems [12], as well as Markup data
through schema.org,

Plain users can (i) browse such graphs (i.e. the user starts from a resource
and inspects its values and can move to a connected resource - if derefer-
ence URIs are supported), (ii) search them using keyword search where the
emphasis is on ranking the resources according to relevance (e.g. through
multi-perspective keyword search approach [13]), or (iii) use interactive query
formulators (like A-QuB [14], FedViz [15], SPARKLIS [16], and SPARQL-QBE
[17]) However, structured query formulation is in general difficult for ordinary
users, and it seems that there is no standard or widely accepted method of
such query formulators, especially for analytic queries. To this end, in this pa-
per, we focus on the formulation of analytic queries over RDF graphs, a task
that is considered infeasible for ordinary users, and laborious and time con-
suming for expert users. We aim at providing a user-friendly method that will
allow even novice users to formulate analytic queries over Knowledge Graphs,
easily and intuitively.

To emphasize that need, consider a KG with information about products
and related entities (companies, persons, locations, etc.) with schema as shown
in Fig. 1 (for reasons of brevity namespaces are not shown). Suppose that
we want to find “the average price of laptops made in 2023 from US compa-
nies that have 2 USB ports and an SSD drive manufactured in Asia grouped
by manufacturer”. This information need would be expressed in SPARQL as
shown in Fig. 2. Obviously, the formulation of such queries is quite difficult
for novice users who do not have the required technical background.

Figure 1: The schema of the running example

Consequently, there is a need for an interaction model that will let them
formulate such analytic queries with simple clicks, without presupposing
knowledge of the vocabulary (schema, ontology, thesauri) and the actual con-
tents of the dataset, or the syntax of the corresponding query language. To
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PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

Prefix ex:<http://www.ics.forth.gr/example#>

SELECT ?m (AVG(?p) as ?avgprice)

WHERE {

?s rdf:type ex:Laptop.

?s ex:manufacturer ?m.

?m ex:origin ex:USA.

?s ex:price ?p.

?s ex:USBPorts ?u.

?s ex:hardDrive ?hd.

?hd rdf:type ex:SSD.

?hd ex:manufacturer ?hdm.

?hdm ex:origin ?hdmc.

?hdmc ex:locatedAt ex:Asia.

FILTER (?u >= 2).

?s ex:releaseDate ?rd .

FILTER ( ?rd >= "2023-01-01T00:00:00"^^xsd:dateTime &&

?rd <= "2023-12-31T00:00:00"^^xsd:dateTime)

} GROUP BY ?m

Figure 2: Expression in SPARQL of the query “average price of laptops
made in 2021 from US companies that have 2 USB ports and an SSD drive
manufactured in Asia grouped by manufacturer”.

this end, we leverage the familiarity of users with Faceted Search [18], since
this model supports the expression of complex conditions with simple clicks.
We start from a general model for Faceted Search over RDF data, specifically
from the core model for faceted exploration of RDF data (described in [19]),
and we extend it with actions that enable users to formulate analytic queries,
too. The user actions are automatically translated to a query according to the
high-level query language for analytics, called HIFUN, and then the HIFUN
query is translated to a SPARQL query.

The distinctive characteristics of the proposed model are: (i) it can be
applied to any RDF dataset (i.e. independently if it follows a star-schema), (ii)
it supports only answerable queries (i.e. it never produces empty results due
to lack of data), (iii) it supports arbitrarily long paths, (iv) it provides count
information, (v) it supports the interactive formulation of HAVING clauses,
(vi) it supports nested analytic queries, and (vii) it supports both Faceted
Search and analytic queries.

The contributions of this paper are that, (i) we propose a generic user inter-
face for intuitively analyzing RDF Knowledge Graphs without pre-supposing
any technical knowledge, (ii) we define formally the state-space of the inter-
action model and the required algorithms for producing a UI (User Interface)
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that supports this state space, (iii) we present an implementation of the model
that showcases its feasibility, and (iv) we discuss the results of an evaluation
of the proposed system with users.

The basic idea was demonstrated in the demo paper [20]. In this paper
we detail and further elaborate on this direction, specifically: (i) we discuss
in more detail the related works and our placement, (ii) we formally specify
the interaction model with states and transitions, (iii) we express the query
requirements of the model formally using a QL independent formalism (HI-
FUN) facilitating in this way the implementation of the model over different
technologies, query languages and triplestores; (iv) we provide the exact spec-
ification of the UI and the algorithms for facilitating the implementation of
the model, (v) we describe the implementation of the model and its evaluation
from various perspectives.

The rest of this paper is organized as follows: Section 2 provides the re-
quired background. Section 3 describes related work. Section 4 describes the
interaction model including the GUI extensions. Section 5 discusses the exten-
sions (in comparison to FS) that are required. Section 6 provides the formal
notations and key points of the algorithms, Section 7 presents the algorithm
that computes the state space, and Section 8 focuses on how the intentions of
the states are expressed and computed. Section 9 discusses an implementation
of the model. Section 11 discusses evaluation. Finally, Section 12 concludes the
paper and identifies issues for further research.

2 Background

Here we briefly discuss RDF (in Section 2.1), Faceted Search (in Section 2.2),
and HIFUN (in Section 2.3).

2.1 The Resource Description Framework (RDF)

Resource Description Framework (RDF) The Resource Description
Framework (RDF) [21, 22] is a graph-based data model for linked data in-
terchanging on the web. It uses triples i.e. statements of the form subject −
predicate−object, where the subject corresponds to an entity (e.g. a product,
a company etc.), the predicate to a characteristic of the entity (e.g. price of a
product, location of a company) and the object to the value of the predicate
for the specific subject (e.g. “300”, ”US”). The triples are used for relating
Uniform Resource Identifiers (URIs) or anonymous resources (blank nodes)
with other URIs, blank nodes or constants (Literals). Formally, a triple is con-
sidered to be any element of T = (U ∪B)× (U)× (U ∪B∪L), where U,B and
L denote the sets of URIs, blank nodes and literals, respectively. Any finite
subset of T constitute an RDF graph (or RDF data set).

RDF Schema. RDF Schema1 is a special vocabulary which comprises
a set of classes with certain properties using the RDF extensible knowledge
representation data model. Its intention is to structure RDF resources, since

1https://en.wikipedia.org/wiki/RDF Schema

https://en.wikipedia.org/wiki/RDF_Schema
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even though RDF uses URIs to uniquely identify resources, it lacks seman-
tic expressiveness. It uses classes to indicate where a resource belongs, as
well as properties to build relationships between the entities of a class and to
model constraints. A class C is defined by a triple of the form <C rdf:type
rdfs:Class> using the predefined class “rdfs:Class” and the predefined prop-
erty “rdf:type”. For example, the triple <ex:Product rdf:type rdfs:Class>
indicates that “Product” is a class, while the triple <ex:product1 rdf:type
ex:Product> that the individual “product1” is an instance of class Product.
A property can be defined by stating that it is an instance of the pre-
defined class “rdf:Property”. Optionally, properties can be declared to be
applied to certain instances of classes by defining their domain and range
using the predicates “rdfs:domain” and “rdfs:range”, respectively. For exam-
ple, the triples <ex:manufacturer rdf:type rdf:Property>, <ex:manufacturer
rdfs:domain ex:Product>, <ex:manufacturer rdfs:range ex:Company>, indi-
cate that the domain of the property “manufacturer” is the class “Product”
and its range the class “Company”. The RDF Schema is also used for defining
hierarchical relationships among classes and properties. The predefined prop-
erty “rdfs:subclassOf” is used as a predicate in a statement to declare that a
class is a specialization of another more general class, while the specialization
relationship between two properties is described using the predefined property
“rdfs:subPropertyOf”. For example, the triple <ex:Laptop rdfs:subClassOf
ex:Product> denotes that the class “Laptop” is sub-class of the “Product”
class. And the triple <ex:fatherOf rdf:subPropertyOf ex:parentOf> defines
that the property “fatherOf” is sub-property of “parentOf”. In addition,
RDFS offers inference functionality2 as additional information (i.e. discovery
of new relationships between resources) about the data it receives. For ex-
ample, if <ex:myLaptop rdf:type ex:Laptop> and <ex:Laptop rdf:subClassOf
ex:Product>, then it can be deduced that “ex:myLaptop rdf:type ex:Product”,
i.e. that ex:myLaptop is also a Product.

2.2 Faceted Search

Faceted Search (or Faceted Exploration) [23–25] is a widely used interaction
scheme for Exploratory Search. It is the de facto query paradigm in e-commerce
[18, 26? ] and in digital libraries [27, 28]. It is also used for exploring RDF
Data (e.g. see [19] for a recent survey, and [29, 30] for recent systems), as
well as for exploring general purpose knowledge graphs [31, 32]. There are also
recent extensions of the model, with preferences and answer size constraints
[30]. Informally we could define Faceted Search as a session-based interactive
method for query formulation (commonly over a multidimensional information
space) through simple clicks that offers an overview of the result set (groups
and count information), never leading to empty results sets.

2https://www.w3.org/standards/semanticweb/inference

https://www.w3.org/standards/semanticweb/inference
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2.3 HIFUN: A Functional Query Language for Analytics

HIFUN [33] is a high-level functional query language for defining analytic
queries over big data sets, independently of how these queries are evaluated. It
can be applied over a data set that is structured or unstructured, homogeneous
or heterogeneous, centrally stored or distributed. To apply that language over
a data set D, two assumptions should hold: The data set should i) consist of
uniquely identified data items, and ii) have a set of attributes each of which is
viewed as a function associating each data item of D with a value, in some
set of values. Let D be a data set and A be the set of all attributes (a1, ...,
ak) of D. An analysis context over D is any set of attributes from A, and D is
considered the origin (or root) of that context. A query in HIFUN is defined as
an ordered triple Q = (g,m, op) such that g and m are attributes of the data
set D having a common source and op is an aggregate operation (or reduction
operation) applicable on m-values. The first component of the triple is called
grouping function, the second measuring function (or the measure) and the
third aggregate operation (or reduction operation). In addition, one can restrict
the three components g,m, op of a HIFUN query. Thus, the general form of
a HIFUN query is q = (gE/rg,mE/rm, opE/ro), where gE is the grouping
expression, mE the measuring expression, and opE the operation expression,
whereas rg is a restriction on the grouping expression, rm is a restriction on
the measuring expression, ro is a restriction on the operation expression.

Later, when we will define formally the interaction model, we shall use
HIFUN for expressing the formulated analytic query. This enables the exploita-
tion of the model in other contexts where HIFUN is applicable. Returning
to Knowledge Graphs over RDF, HIFUN queries are translated to SPARQL
queries.

3 Related Work

General Positioning and Focus. We focus on developing a user-friendly inter-
face, where the user will be able to apply analytics to any RDF data in a
familiar and gradual manner, without having to be aware of the contents of
the dataset(s), nor the lower-level technicalities of SPARQL.

Below we discuss in brief the spectrum of related works, also illustrated
in Figure 3. For a more detailed survey, see [34]. In particular, we describe
works about formulating analytic queries directly over RDF (in Section 3.1),
defining Data Cubes over RDF data (in Section 3.2), defining domain-specific
pipelines that produce RDF data and support particular analytic queries (in
Section 3.3), and publishing statistical data in RDF (in Section 3.4). At last,
we describe our positioning and contribution (in Section 3.5).
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Figure 3: The spectrum of related works

3.1 Formulation of Analytic Queries directly over RDF

Formulating Analytics Queries directly over RDF. Here, we refer to the three
most related systems and works, i.e. to work/systems that enable the formula-
tion of analytic queries directly over RDF. At first, [35] proposes an approach
for guided query building that supports analytical queries, which can be ap-
plied over any RDF graph. The implementation is over the SPARKLIS editor
[36] and it has been adopted in a national French project3. The approach is in-
teresting, however during query formulation, no count information is provided,
reducing the exploratory characteristics of the process. As regards expressive-
ness, HAVING-restrictions are not supported. In addition, the GUI is not the
classical of FS, so not every user is familiar with it. Nevertheless, the authors
report positive evaluation results as regards the expressive power of the in-
teractive formulator. The second is [37] that describes a possible extension of
SemFacet [38] to support numeric value ranges and aggregation. The authors
also state that they work towards extending the proposed approach to sup-
port reachability, too. However, the focus is on theoretical query management
aspects, related to Faceted Search, and an interface as well as an implemen-
tation are lacked. From the mockups of the GUI, it seems that no count
information is provided (which is considered important enough for exploration
purposes). Moreover, explicit path expansion is not supported. The authors
use the notion of ”recursion” to capture reachability-based facet restrictions.
Finally, the third one [39] (and the more recent paper [40]), explores the in-
tegration of Faceted Search and Visualization as a means to fetch data from
SPARQL endpoints and analyze it, effectively. The approach incorporates fil-
ters, property paths, and count information. However, the analytical queries
formulated within this framework are constrained to basic exploration capa-
bilities Faceted Search offers, lacking the flexibility to impose restrictions on
final results. Additionally, no evaluation of the proposed approach has been
conducted to validate its effectiveness and performance.

3http://data.persee.fr/explore/sparklis/?lang=en

http://data.persee.fr/explore/sparklis/?lang=en


Springer Nature 2021 LATEX template

8 Unifying Faceted Search and Analytics over RDF Knowledge Graphs

3.2 Definition of Data Cubes over RDF

Another related topic is the definition of a data cube over RDF. There are
works that implicitly define a data cube over existing RDF graphs4 [41–43],
and then apply OLAP. One weakness of this approach (as stressed also in [35])
is that is requires someone with technical knowledge to define the required
data cube(s). Apart from reduced flexibility, the wealth of connections of the
knowledge graph cannot be leveraged, since the user is restricted on one data
cube. Also, it is not guaranteed that the constructed RDF Data Cubes will
be multi-dimensional compliant and how multi-valued attributes, or empty
values, will be treated. Towards this general direction [44] analyzed the ap-
plicability of HIFUN (as described in Section 2.3), over RDF. Specifically it
provides various methods for defining an analysis context (which is analogous
to a data cube), and including feature construction operators for cases where
the RDF data cannot fit to a cube. Moreover, that work provides the algo-
rithms for translating HIFUN queries to SPARQL queries. What is missing
from that work, is the interactive formulation of a HIFUN query. In the current
paper we want to fill this gap, i.e. we focus on how to formulate the HIFUN
query interactively, while exploring the dataset. This task is not easy for users,
since it is laborious to find and select the right property from a big schema, let
alone the formulation of restrictions. Note that, in small star-schema the tasks
of selection and restriction formulation are not difficult. However in knowl-
edge graphs with broad coverage, these tasks can be very laborious. Therefore
methods that can reduce this effort and support exploration are required.

3.3 Domain-specific Pipelines the produce RDF data

There are also, domain specific works (focusing on a particular topic, not on any
RDF dataset), like [45] that motivates knowledge graph-enabled cancer data
analytics. An analogous work for covid-19 related data is [46]. Such works focus
on defining specific pipelines for constructing the desired knowledge graph,
and then enabling particular analytic queries and visualizations to support
domain-specific research purposes. i.e. they do not provide general-purpose
methods for knowledge graph analytics.

3.4 Publishing of Statistical Data in RDF

Another related topic is the publishing of statistical data. Indeed, there are
methods (e.g. [47]) for publishing statistical data as linked data, and towards
this end the RDF data cube vocabulary5 (QB) provides a means to publish
such data on the web using the W3C RDF standard. In our work we do not
focus on publishing statistical data, but on formulating analytic queries over
any RDF dataset.

4https://team.inria.fr/oak/projects/warg/
5https://www.w3.org/TR/vocab-data-cube/

https://team.inria.fr/oak/projects/warg/
https://www.w3.org/TR/vocab-data-cube/
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3.5 Our Position and Contribution

In general, we observe that are not so many works, neither running systems,
that support the easy and intuitive analysis of RDF Knowledge graphs, conse-
quently, we could say that the majority of RDF datasets are not easily explored
and queried. We present an approach with the following key characteristics:
(i) it can be applied to any RDF dataset (i.e. independently if it follows a
star-schema), (ii) it supports only answerable queries (i.e. it never produces
empty results due to lack of data), (iii) it supports arbitrarily long paths, (iv)
it provides count information, (v) it supports the interactive formulation of
HAVING clauses, (vi) it supports both Faceted Search and analytic queries,
and (vii) it supports nested analytic queries.

We describe the proposed approach from three perspectives: (a) We for-
mally specify the interaction model with states and transitions, (b) we express
the query requirements of the model formally using a QL independent for-
malism facilitating in this way the implementation of the model over different
technologies, query languages and triplestores (see [48] for a survey of triple-
stores ); and (c) we provide the exact specification of the UI and the algorithms
followed for facilitating the implementation of the model.

4 The Interaction Model in Brief

GUI Extensions in Brief. The classical FS interface usually comprises two
main frames: the left is used for presenting the facets and the right for display-
ing the objects, see Figure 4 (left). The model, that we propose, extends the
user actions of the left frame with actions required for the formulation of ana-
lytical queries. Specifically, it is enriched with two buttons i.e. G and ± next to
each facet, as shown in Figure 4 (right). Moreover, an additional frame, called
“Answer Frame” (for short AF ) has been added, for displaying the results of
the analytic queries in tabular or graphical format. To grasp the idea, we de-
scribe below four (4) indicative examples that show how a simple or complex
analytic query can be formulated using our model. We assume that the data
of the examples follows the schema of Fig. 1.

Figure 4: The core elements of the GUI for Faceted Search and Analytics
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Example 1 (an AVG query without GROUP BY). Suppose that,
we would like to find “the average price of laptops that made in 2021 from US
companies and have SSD and 2 USB ports”. The part of the query that refers
to specific laptops (i.e. laptops made in 2021 from US companies that have
SSD and 2 USB ports) could be expressed by using the classical FS system.
Note that, the condition “US companies” would be specified by expanding the
path of the property ”manufacturer” till the property of ”origin”. What is
missing is the specification of the aggregate function (in this case “AVG”). For
that, the ± button laid on the right on the “price” facet is offered letting the
users click and select the desired function from the displayed menu.

Example 2 (a COUNT query with GROUP BY). Suppose now that,
the user would like to find “the count of laptops that made in 2021 and have
SSD and 2 USB ports grouped by manufacturers’ country”. The part of the
query that refers to specific laptops, i.e. ”laptops made in 2021 that have SSD
and 2 USB ports” could be expressed by using the classical FS system. As it
has already been mentioned in the previous example, the aggregate function
(in this case “count”) would be defined by clicking on the ± button laid on the
right of the “price” facet and selecting the desired function from the displayed
menu. What is missing is the specification of the grouping condition. For that,
the G button laid on the right of each facet lets the users group the results on
any set of facets. In this case, the user would click on the G button laid next
to the “origin” facet. Note again, that the condition “manufacturers’ country”
would be specified by expanding the path of the property ”manufacturer” till
the property of ”origin”.

Example 3 (a query with range values). Suppose now that, the user
would like to find “the count of laptops that made in 2021 and have SSD and
2 or more USB ports grouped by manufacturers’ country”. The only difference
with the previous query is that the user should specify the range of the values
refer to USB ports. For that, the � button laid on the right of each facet lets
the users filter the values of it fluctuating in a particular range. In this case,
the user would click on the � button laid next to the “USB ports” facet and
(s)he would specify the desired range in the provided form.

Example 4 (a query with restriction on groups, i.e. with HAVING).
Suppose now that, we would like to find ”the average price of laptops grouped
by company and year, only for the laptops that have average price above a
threshold t ”. The aggregate function and the grouping of the results would be
specified via the G and ± buttons laid next to the desired facets, as described
in the previous examples. What is missing is to restrict the results over the
aforementioned threshold. For that, the answer of an analytical query can be
loaded as a new dataset on the extended FS system letting the users further
restrict its values. For example, suppose that the results of the first part of the
query “average price of laptops grouped by company and year”, correspond
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to the table shown in Figure 5(a). In order to further restrict the answer,
we have attached a button, called “Explore with FS” below this table (as
shown in Figure 4) which lets the users load the results as a new dataset on
the FS system as shown in Figure 5(b). As it is shown, each column of the
table corresponds to a facet of the system having instances the values of the
corresponding column. Now, the users can express the desired restriction over
the average price by clicking on the “filter” button laid next to the “price” facet
and specifying the intended range on the pop-up window that is displayed.

(a)
DELL 2020 900
ACER 2021 820
DELL 2021 1000
ACER 2021 850

(b)
Manufacurers

DELL (2)
ACER (2)

Years
2020 (2)
2021 (2)

Avg Prices
820 (1)
850 (1)
900 (1)
1000 (1)

Figure 5: Example 3: Exploring the results of an analytic query with faceted
search

Expressing the Queries of the Previous Examples in HIFUN. Above
we described the interaction. During the interaction, HIFUN queries are fo-
mulated. For reasons of completeness, below we show the HIFUN queries that
correspond to the aforementioned examples.

� Example 1: (ε, price/E,AV G), where ε is an empty grouping function and
E = {i ∈ D/releaseDate(i) = 2021 ∧ origin ◦ manufacturer(i) = US ∧
SSD = true ∧ USBPorts(i) = 2}

� Example 2: (g/E, ID,COUNT ), where g = origin ◦ manufacturer, E =
{i ∈ D/releaseDate(i) = 2021 ∧ origin ◦manufacturer(i) = US ∧ SSD =
true ∧ USBPorts(i) = 2} and ID is the identity function

� Example 3: g/E, ID,COUNT ), where g = origin ◦ manufacturer, E =
{i ∈ D/year ◦ releaseDate(i) = 2021 ∧ origin ◦ manufacturer(i) = US ∧
SSD = true ∧ USBPorts(i) ≥ 2} and ID is the identity function

� Example 4: (g/E, price, AV G)/F , where g = (manufacturer × ({i | i ∈
D∧ year ◦ releaseDate(i))}), E = {i ∈ D/releaseDate(i) = 2021∧ origin ◦
manufacturer(i) = US ∧ SSD = true∧USBPorts(i) = 2} and F = {gi ∈
(g/E)/ans(gi/E) ≥ t}

GUI Extensions. Below, we describe in brief the UI extensions of the classical
FS system that we introduce for supporting analytics, too.
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� Facets: On the right side of each facet name, there are two buttons: (i) the
G button for grouping the results of the analytical query on this facet and
(ii) the ± button that lets the users select the function, i.e. avg, min, max,
etc., that will be applied to each group of the analytic results,

� States of G and ± buttons. If the user clicks on the G button of more
than one facets, then the system asks if (s)he wants to group the results by
>1 attributes, or if (s)he wants to remove some of them. Analogously, for ±:
If the user clicks on the ± button of more than one facets, then the system
asks if (s)he wants to apply >1 aggregate functions to each group of the
analytic results or if (s)he wants to remove some of them.

� Answer Frame. A frame is used for showing the results of the analytic
query in tabular or graphical format.

� Michelanea. Extra Columns. The answer frame could let the users add
or remove columns corresponding to the grouping attributes (i.e. display or
remove attribute that corresponds to the grouping of the results).

Special cases. As stated in [44], there are cases where HIFUN is not applicable
on a dataset, i.e. if multi-valued attributes or empty values exist. For those
cases, we could add one more buttons next to each facet name, say T, that
would let users apply transformation functions, i.e. the feature constructor
operators like those proposed in [44], over it. In addition, such a button would
be useful for defining derived attributes, e.g. for decomposing a date-based
attribute to Year, Month, Day, etc.

5 The Required Extensions of the Formal
Model for FS over RDF for supporting
Analytics

Here, we describe in brief the basics of the underlying core model for FS over
RDF data (in Section 5.1), and the required extensions of that model for
supporting analytics (in Section 5.2).

5.1 Background: The Core Model for FS over RDF

Our approach is based on the general model for Faceted Search over RDF
described in [19]. In brief, that model defines the state space of the interaction,
where each state has an intention (query), an extension (set of resources), and
transitions between the states. Each transition is enacted through a transition
marker (anywhere that the user can click). The approach is generic in the sense
that it is independent from the particular Query Languages (QLs) (used for
expressing the intentions of the model).

That work describes formally how the transitions of a given state are
determined and how each click is interpreted, i.e. how the new state is gener-
ated etc. Distinctive characteristics of the model presented, in comparison to
the classical FS system, are that: (i) it leverages the rdfs:subclassOf and
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rdfs:subPropertyOf relations, (ii) it supports the formulation of path expres-
sions (exploiting the RDF principles), and (iii) it supports switching of entity
types. Thus, this model leverages the complexity of RDF graphs.

5.2 The Extension of the Model for Analytics (Formally)

Let Obj be the set of all objects (i.e. all individuals in our case), let ctx the
current state, ctx.Ext be the set of objects of the current focus (i.e. displayed
objects), and ctx.Int be a query whose answer is ctx.Ext. The question is:
how a HIFUN query can be formulated over such an FS system?

Initially, the user should specify the context of analysis, this is the set of
object in ctx.Ext, and the attributes to be analyzed, which are the properties
applicable to ctx.Ext. Next, (s)he should specify the grouping function, the
measuring function and the aggregate operation of the query. Recall that, the
general form of a HIFUN query is q = (gE/rg,mE/rm, opE/ro). Each of these
parts of the query can be specified through the G and ± buttons laid next to
each facet. In particular,

� clicking on f .G: when the user click on f .G the intention ctx.Int of the model
is changed. Specifically, the grouping function is defined as: gE′ = gE + f ,
where f can denote a facet or a property path. If f corresponds to a value,
then a restriction on the grouping function is applied.

� clicking on f .±: when the user click on f .± the intention ctx.Int of the model
is changed. Specifically, the measuring function is defined as: mE′ = mE+f ,
where f can again denote a facet or a property path. If f corresponds to a
value, then a restriction on the measuring function is applied.

In both cases, the extension, i.e. ctx.Ext as well as the transitions remain
the same, since these buttons do not affect neither the displayed objects on
the right frame nor the available transition markers.

Having defined a HIFUN query, the data is analyzed and the results are
displayed in tabular format. Note that the result set can be loaded as a
new dataset to the system, letting users define analytical queries of unlimited
nesting depth over this set.

6 The Interaction Model Formally and the
Related Algorithms

In Section 6.1, we introduce the notations that we shall use for describing (in
Section 6.2) the desired state space of the proposed interaction declaratively
(the procedural specification is given later in Section 7).

6.1 Notations

RDF. Let K be a set of RDF triples and let C(K) be its closure (i.e.
the set containing also the inferred triples). We shall denote with C the
set of classes, with Pr the set of properties, with ≤cl the rdfs:subclassOf
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relation between classes, and with ≤pr the rdfs:subPropertyOf relation be-
tween properties. We also define the instances of a class c ∈ C as inst(c) =
{o | (o, rdf : type, c) ∈ C(K)} and the instances of a property p ∈ Pr as
inst(p) = { (o, p, o′) | (o, p, o′) ∈ C(K)}.

For defining formally the transitions, we provide some auxiliary definitions,
too. We shall denote with p−1 the inverse direction of a property p, e.g. if
(d, p, r) ∈ Pr then p−1 = (r, inv(p), d), and with Pr−1 the inverse properties
of all properties in Pr.

Below, we introduce notations for restricting the set of resources E; p is a
property in Pr or Pr−1, v is a resource or literal, vset is a set of resources or
literals, and c is a class.

Restrict(E, p : v) = { e ∈ E | (e, p, v) ∈ inst(p)}
Restrict(E, p : vset) = { e ∈ E | ∃ v′ ∈ vset and (e, p, v′) ∈ inst(p)}

Restrict(E, c) = { e ∈ E | e ∈ inst(c)}

We also provide a notation for joining values, i.e. for computing values
which are linked with the elements of E:

Joins(E, p) = { v | ∃e ∈ E and (e, p, v) ∈ inst(p)}

6.2 Defining the State Space of the Interaction

Here, we describe the transitions between the states followed by examples, for
understanding the sought interaction.
Interaction States. If s denotes a state, then we shall use s.Ext to denote its
extension. Let s0 denote an artificial (or default) initial state. We can assume
that s0.Ext = URI ∪ LIT , i.e. the extension of the initial state contains (i)
every URI and literal of the dataset i.e., all individuals, 6 or a subset of the
dataset, e.g. the result of a keyword query [13], or of a natural language query
[49].

6.2.1 Class-based transitions

Below we shall refer to examples assuming the schema of Fig. 1, in particular
we consider a few instances, specifically the ones illustrated in Fig. 6.

Initially, the top-level or maximal classes maximal≤cl
(C) are presented,

see Fig. 7 (a). Each of these classes corresponds to a “class-based transi-
tion marker” and leads to a state with extension inst(c). These classes can
be expanded and unfold their subclasses (Fig. 7 (b)) as well as their top-
level or maximal properties maximal≤pr

(Pr) (Fig. 7 (c)). Each subclass c ∈
subclasses≤cl

(C) corresponds to a “class-based transition marker”. Each such
transition yields again a state with extension inst(c). If the number of the sub-
classes is high, then they are hierarchically organized based on the subClass

6i.e. the results of the SPARQL query ”select ?x where { ?x rdf:type owl:NamedIndividual . }”
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Figure 6: Data of our running example

relationships among these classes. Such a layout reflects the structure of the
reflexive and transitive reduction of the restriction of ≤cl on TMcl(s.Ext) (i.e.
on Rrefl,trans(≤cl | TMcl(s.Ext))).

6.2.2 Property-based transitions

Having expanded the top-level classes, their maximal properties
maximal≤pr (Pr) unfold (Fig. 7 (c)). Each applicable value of these properties
corresponds to a “property-based transition marker”. Specifically, if E is the
current objects, the property-based transitions by p is the set Joins(E, p).
By clicking on a value v in Joins(E, p) we transit to a state with extension
Restrict(E, p : v).

If the number of the subproperties is high, then they are hierarchically
organized based on the subproperty relationships among these properties.

Transitions for Path Expansion. Let p1, . . . , pk be a se-
quence of properties. We shall call this sequence successive, if
Joins(Joins(. . . (Joins(s.Ext, p1), p2) . . . pk) 6= ∅, i.e. if such a sequence does
not produce empty results. Let M1, . . .Mk denote the corresponding sets of
transition markers at each point of the path. If we assume that M0 = s.Ext,
then the transition markers for each i, where 1 ≤ i ≤ k, is defined as:
Mi = Joins(Mi−1, pi).

Now suppose that the user selects a value vk from the transition marker
Mk (i.e. one value from the end of the path). Such an action will restrict the
set of transitions markers in the following order Mk, . . . ,M1 and finally it will
restrict the extension of s. Let M ′k, . . .M

′
1 be these restricted sets of transitions

markers. They are defined as M ′k = {vk} (this is the value that the user selected
from the end of the path), while for 1 ≤ i < k they are defined as:

M ′i = Restrict(Mi, pi+1 : M ′i+1) (1)
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(a)
Company (4)

� Location (5)
Person (3)

� Product (6)

(b)
Company (4)
� Location (5)

Continent (2)
Country (3)

Person (3)
� Product (6)

HDType (3)
NVMe (1)
SSD (2)

Laptop (3)

(c)
by manufacturer (2)

DELL (2)
Lenovo (1)

by releaseDate (3)
2021-06-10 (1)
2021-09-03 (1)
2021-10-10 (1)

by USBports (3)
2 (2)
4 (1)

by hardDrive (3)
SSD1 (1)
SSD2 (1)
NVMe1 (1)

(d)
by manufacturer (2)

DELL (2)
Lenovo (1)

by releaseDate (3)
2021-06-10 (1)
2021-09-03 (1)
2021-10-10 (1)

by USBports (3)
2 (2)
4 (1)

by hardDrive (3)
SSD (2)

SSD1 (1)
SSD2 (1)

NVMe (1)
NVMe1 (1)

Figure 7: (a): class-based transition markers, (b): class-based transition mark-
ers expanded, (c): property-based transition markers, (d): property-based
transition markers and grouping of values,

The extension of the new state s′ is defined as s′.e = Restrict(s.Ext, p1 :
M ′1). Equivalently, we can consider that M ′0 corresponds to s′.e and in that
case Eq. 1 holds also for i = 0.

6.3 Loading AF as a new Dataset

The results of each analytic query can be loaded as a new derived (RDF)
dataset, that the user can further explore and restrict. Assume that the answer
of the current analytic query is a table with attributes A1, . . . , Ak, comprising
a set of tuples T = {t1, . . . , tn}. We assign to each tuple (ti1, . . . , tnk) a distinct
identifier, say ti, and we produce the following k RDF triples: (ti, Aj , tij) for
each j = 1 . . . k. These n ∗ k triples are loaded to the system and they can be
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(a)
by manufacturer (2)

DELL (2)
Lenovo (1)

by releaseDate (3)
2021-06-10 (1)
2021-09-03 (1)
2021-10-10 (1)

by USBports (3)
2 (2)
4 (1)

by hardDrive (3)
SSD1 (1)
SSD2 (1)
NVMe1 (1)

(b)
by manufacturer (3) B by origin (2)

DELL (2) US (1)
Lenovo (1) China (1)

by releaseDate (3)
2021-06-10 (1)
2021-09-03 (1)
2021-10-10 (1)

by USBports (3)
2 (2)
4 (1)

by hardDrive (3) B by manufacturer (2) B by origin (2)
SSD1 (1) Maxtor (2) Singapore (1)
SSD2 (1) AVDElectronics (1) US (1)
NVMe1 (1)

Figure 8: (a): Property-based transition markers, (b): Property Path-based
transitions markers

explored as if they were an ordinary RDF dataset. Any restriction expressed
over this model, correspond to HAVING clauses over the original data.

7 The Algorithm that Implements the State
Space

Here, we provide the exact algorithm for building the GUI of the proposed
model that will be in compliance with the state space described in Section 6.2.
Below we describe each step of the algorithm.

7.1 Starting Points

The function Startup shows that the interaction can start in two ways: (i)
from scratch, or (ii) by exploring a set, let’s call it Results provided by an
external access method (e.g. a keyword search query). In both cases, the func-
tion ComputeNewState is called. The responsibility of this function is to
compute and display the facets of the left frame and the objects of the right
frame.

7.2 Computing the Objects in the Right Frame

The computation of the objects in the right frame is described in the Part
A of the algorithm Alg. 1. As we can see the parameter Filt can be equal to
”CLASS c”, ”PVALUE p:v”, ”PVALUE p:vset”, or empty (ε). If empty the
current set E is set to be all objects of the KG. If nonempty, it restricts the
current set of resources E according to the notations given in Section 6.1.
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Algorithm 1 Computing Active Facets, Zoom points (Filters) and Analytics

1: function Startup . Two ways to start the exploration process
2: ComputeNewState (∅, ε, s0) . Initial call if we want to explore the entire KB
3: ComputeNewState (Results, ε, s0) . Initial call if we want to explore a

particular set of objects (Results) coming from an external access method
4: end function

5: function ComputeNewState(E:set of objects, Filt: Restriction spec, s:
current state)
. Part A: Computation of the objects for the right frame

6: if E = ∅ then . meaning that we have to explore the entire KB
7: E ← Obj . E is set to the set of all objects
8: else if Filt 6= ε then . if we have to compute a restriction of the current state
9: switch (Filt): . Computation of the restricted E for the right frame

10: case ”CLASS c”: E ← Restrict(s.Ext, c)
11: case ”PVALUE p : v”: E ← Restrict(s.Ext, p : v)
12: case ”PVALUE p : vset”: E ← Restrict(s.Ext, p : vset)
13: endSwitch
14: end if
15: Show E . Display the objects in E in the right frame

. Part B: Computation of the facets for the left-frame

. Part B.1: Computation of class-based restrictions
16: FacetsClasses← TMcl(E) . The applicable class-based transition markers
17: for each c ∈ FacetsClasses do . Creation of the nodes for the transition

markers (with names, counts, and onClick)
18: Node node ← new Node();
19: node.name ← c.name ; . The name that will be displayed
20: node.count ← | Restrict(s.Ext, c) | . The count that will accompany the

name
21: node.onClick ← ComputeNewState(E, ”CLASS c”, s) . the onClick

behavior
22: end for
23: Part B.2 see Alg. 2
24: end function

7.3 Computing the Facets corresponding to Classes

The part of the algorithm for computing the facets of classes is Part B.1 of
Alg. 1. Being at a state s with extension E, the classes that can be used as
class-based transition markers, denoted by TMcl(E), are those that the entities
in E belong, and they are defined as:

TMcl(E) = {c ∈ C | Restrict(E, c) 6= ∅} (2)

If the user clicks on a class-based transition marker i.e., c ∈ TMcl(E), then
the extension of the targeting state s′ is defined as s′.e = Restrict(E, c).
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For each such transition marker a node is created. Each node has a name,
i.e. the name of the corresponding subclass, a count information, i.e. the num-
ber of entities that belong to this subclass, and an on-click behavior. Clicking
on the node, the function “ComputeNewState” is called. In that case, where
the objects are restricted to a class, the filtering condition that is passed to the
call of this function is “Class C”, i.e., ComputeNewState(E, ”CLASS c”, s).

7.4 Computing the Facets that correspond to Properties

The part of the algorithm for computing the facets that correspond to
properties is Part B.2 of Alg. 2.

Algorithm 2 Computing Active Facets, Zoom points (Filters) and Analytics

1: function ComputeNewState(E:set of objects, Filt: Restriction spec, s:
current state)

. Part B.2: Computation of property-based restrictions
2: FacetsPropsForw ← {p ∈ Pr | Joins(s.Ext, p) 6= ∅} . forward properties

3: FacetsPropsBack ← {p ∈ Pr−1 | Joins(s.Ext, p) 6= ∅} . backwards props
4: for each p ∈ FacetsPropsForw do
5: Node hnode ← new HeadingNode(p.name) . Separator and name of p
6: for each v ∈ Joins(s.Ext, p) do . TMs related to p
7: Node node ← new Node();
8: node.name ← v ; . The name that will be displayed
9: node.count ← | Restrict(s.Ext, p : v) | . The accompanying count

10: node.onClick ← ComputeNewState(E, ”PVALUE p : v”, s)
11: end for
12: Optional: group all values based on their classes i.e. with respect the

following classes: {c | Joins(s.Ext, p) ∩ inst(c) 6= ∅}
13: hnode.addButton(G, onClick=gE+ = p) . For group by

14: hnode.addButton(±, onClick=mE+ = p) . For measuring op

15: . For Entity Type Switch:
16: hnode.addButton(”EntityTypeSwitch”, . For entity type switch
17: onClick ← ComputeNewState(Joins(s.Ext, p), ε, s))
18: . For Path Expansion:
19: hnode.addButton(”B”, . For path expansion
20: onClick ← ComputeNewState(s.Ext,
21: ”PVALUE p: ” + ExpandAndRestrictRecursive(Joins(s.Ext, p)), s)
22: end for
23: ... . Analogously for FacetsPropsBack
24: end function

In brief, being at a state s, with extension E, the properties that can be
used in the expansion of a property p are those that connect to that property
as well as to the current entities E of focus, and they are defined as:

P = {p ∈ Pr | Joins(E,P ) 6= ∅} (3)
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For each such property p a heading node is created. For each property value
of p that is joinable a node is created with the appropriate name, count, and
on-click behavior. Moreover, two buttons for analytics, i.e. G and ± are created.
Finally, an additional expansion button i.e., “B”, is added enabling the user
to further expanding the property path (described next in Section 7.4.1).

Clicking on node corresponding to a property value, the function “Com-
puteNewState” is called. In that case, where the objects are restricted over a
property, the filtering condition that is passed to the function is “PVALUE
p:v”, i.e., ComputeNewState(E, “PVALUE p:v”, s).

7.4.1 Computing the Facets Corresponding to Path
Expansion

Notice in Alg. 2 the line about path expansion (line 18). On clicking on the
element “.” the algorithm for computing the facets that correspond to path
expansion is called, shown in Alg. 3. By clicking on “B” the function “Ex-
pandAndRestrictRecursive(M)” is called again and the process is repeated (as
described in Section 6.2.2).

Algorithm 3 Function for Path Expansion

. Carries out the expansion over a set of URIs M and returns a set of values (to
be used for filtering by the caller).

1: function ExpandAndRestrictRecursive(M :Uris):ValuesSet
2: P ← {p ∈ Pr | Joins(M,p) 6= ∅} . applicable properties
3: for each p ∈ P do
4: Node hnode = new HeadingNode(p.name) . Separator and name of p
5: for each v ∈ Joins(M,p) do . TMs related to p
6: Node node ← new Node();
7: node.name ← v ; . The name that will be displayed
8: node.count ← | Restrict(M,p : v) | . The accompanying count
9: node.onClick ← return Restrict(M,p : v) . on click it returns a set

10: end for
11: hnode.addButton(”B”, . recursive call for further expansion
12: onClick← returnRestrict(M,p,ExpandAndRestrictRecursive(Joins(M,p)))
13: hnode.addButton(G, onClick=gE+ = p) . For group by

14: hnode.addButton(±, onClick=mE+ = p) . For measuring op
15: end for
16: end function

8 Expressing and Computing the Intentions of
the States

Here, we explain how the intentions of the proposed model are expressed in a
specific query language, that of RDF data, i.e. SPARQL.
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Table 1 (adapted from [19]) interprets the notations specified for this model
and shows how the intentions are expressed in SPARQL. We assume that all
the inferred triples (deduced from subClassOf and subPropertyOf relations)
are available (materialized) in the storage level.

Id Notation Expression in SPARQL
(i) Restrict(E, p : vset), where

vset = {v1, ..., vk} select ?x where {
?x rdf:type temp; p ?V.
Filter (V=$v_1 ||...|| ?V=v_k)}

(ii) -//-
select ?x where {
VALUES ?x { e1 ... en}.
?x p ?V.
Filter (?V=v_1 ||...|| ?V=v_k)}

(iii) Restrict(E, c)
select ?x where {
?x rdf:type temp; rdf:type c.}

(iv) Joins(E, p), where E =
{e1, ..., ek} select Distinct ?v where { ?x p ?v.

Filter (?x = e_1 ||...|| ?x = e_k)}

(v) TMcl(s.Ext) and counts
select Distinct ?c count(*) where{
?x rdf:type ?c; rdf:type temp.}
group by ?c

(vi) Props(s)
select Distinct ?p
where{ {?x rdf:type temp; ?p ?v.}
UNION {?m rdf:type temp. ?n ?p ?m. }}

(vii) Joins(s.Ext, p) and counts
select Distinct ?v count(*)
where{ ?x rdf:type temp; p ?v.}
groupby ?v

Table 1: SPARQL-expression of the model’s notations, assuming that the
extension of the current state (either E or s.Ext) is stored in temporary class
temp

As it is shown, the extension of the current state (i.e. ctx.Ext) can be
computed either (i) extensionally or (ii) intentionally. “Extensional” means
that the current state is stored in a temporary class temp i.e. the RDF triples
(e, rdf:type, temp) for each e ∈ ctx.Ext have been added to the triplestore.
On the other hand, “intentionally” means that instead of storing the current
state in a temporary class, the desired triples are obtained by querying the
triplestore. The way queries are formulated is given in Table 2.

Notation Expression in SPARQL
E ← Restrict(s.Ext, c) s.q ← s.q + “?x1 rdf:type c”
E ← Restrict(s.Ext, p : v) s.q ← s.q + “?x1 p v”
E ← Restrict(s.Ext, p : vset) s.q ← s.q + “?x1 p ?V. Filter (?V=v1 ... ?V=vk)”

Table 2: For SPARQL-only evaluation approach

The approach to be selected (extensional or intentional) depends on the
size of the dataset and the server’s main memory. In particular, if the dataset
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is quite big and cannot not fit in the memory, then the intentional approach is
preferred. In our implementation, described in the next section, we adopt the
intentional approach.

9 Implementation

We have implemented the proposed model as a web-application, called
RDF-ANALYTICS. The server-side uses the triplestore Virtuoso7 that offers per-
sistent storage and the SPARQL endpoint for executing the queries. The
front-end side of the system is implemented in Angular8. The states are com-
puted using the intentional approach, i.e. the extension of the new state is
computed using a SPARQL query without based on the extension of the
previous state.

Fig. 9 shows a screenshot of the left frame of the GUI representing the
data of our running example. Here, the user has expressed the query “Average
price of laptops that have been manufactured by US companies and they have
from 2 to 4 USB ports, group by manufacturer”. The results of this query
are initially displayed in tabular form as shown in Fig. 10 (a). At this point,
the user can (i) change the attributes of analysis (by clicking on the “BACK”
button), (ii) export the results as a .csv file (by clicking on the “EXPORT AS
EXCEL” button), (iii) visualize the results (by clicking on the “VISUALIZE”
button) as shown in Fig. 10 (b), or (iv) further restrict the final results (by
clicking on the “EXPLORE WITH FS” button) as shown in Fig. 10 (c).
Common Extensions. The system could further be enriched with search
boxes on each individual facet, methods for facet/value ranking (as described
in the Section 6.3.2 of the survey [19] and more recent ones like [32, 50]), meth-
ods for predicting useful facets [51], as well as with similarity based browsing
functions (as in [52]). Currently, we are investigating the connection of the
system with a 3D visualization (based on [53]) for enabling a more interactive
exploration of the results.

9.1 Efficiency

The implementation does not have any additional cost except for the evaluation
of the respective SPARQL queries. In particular, part A of the main algorithm
(that computes the extension of the new state) evaluates a SPARQL query
that performs a simple restriction. Part B.1 (that computes the class-based
transition markers and their count information), evaluates a SPARQL query
(like the one shown in row (v) of Table 1) that matches and counts the instances
of a particular class. Part B.2 (that computes the property-based transition
markers and their count information), evaluates a SPARQL query that (i)
fetches and (ii) counts the range values of the properties that connect to the
current resources (as shown in rows (iv) and (vii) of Table 1, respectively),

7http://docs.openlinksw.com/virtuoso/
8https://angular.io/
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Figure 9: GUI of the system RDF-ANALYTICS for formulating the query ”Aver-
age price of laptops that have 2 to 4 USB ports and have been manufactured
by US company, group by manufacturer”

Figure 10: Tabular and graphical visualization of the results - Loading of the
results as a new dataset.
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The algorithm for path expansion (Alg. 3) evaluates the queries of Part B.2 of
the main algorithm for each expansion step.

The efficiency of queries’ execution depends on (i) the storing, indexing
and query processing techniques of the triplestore (as discussed in [48]) and
(ii) the size of the collection. Below, we report a few indicative execution times
of such queries for datasets of various sizes.

Based on the schema of the running example, we produced synthetic
datasets of different sizes from 100 triples to 1 million triples. Then, we tested
the following list of queries regarding the time needed for executing them as
well as displaying the final results to the user. The set of queries ranges from
simple to more complex containing groups, paths, filters, and combinations of
them.

� Q1: Average price of laptops group by manufacturer (simple group)
� Q2: Average price of laptops group by manufacturer and release date

(combination of groups)
� Q3: Average price of laptops that have at least 2 USB ports group by

manufacturer (filter)
� Q4: Average price of laptops group by the birthplace of founders (path)
� Q5: Average price of laptops released after 1/1/2021, and have at least 2

USB ports, group by the origin of manufacturer (complex query containing
path, filters, group)

� Q6: Average price of laptops released after 1/1/2021, have at least 2 USB
ports, and have gdb of origin [2000, 15000], group by the origin of manufac-
turer and the birthplace of the founders (complex query containing paths,
filters, groups)

Table 3: Efficiency

Query evaluation (in ms) Presentation of results (in ms)
Dataset
size (in
triples)

q1 q2 q3 q4 q5 q6 q1 q2 q3 q4 q5 q6

102 345 425 388 364 624 418 24 25 29 25 45 26

103 331 415 452 409 521 618 23 32 56 37 30 49

104 439 409 440 381 454 488 26 34 33 44 32 30

106 2605 3258 2276 2544 1937 1569 58 62 59 111 61 47

As it is shown in Table 3, the response time depends mainly on the eval-
uation of the query, since the time required for displaying the results to the
user is negligible. We also notice that, the functions and the aggregate oper-
ations that the query has do not affect its execution time. Overall, as we can
see, we support real-time interaction. In general, the evaluation time of the
query depends on the storage, indexing, and query processing techniques that
the SPARQL endpoint (in this case Virtuoso) uses, any query optimization is
beyond the scope of this work.
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10 The Expressive Power of the Model

We aim to cover the more basic information needs in a familiar interaction
style, and not to propose an interaction model with extreme expressive power
that would be complex to use. In such cases, the users could directly use
SPARQL. Just like Faceted Search systems offer an intuitive and widely suc-
cessful method for incrementally formulating mainly conjunctive queries (or
conjunctions over facet-restricted disjunctions), our goal is to support the main
needs for analytic queries over RDF.

Below, we describe the expressive power of the proposed model with respect
to (a) the kind of HIFUN expressions that can be formulated by this model
(in Section 10.1), and (b) the OLAP operations it supports (in Section 10.2).

10.1 Expressible HIFUN queries

Here, we discuss about the kind HIFUN queries that can be expressed with
the proposed model.

� Analysis context: it is the set D of the objects of focus , i.e. ctx.Ext. The
proposed model lets the users define this set through the facets it offers,
since they restrict the information space and specify the focus.

� gE is the grouping expression: refers to the facet(s) by which the analytical
results are grouped. The facet(s) may belong to different categories, e.g.
classes (pairing operator in HIFUN) and a facet can correspond to a path
(composition operator in HIFUN). Since a G button is laid next to each
facet name of any level, the system supports both pairing and composition
expressions for the grouping function.

� mE is the measuring expression: refers to the facet(s) on which the aggre-
gate operation will be applied. Again, the facet(s) may belong to different
categories (pairing operator in HIFUN) and a facet can correspond to a path
(composition operator in HIFUN). Since a ± button is laid next to each
facet name of any level, the system supports both pairing and composition
expressions for the measuring function.

� opE the operation expression: it is the aggregation function applied to the
grouped values. Since a ± button laid next to each facet name offers a
menu with the basic aggregation functions of an analytical query, the system
supports this function, too.

Attribute restrictions. Recall that, the grouping and the measuring function
may contain a set of restrictions. Any restriction is also supported by the
proposed model, since the G and ± buttons lay next to each value of every
facet.
Results restrictions. Apart from restricting the attributes of a HIFUN
query, the user can also restrict the results of it. The proposed model sup-
ports this functionality by loading the results of the analytical query as a new
dataset on the FS system. In that case, the user is able to further restrict them
by specifying the range of the values of the desired facets.
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Nesting. A HIFUN query may express a query in terms of one or more other
queries, i.e. nested queries. Since the proposed system lets the users load the
current analytical results as a new dataset to the system and create new
queries, it supports nested queries, too.

10.2 OLAP Operators Supported

Online Analytical Processing systems (OLAP). Online Analytical Processing
(OLAP) allows users to view data at different granularities. In order to ap-
ply OLAP, data should be organized in a multi-dimensional (MD) structure,
known as Data Cube. A Data Cube consists of (i) facts which are the subjects
of the analysis and quantified by measures, and (ii) hierarchically-organized di-
mensions allowing for measure aggregation. The operations that can be applied
over it are: roll-up (performs aggregation by climbing up a concept hierarchy
for a dimension or by dimension reduction), drill-down (is the reverse opera-
tion of roll-up and performs aggregation by stepping down a concept hierarchy
for a dimension or by introducing a new dimension), slice (selects one partic-
ular dimension from a given cube and provides a new sub-cube), dice (selects
two or more dimensions from a given cube and provides a new sub-cube), and
pivot (provides an alternative presentation of data).

The proposed system, supports all of them. In particular, traversing up
the hierarchy of a facet corresponds to a roll-up operation, traversing down
the hierarchy of a facet corresponds to a drill-down operation, picking one
value for a facet corresponds to slice, picking two or more values from multiple
facets corresponds to dice, and moving to a facet which is directly or indirectly
connected to the facet of focus corresponds to pivot.

11 Evaluation

Section 11.1 compares the proposed model with the most relevant systems
for RDF analytics, Section 11.2 discusses the results of an evaluation of our
approach with users and Section 11.3 conveys an implementation of the model
that proves its feasibility and the completeness of the introduced algorithms.

11.1 Comparison with Related Systems

In Table 4 we qualify the more relevant systems, mentioned in Section 3,
according to some important functionalities, i.e. applicability (if they can be
applied over star schemas or over any RDF graph), support of basic analytic
queries, support of analytic queries with HAVING clause, support of plain
Faceted Search, support of property paths in Faceted Search and analytics,
support of results’ visualization, offer of running systems, and conduction of
an evaluation.

We observe that in comparison to the related systems, RDF-ANALYTICS out-
stands since (i) it can be applied to any RDF graphs without requiring data
pre-processing, (ii) it supports plain browsing of the graph as well as analysis
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Table 4: Comparing the functionalities of related systems

System Appli-
cability
(STAR
vs
ANY)

Analytic
queries:
basic

Analytic
queries:
with
Hav-
ing

Plain
Faceted
Search

Property
Paths
(in
Faceted
Search
and
ana-
lytics)

Visua-
lization

Running
system

Eva-
luation

[37] ANY Yes Yes Yes
but
with
No
Count
infor-
mation

Not
explic-
itly,
reach-
ability

No No No

[35] ANY Yes No No.
Spe-
cial
inter-
face

Not
clear

No Yes Yes

[39] ANY Yes No Yes Yes
with
counts

Yes Yes No

Our
ap-
proach

ANY Yes Yes by
AF

Yes Yes
with
counts

Yes Yes Yes

of it, (iii) it supports restrictions of the results and property paths, (iv) it offers
visualization of the results in a running system that is publicly available and
(v) it has been evaluated by users

11.2 Task-based Evaluation with Users

We performed a task-based evaluation with users. The objective was to inves-
tigate if they can formulate easily analytic queries, especially complex queries
containing various value-restrictions and path expressions. Twenty (20) users
participated to the evaluation. The number was sufficient for our purposes
since, according to [54], 20 evaluators are enough for getting more than 95%
of the usability problems of a user interface The participants had varying ed-
ucational levels (Computer Science Student (25%), Computer Science related
(60%), Other (15%)), age groups (twenties (25%), thirties (40%), forties (20%),
fifties (10%), sixties (5%)) and sex (male (80%), female (20%)). We did not
train them; we just provided them with a concise assisting page that explains
the functionality of the buttons laid next to each facet9.

We defined 10 tasks for the evaluation, below we list them along with the
success rates of the users.

9The deployment of the system that was used is accessible at https://demos.isl.ics.forth.gr/
rdf-analytics.

https://demos.isl.ics.forth.gr/rdf-analytics
https://demos.isl.ics.forth.gr/rdf-analytics
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� Q1. Count the laptops grouped by manufacturer.: Success (85%), Partial
success (0%), Fail (15%)

� Q2. Count the number of laptops grouped by manufacturer that were
released after 1/1/2022.: Success (85%), Partial success (0%), Fail (15%)

� Q3. Count the number of laptops grouped by manufacturer that were re-
leased after 1/1/2022 and have at least 2 USB ports.: Success (85%), Partial
success (0%), Fail (15%)

� Q4. Average price of laptops released after 1/1/2022 and have at least 2
USB ports.: Success (80%), Partial success (0%), Fail (20%)

� Q5. Average price of laptops released after 1/1/2022 and have at least 2
USB ports grouped by manufacturer.: Success (90%), Partial success (0%),
Fail (10%)

� Q6. Average price of laptops with HDD manufactured in an Asian country.:
Success (50%), Partial success (0%), Fail (50%)

� Q7. Average price of laptops with HDD manufactured in US.: Success (50%),
Partial success (0%), Fail (50%)

� Q8. Count the laptops grouped by the country of the founder.: Success
(50%), Partial success (0%), Fail (50%)

� Q9. Average price of laptops grouped by manufacturer.: Success (80%),
Partial success (0%), Fail (20%)

� Q10. Average prices of laptops grouped by manufacturer, having average
price below 800 Euro.: Success (65%), Partial success (10%), Fail (25%)

We observe that users had higher success rates to questions related to
simple aggregations (Q9) and applying filters to the data (Q1-Q5). They were
able to successfully navigate the filtering options and effectively apply them
to refine and manipulate the dataset. In contrast, they encountered challenges
when it came to questions that required formulating paths in the graph data
(Q6-Q8). This particular task seemed to present difficulties for users, as they
struggled to navigate and comprehend the intricacies of the graph structure.
Additionally, users encountered difficulties in understanding how to formulate
“HAVING” clauses by loading the results as a new dataset, as they struggled
to grasp the concept of applying conditions to aggregated data. This suggests
that it is worth improving the system by providing more guidance in such cases
(e.g. through info boxes, tooltips etc.).

Overall, the results are very promising in terms of task completion, as
shown in Fig. 11 (a) (i.e., success 72%, partial success 1%, fail 27%) and
user rating as shown in Fig. 11 (b) (i.e., Very useful 45%, Useful 45%, Little
Useful 5%, Not Useful 5%), given that no training was provided to the users.
These results align well with our target audience, where 55% of users have an
expert-level background, 30% are at an intermediate level, and 15% are novice
users. It’s important to emphasize that our system is designed with a focus
on addressing the needs of non-expert users. Therefore, the positive outcomes
in task completion and user satisfaction demonstrate the effectiveness of our
system in assisting those who may not have prior expertise.
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(a) Task completion (b) User Rating (c) User Experience

Figure 11: Task-based evaluation with users: task completion and user rating

In future, we plan to improve the system based on the users’ feedback
and to enrich the system with additional features, especially regarding the
visualization of the results.

11.3 Testing Implementability

The development of Interactive User Interfaces are in general time-consuming.
In this paper, we provided the concrete algorithms for producing the UIs in
order to make the model easily implementable. To test the completeness and
clarity of the description of the model and the proposed algorithms, we as-
signed an undergraduate student in the fourth year (not a member of the
research group) to implement it (as a Diploma Thesis) by providing him with a
preliminary version of the current paper. He was free to decide the implemen-
tation technologies he would use. For the back-end side, he used Java, Spring
framework, and apache Jena, whereas for the front-end side, he used Vue.js,
Bootstrap, and Font Awesome. He managed to implement the model correctly.
A few screenshots are shown in Figure 12.

Figure 12: An alternative implementation of the proposed model
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12 Concluding Remarks

The formulation of structured queries over RDF Knowledge Graphs is diffi-
cult, especially in case that the graph has a broad domain, and thus contains
large number of classes and properties. To aid especially novice users (and to
save time from expert users) we present a model that aims to enable them
to formulate easily analytic queries over any RDF knowledge graph, with-
out having any knowledge of the schema/terminology of the graph, nor the
syntax of SPARQL. To come up with an intuitive interaction model and inter-
face, we leverage the familiarity of users with the Faceted Search systems. We
start from a general model for Faceted Search over RDF data, and we extend
it with actions that enable users to specify analytic queries, too. Distinctive
characteristics of the model are: (i) it can be applied to any RDF dataset
(i.e. independently if it follows a star-schema), (ii) it supports only answerable
queries (i.e. it never produces empty results due to lack of data), (iii) it sup-
ports arbitrarily long paths, (iv) it provides count information, (v) it supports
the interactive formulation of HAVING clauses, (vi) it supports both Faceted
Search and analytic queries, and (vii) it supports nested analytic queries.

We detail the model, specifically (i) we define formally the state-space of
the interaction model and the required algorithms for producing the UI (User
Interface) (ii) we describe a hybrid (extensional and intentional) query evalua-
tion approach, (iii) we present an implementation of the model that showcases
its feasibility, and (iv) we discuss in brief the results of a preliminary eval-
uation of the proposed system that provides evidence about its acceptance
by users. In the future, we plan to enrich the model with (i) further visual-
ization features for aiding the interpretation of the analytical results and (ii)
feature constructor operators (FCO) for cases where data transformations are
required. Another direction for future research is to investigate methods for
improving the efficiency of the proposed model, both the the formulation and
execution of the analytical queries.
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erations for RDF analytics. In: 2015 31st IEEE International Conference
on Data Engineering Workshops, pp. 71–76 (2015). IEEE

[43] Benatallah, B., Motahari-Nezhad, H.R., et al.: Scalable graph-based olap
analytics over process execution data. Distributed and Parallel Databases
34 (2016)

[44] Papadaki, M.-E., Spyratos, N., Tzitzikas, Y.: Towards interactive analyt-
ics over RDF graphs. Algorithms 14(2), 34 (2021)

[45] Hasan, S.S., Rivera, D., Wu, X.-C., Durbin, E.B., Christian, J.B.,
Tourassi, G.: Knowledge graph-enabled cancer data analytics. IEEE
journal of biomedical and health informatics 24(7), 1952–1967 (2020)

[46] Michel, F., Gandon, F., Ah-Kane, V., Bobasheva, A., Cabrio, E., Corby,
O., Gazzotti, R., Giboin, A., Marro, S., Mayer, T., et al.: Covid-on-the-
web: Knowledge graph and services to advance covid-19 research. In:
International Semantic Web Conference, pp. 294–310 (2020). Springer

[47] Salast, P.E.R., Martin, M., Da Mota, F.M., Auer, S., Breitman, K.K.,



Springer Nature 2021 LATEX template

Unifying Faceted Search and Analytics over RDF Knowledge Graphs 35

Casanova, M.A.: Olap2datacube: An ontowiki plug-in for statistical data
publishing. In: 2012 Second International Workshop on Developing Tools
as Plug-Ins (TOPI), pp. 79–83 (2012). IEEE

[48] Ali, W., Saleem, M., Yao, B., Hogan, A., Ngomo, A.-C.N.: A survey of
RDF stores & SPARQL engines for querying knowledge graphs. VLDB
Journal (2021). (accepted for publication)

[49] Nikas, C., Fafalios, P., Tzitzikas, Y.: Open domain question answering
over knowledge graphs using keyword search, answer type prediction,
SPARQL and pre-trained neural models. In: International Semantic Web
Conference, pp. 235–251 (2021). Springer

[50] Ali, E., Caputo, A., Lawless, S., Conlan, O.: Personalizing type-based
facet ranking using bert embeddings (2021)

[51] Niu, X., Fan, X., Zhang, T.: Understanding faceted search from data
science and human factor perspectives. ACM Transactions on Information
Systems (TOIS) 37(2), 1–27 (2019)

[52] Chatzakis, M., Mountantonakis, M., Tzitzikas, Y.: RDFsim: Similarity-
Based Browsing over DBpedia Using Embeddings. Information 12(11),
440 (2021)

[53] Tzitzikas, Y., Papadaki, M.-E., Chatzakis, M.: A spiral-like method to
place in the space (and interact with) too many values. Journal of
Intelligent Information Systems, 1–25 (2021)

[54] Faulkner, L.: Beyond the five-user assumption: Benefits of increased sam-
ple sizes in usability testing. Behavior Research Methods, Instruments, &
Computers 35, 379–383 (2003)


	Introduction
	Background
	The Resource Description Framework (RDF)
	Faceted Search
	HIFUN: A Functional Query Language for Analytics

	Related Work
	Formulation of Analytic Queries directly over RDF
	Definition of Data Cubes over RDF
	Domain-specific Pipelines the produce RDF data
	Publishing of Statistical Data in RDF
	Our Position and Contribution

	The Interaction Model in Brief
	The Required Extensions of the Formal Model for FS over RDF for supporting Analytics
	Background: The Core Model for FS over RDF
	The Extension of the Model for Analytics (Formally)

	The Interaction Model Formally and the Related Algorithms
	Notations
	Defining the State Space of the Interaction
	Class-based transitions
	Property-based transitions

	Loading AF as a new Dataset

	The Algorithm that Implements the State Space
	Starting Points
	Computing the Objects in the Right Frame
	Computing the Facets corresponding to Classes
	Computing the Facets that correspond to Properties
	Computing the Facets Corresponding to Path Expansion


	Expressing and Computing the Intentions of the States
	Implementation
	Efficiency

	The Expressive Power of the Model
	Expressible HIFUN queries
	OLAP Operators Supported

	Evaluation
	Comparison with Related Systems
	Task-based Evaluation with Users
	Testing Implementability

	Concluding Remarks

