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ABSTRACT

Determining the pose of orbiting satellites is a funda-
mental prerequisite for supporting autonomous proximity
operations in space. This work presents a model-based
3D tracking algorithm based on edges. The proposed
tracker maintains a pose hypothesis that is propagated
from frame to frame, using it first to render a depth image
and then refining it according to partial matches estab-
lished between depth and intensity edges. Edge match-
ing relies on fast, local linear searches along the depth
gradient direction. The tracker does not require any pre-
processing of the 3D model nor does it make any assump-
tions regarding its characteristics, as is often the case for
other approaches based on edges. It is also robust to parts
of the tracked satellite being out of view, occluded, shad-
owed or visually undetected. Experimental results evalu-
ating the accuracy of the tracker and comparing it against
established techniques are also included.
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1. INTRODUCTION

Autonomous proximity operations in space refer to the
ability of an unmanned satellite to conduct fine maneu-
vers close to other orbiting satellites with the purpose of
rendezvous, inspection, assembly, re-supply, servicing or
docking [16]. Of particular interest are active debris re-
moval (ADR) missions, which aim to stabilize Earth’s or-
bit space (esp. LEO) by deorbiting large non-functional
satellites and launch vehicles [4]. A key enabling tech-
nology for such missions concerns automatic techniques
for estimating the relative pose between a service and a
target spacecraft [14]. Relative pose refers to the six po-
sition and attitude (orientation) parameters defining the
geometric relationship between the two spacecraft. Es-
timates of relative pose and corresponding linear and an-
gular velocities are to be used in closed-loop orbit control
to guide the motion of the service spacecraft in order to
safely approach and later navigate away from the target.

Existing techniques for pose estimation are characterized
by the type of sensor they employ, their operating range

and by whether the target spacecraft is cooperative, i.e.
carries a set of easily detectable artificial markers (either
retro-reflectors or visual fiducials) forming a known pat-
tern that is tracked in order to achieve the estimation of
pose. These classification criteria are intertwined since
the type of sensor relates to the applied sensory pro-
cessing algorithms and the required operating range de-
termines the applicable sensor choices. Active LiDAR
range-finders [9, 21] can provide accurate, high resolu-
tion distance measurements but have the drawbacks of
substantial mass, power consumption and cost. They may
also have low acquisition speed and angular resolution.
On the other hand, infrared and visible light cameras are
particularly attractive for estimating pose in space, owing
to their compact size, passive mode of operation, sim-
ple hardware and low power consumption. Early space-
demonstrated systems such as the Space Vision System
(SVS) [29], the Trajectory Control System (TCS) [10] or
the Advanced Video Guidance Sensor (AVGS) [22] op-
erated on the assumption that the target spacecraft is co-
operative. As such operational constraints are not accept-
able in several important proximity navigation scenarios,
for example the removal of space debris or the refueling
of spacecraft in orbit, there is currently a trend towards
systems that are appropriate for un-cooperative targets.

This paper reports our efforts in the context of ESA
project HIPNOS (HIgh Performance avionics solutioN
for advanced and cOmplex GNC Systems) [25], which
studies computer vision algorithms and avionics architec-
tures suitable for ADR. Our work focuses on developing
vision-based algorithms for relative pose estimation that
are amenable to hardware acceleration. Specifically, we
are concerned with the problem of using a single passive
camera to track the pose of an un-cooperative orbiting
spacecraft at medium and close ranges, i.e. at distances
below 100 m. Visual tracking in orbit must overcome
challenges such as rapidly changing and often inadequate
illumination, glare, hard shadows, tumbling targets, lack
of strong texture, occasional background clutter, low ca-
pacity flight hardware, etc.

We propose a model-based, monocular tracking tech-
nique which relies on edges to yield accurate pose esti-
mates with moderate computational overhead. Increased
frame rate performance will be achieved by partitioning
tracking on a FPGA/CPU system. The rest of the paper



is organized as follows. An overview of related work is
provided in Sec. 2. The proposed tracking algorithm is
presented in Section 3 and is compared with established
methods in Section 4 using synthetically generated image
sequences. The paper concludes in Section 5.

2. PREVIOUS WORK

Edges are defined by sharp changes in image intensities
which originate from discontinuities in surface orienta-
tion, texture, depth or illumination. They are moder-
ately robust against noise and illumination or viewpoint
changes. Edges are also accurately and rapidly localized
in images and can be extracted even from weakly textured
objects, to which techniques relying on photometric local
patch detectors and descriptors, e.g. [26], cannot be ap-
plied. Consequently, edges have been used as the primary
feature type by several object tracking algorithms.

For instance, Lowe [28, 27] tracks an object by extracting
line segments from its image contours and fitting them to
a known object model. D’Amico et al. [12] adapt Lowe’s
approach to a spaceborne monocular vision-based nav-
igation system. The RAPiD tracker proposed by Har-
ris [18] operates in a reverse direction by first projecting
the model using an approximate pose and then matching
it with image edges. RAPiD relies on the assumption that
the difference between the actual pose and its predicted
estimate is small. Therefore, data association can be ef-
ficiently established using 1D local search for an image
edge along the direction that is perpendicular to a pre-
dicted edge. To keep the computational complexity low,
perpendicular matching is limited to a sparse set of pre-
determined control points. Control points are thus em-
ployed to sparsely measure the component of image mo-
tion that is perpendicular to an edge. Linearization about
the current pose estimate allows each pair of orthogonally
matched points to yield a linear constraint on the six pa-
rameters defining the incremental change in object pose.
RAPiD is very efficient and was historically the first 3D
tracker to successfully run at high frame rates on general
purpose hardware. As a result, its paradigm of using a
local search around a prior pose has been retained in sub-
sequent trackers. Despite its effectiveness, however, the
basic RAPiD algorithm lacks robustness to mismatches
and occlusions and requires that control points and their
visibility are provided externally.

Several authors have proposed improvements to the basic
RAPiD algorithm. Armstrong and Zisserman [2], for ex-
ample, address robustness by grouping control points us-
ing geometric primitives such as lines and conics and use
RANSAC to identify and discard incorrect edge matches.
Drummond and Cipolla [13] use a Lie group formalism to
represent the linearized relationship between image mo-
tion and pose parameters. They define control points on
object lines, the visibility of which is determined at run-
time with binary space partition trees. Robustness is also
attained by employing an M-estimator computed with it-
eratively reweighted least squares (IRLS) to estimate the

pose parameters. Comport et al. [11] treat pose com-
putation as the dual problem of 2D visual servoing and
track points normal to the projections of object lines. M-
estimation with IRLS is again used to obtain robustness.

A common thread in the works of [2, 13, 11] is that they
assume simplified object models, in which all modeled
edges must give rise to visible image edges that are sam-
pled for defining the control points. Thus, models suit-
able for tracking must retain only the most prominent
edges and should be primarily comprised of line seg-
ments. Such requirements are typically not met by CAD
models represented by densely tessellated polygonal 3D
meshes (cf. Fig. 2), clearly limiting the flexibility of the
aforementioned tracking algorithms. To alleviate this,
more recent approaches leverage the processing capabili-
ties of modern GPUs in order to dynamically identify the
edges of a model that are visible from a particular view-
point. For example, Reinke et al. [32] propose a tech-
nique for hidden line removal which relies on rendering
a CAD model to automatically extract visible edges that
are used for tracking. Additionally, they recommend a
random distance sampling strategy for defining the con-
trol points on visible edges. Petit et al. [31] also rely on
rendering an object model to determine edge visibility but
avoid any model line processing by extracting edges from
discontinuities of the rendered depth image.

A shortcoming of purely edge-based methods is that un-
related edges might locally look very similar and thus
can give rise to erroneous edge correspondences that
will cause tracking to fail. To deal with this, certain
works suggest maintaining multiple pose hypotheses,
e.g. [23, 24, 35, 8]. In particular, we note that refer-
ence [8] which will latter be used for comparative evalu-
ation, performs tracking in a particle filtering framework,
using chamfer matching to form pose hypotheses and ini-
tialize particles that are subsequently evolved with stan-
dard edge-based tracking. Aiming to further increase ro-
bustness and reduce drift, techniques such as [36, 33, 7]
which combine edge and point features have also been
proposed. These define keyframes that are used for an-
choring with the aid of point features.

This work puts forward a RAPiD-like tracking algorithm
that can accommodate any triangle mesh model with-
out pre-processing or manual intervention for determin-
ing the control points. This is achieved by using the ob-
ject model in combination with rasterization rendering to
produce a depth image. Rendering automatically han-
dles self-occlusions, thus permitting control points to be
defined on edges extracted from the depth image. The
6D pose is estimated by maintaining a single hypothesis
which is evolved from frame to frame using robust re-
gression techniques. Our approach is delineated next.

3. PROPOSED METHOD

A triangle mesh model for the tracked object and its pose
in the initial frame are assumed to be externally provided.



At each subsequent frame, an approximate object pose,
which might simply be the one estimated for the previous
frame, is also assumed to be available. For each incoming
image, Canny’s algorithm [6] detects its strongest edges.
Independently, the object model is projected on the image
at the approximate pose, using rasterization rendering.
Rendering relies on the approximate pose to yield a depth
image (Sec. 3.1). Edges are then detected in the depth
image and used to determine the control points by local,
1D searches that start at depth edge pixels and extend in
directions parallel to the depth gradients. Specifically, a
control point is defined for every match established be-
tween depth and intensity edges (Sec. 3.2). Each con-
trol point provides a linear constraint on the incremental
change in pose (Sec. 3.3). The set of all such linear con-
straints is used in a robust regression framework which
estimates pose after removing the influence of outliers
(Sec. 3.4). This pose is used to repeat the pose estima-
tion process for a new intensity frame.

The contributions of the method are threefold. First,
control points are defined automatically by rendering
unrestricted mesh models, without any manual pre-
processing, and partially matching edges of different
modalities. Second, outliers are handled with a combi-
nation of robust regression techniques that do not call for
the definition of arbitrary outlier thresholds. Third, per-
pendicular matching is made more robust by maintaining
multiple candidate matches for each control point. More
details are provided in the following subsections.

3.1. Rendering

Given a triangle mesh model of an object and a camera
pose, depth rendering simulates an image whose pixel
values are distances rather than intensities. More specif-
ically, every pixel in the rendered depth image contains
the distance to the nearest point on the model’s surface
that projects on the pixel in question. Depth images are
rendered with the aid of rasterization rendering [17]. Ras-
terization is essentially a technique to solve the visibility
problem, which consists of being able to determine which
parts of an object are visible to the camera, excluding
those parts that are outside the field of view or are hidden
due to self-occlusion. Rasterization projects mesh trian-
gles onto the image by projecting their vertices, deter-
mining all image pixels that are covered by the projected
triangle and computing the distance of the 3D triangle
from each such pixel. To deal with the case of multiple
triangles projecting on the same pixel, Z-buffering is em-
ployed to retain the projection of the triangle closest to
the camera. Rasterization involves only geometry (i.e.,
no texturing/shading) and has been entirely implemented
in software using the Möller-Trumbore algorithm for cal-
culating the intersection of a ray and a triangle. Never-
theless, rendering can be hardware accelerated due to its
high data parallelism.

3.2. Selection of Control Points

Most of the existing edge-based approaches, e.g. [2, 13,
11], require that the object to be tracked is modeled with
a simple wireframe that consists of a small number of
straight edges. In effect, the object’s image contours
should be described by piecewise linear segments. Con-
trol points are defined by sampling either image [2, 13]
or model [11] edges. While such a choice ensures com-
putational efficiency, it imposes strong constraints on ac-
ceptable models, thus limiting applicability. This is be-
cause detailed CAD object models that might be avail-
able need to be manually redesigned so that they are made
suitable for tracking by retaining only their most salient
edges. Furthermore, object models often include curved
parts such as spheres or cylinders, which are not faith-
fully represented with straight edges. To deal with arbi-
trary 3D meshes, [7, 32] use wireframe rendering to de-
termine which model edges are visible from a particular
viewpoint, whereas [31] uses full depth rendering of the
model and finds edges with the Laplacian operator as dis-
continuities in the depth image. In both cases, rendering
requires a predicted object pose, which might simply be
the object pose in the previous frame. In this work, we
follow an approach similar to [31], but employ a more
reliable alternative to detecting depth edges.

The Laplacian edge detector looks for zero crossings of
the depth’s second derivative, i.e. pixels where the Lapla-
cian changes sign. As this produces many spurious edges,
in practice edges are detected at pixels which in addi-
tion to being adjacent to zero crossings, have absolute
Laplacian magnitudes differing by more than a thresh-
old. However, absolute thresholding makes the detection
of depth edges sensitive to the choice of threshold. In
this work, we have employed [5], which primarily de-
tects occluding (i.e., jump) edges. The algorithm oper-
ates in two passes, examining depth image pixels along
rows and then columns. At each pass, it detects depth
edges by comparing the difference in the depth values of
neighboring pixels against a proportional threshold. The
edge detector of [5] was further adapted to detect crease
edges based on the magnitude of the contained angle of
the normal vectors corresponding to neighboring depth
pixels. More specifically, a crease edge is detected when-
ever the absolute value of the dot product between two
neighboring normal vectors is less than a threshold. It
is noted that this calculation is independent of the coor-
dinate system used to express the normal vectors, which
are estimated once when an object model is loaded. The
jump and crease edgels resulting from the two applica-
tions of [5] are then merged into a single depth edge map.
Control points are defined on the detected depth edge pix-
els, after matching them with intensity edge pixels. This
process makes no assumptions about the shape of the ob-
ject’s contour and is explained next.

Given two edge maps and their corresponding gradi-
ent orientations quantized in eight 45◦ wide bins, edge
matching concerns the establishment of perpendicular
correspondences between edge pixels. This is achieved



by examining each edge pixel in the source (i.e., depth)
edge map and moving along the gradient direction in the
target (i.e., intensity) edge map, until either an edge pixel
is found or a maximum distance from the starting pixel
has been traced (see also Fig.1). To declare a match, the
edge pixel found in the target map has to have a gradient
orientation compatible with that of the source pixel (cf.
edge polarity [18]). In accordance with the aperture prob-
lem, this procedure determines a partial rather than a full
match, since local analysis can only provide the displace-
ment component perpendicular to the edge. The search
for a perpendicular match along the edge normal has lin-
ear rather than quadratic complexity, this being a crucial
enabling factor for efficient performance. The search for
corresponding edge pixels should be performed in both
opposite orientations, as it is not possible to know in ad-
vance which side of the source edge the target edge has
moved. In the case that matching candidates are found
for both orientations, the one closest to the source pixel
is retained. In all cases, the visited target pixels are deter-
mined with Bresenham’s line drawing algorithm which
involves integer coordinates only.

As described up to this point, edge matching seeks for
the closest edge pixel in the target map along the gradi-
ent direction, similarly to previous edge-based trackers
like [18, 2, 13, 11]. This can be improved by consider-
ing multiple candidate matches for each control point, as
follows. During matching, all edge pixels from the target
map along the gradient and up to a maximum distance are
retained. A pose estimate is first computed by relying on
the closest candidate match for each control point. The
control points are then backprojected to the model using
the depth image and then reprojected on the image with
the estimated pose. The candidate match closest to each
reprojected control point is then found and pose estima-
tion is repeated, using the revised matches. After a new
pose has been estimated, the process can be repeated. In
practice, we have observed that one or two iterations are
sufficient for the assignment of matches to stabilize.

3.3. Pose Constraints

This section relies on findings from [18]. Let SE(3) de-
note the special Euclidean group comprised of the six-
parameter family of proper rotations and translations in
the 3D Cartesian space. Assume an object coordinate sys-
tem with its axes aligned with those of the camera coor-
dinate system and its origin at T = (Tx, Ty, Tz) in cam-
era coordinates. A control point’s camera coordinates M
and its object coordinates P = (Px, Py, Pz) are related
with M = T + P. Let m be this point’s normalized
image projection.1 Note that the camera coordinates M
can be determined by backprojecting m with the aid of
the rendered depth image. Assume now that the object
moves with a rigid motion ξ ∈ SE(3), consisting of an

1A normalized image projection refers to a projection on an ideal
pinhole camera, i.e. if M = (X,Y, Z) then m = (X

Z
, Y
Z
). In other

words, the effects of the camera intrinsics K on the projection have
been removed.

m

d
n

m'

Figure 1. Illustration of perpendicular edge matching.
Point m is the predicted projection of a control point and
m′ the actual projection of this control point in the next
frame. The edge through m′ is approximately parallel to
that through m (solid and dashed lines, resp.). Due to
the aperture problem, the location of m′ cannot be fully
determined, so a linear search along n yields distance d.

incremental rotation R and translation t which express
the object’s pose in the next camera frame with respect
to the current one. The new camera coordinates of the
control point are thus given by M′ = RP +T + t. As-
suming that motion ξ is infinitesimal, R can be approxi-
mated as I+ [ω]× with I being the 3× 3 identity matrix
and [ω]× the skew-symmetric matrix associated with the
cross product:

[ω]× =

 0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 . (1)

Then, M′ can be approximated as

M′ ≈ [ω]×P+M+ t. (2)

The normalized projection m′ of M′ on the image can be
obtained by algebraically manipulating the right side of
Eq. (2) and dividing the first two elements of the resulting
vector expression with the third. Multiplying the numer-
ators and denominators by Mz − (ωxPy − ωyPx + tz),
expanding and ignoring second order terms, yields

m′
x=mx+(tx+ωyPz−ωzPy−mx(ωxPy−ωyPx+tz))/(Tz+Pz)

m′
y=my+(ty+ωzPx−ωxPz−my(ωxPy−ωyPx+tz))/(Tz+Pz).

(3)

The above expression is linear in the elements of ξ =
(ωx, ωy, ωz, tx, ty, tz)

t, therefore it can be written more
compactly as

m′ = m+Aξ, (4)

with A a 2 × 6 matrix defined by the coefficients of the
elements of ξ from Eq. (3).

As shown in Fig. 1, let n be the unit vector perpendic-
ular to the edge at m. The distance between points m
and m′ in the direction of n is given by the projection
of m′ −m on n, i.e. nt(m′ −m), and is approximately
equal to d. Combined with Eq. (4), this yields ntAξ = d.
Simply put, every control point provides one constraint
on the motion ξ, therefore six such points determined by
searching along different directions suffice to estimate ξ.



If more than six constraints are available, ξ can be esti-
mated in a least squares manner by solving

ξ̂ = argmin
ξ

∑
i

(ntiAiξ − di)2. (5)

Finally, ξ̂ is used to incrementally update the pose. For
future reference, the differences ntiAiξ − di between the
observations and their fitted values are called residuals.

3.4. Robustification of Pose Estimation

The linearization about the current pose estimate detailed
in the previous section allows each pair of orthogonally
matched points to yield one linear constraint in the six pa-
rameters defining the incremental change in object pose.
In practice, more than six matches will be established and
some of them will be erroneous due to various sources
of error. Erroneous matches will give rise to outlying
constraints with large residuals, which will cause least
squares to fail due to its lack of robustness. Therefore,
despite its simplicity, Eq. (5) cannot be used directly. In-
stead, the pose refinement computation is carried out in
a robust regression framework, which allows problematic
measurements to be identified and discarded before cor-
rupting the estimate. Robustness is achieved by employ-
ing the Least Median of Squares (LMedS) estimator [34],
which substitutes the summation operation in the mini-
mization of the squared residuals in Eq. (5) with the me-
dian:

ξ̂ = argmin
ξ

med
i

(ntiAiξ − di)2. (6)

LMedS can tolerate up to 50% erroneous constraints, but
unlike least squares, has no closed form solution. Thus,
(6) is minimized by drawing a sufficient number of ran-
dom sets of six constraints, estimating ξ from each and
retaining the one corresponding to the minimum median
residual. Despite its robustness, LMedS suffers from low
precision. Therefore, the LMedS estimate of ξ is not used
as such. Instead, an extra computation step uses it to iden-
tify as outliers those constraints that yield large residuals,
then discards them and estimates ξ using least squares on
the remaining inliers. RANSAC [15] could also be used
in place of LMedS to achieve robustness. However, to
discriminate between inliers and outliers, RANSAC re-
quires that the standard deviation of valid residuals is ex-
ternally supplied. LMedS, on the other hand, estimates
this deviation as a byproduct, thus automatically adapts
to the level of noise present in the constraints. We note
that the median is computed with Quickselect [20], which
avoids sorting and has an average complexity of O(n).

An extra level of robustness is achieved by substituting
the squared L2 norm in the least squares minimization
applied to the inliers with the p-th power of the Lp norm,
p < 2:

ξ̂ = argmin
ξ

∑
i

(ntiAiξ − di)p. (7)

The effect of the Lp norm is to down-weight large residu-
als by replacing their squares with their p-th power, which

Figure 2. 3D models of ENVISAT used for tracking: de-
tailed model made up of 30K faces (left) and simplified
model with 1K faces (right).

increase less steeply than quadratically. A value of 1.5
is chosen for p and the minimization in Eq. (7) is car-
ried out with the IRLS algorithm after converting it to
weighted least squares [3]. IRLS iterates over a set of
weighted least squares problems, alternating between es-
timating the pose parameters and the weights, until con-
vergence. We stress that IRLS is applied to the inliers of
the LMedS algorithm and not to the set of all available
constraints.

To achieve more stable tracking and tolerate larger ob-
ject motions, pose estimation is integrated with a linear
Kalman filter with a constant velocity model. The filter
is defined by six measurements and twelve state param-
eters. The measurements are the 6D pose estimated by
tracking, whereas the state consists of the pose plus the
linear and angular velocities. To attain a linear motion
model, rotations are represented using Euler angles. At
each iteration, the Kalman filter is used to predict the pose
of the subsequent frame and drive rendering.

4. EXPERIMENTAL RESULTS

Results from a C implementation of the proposed tracker
are presented in this section. The experiments rely on
synthetic image sequences depicting ENVISAT, a defunct
Earth observation satellite measuring 26 m× 10 m× 5 m
(see Figs. 2 & 3). The sequences were rendered using the
high detail mesh model shown on the left in Fig. 2, which
consists of approximately 30K faces. They realistically
simulate the motion of the satellite and the solar illumi-
nation, consisting of high resolution 1024× 1024 images
with a field of view equal to 40◦. Each image is accompa-
nied by accurate ground truth pose, facilitating the quan-
titative measurement of a tracker’s performance. Sample
images from the two ENVISAT sequences are shown in
Fig. 3. A common characteristic of both test sequences
is that they exhibit poor contrast due to insufficient illu-
mination (cf. Fig. 3). To mitigate this, a low-complexity
algorithm was used to enhance their contrast [1]. This
pre-processing is applied prior to applying all tracking
techniques compared below.

The metric used for measuring pose error concerns the
average misalignment between the model’s vertices at
the true and estimated pose, as proposed in [19]. More



specifically, for the true pose {Rg, tg} and an estimate
{Re, te}, the alignment error is defined as

E =
1

N

∑N

i=1
‖(Rgxi + tg)− (Rexi + te)‖2, (8)

where xi denote the N mesh model vertices.

The proposed tracker was tested on the two ENVISAT se-
quences of Fig. 3. Furthermore, two recent model-based
trackers were also applied to these sequences for compar-
ison. Specifically, the first is the edge-based tracker of the
ViSP library2 [30] that corresponds to the implementa-
tion of [11] by its authors. The other is the EBT library3,
i.e. Choi’s own implementation of the multi-hypotheses
tracker [8]. Whereas the proposed method can employ
the 3D model on the left in Fig. 2 directly, this is not the
case for the method of [11]. As already pointed out, this
is because [11] makes strong assumptions about the type
of mesh edges that are permissible in the model of the
object to be tracked, and assumes that the latter consists
only of edges visible in the images. Thus, to enable a
comparison, the simplified model on the right in Fig. 2
that conforms to the requirements of [11] was designed.
On the other hand, the EBT tracker from [8] has no such
restrictions and can work with the unmodified 30K faces
detailed model.

The first sequence, a frame of which is shown on the top
of Fig. 3, consists of 1152 frames. ENVISAT rotates out
of plane and remains approximately at a constant distance
from the camera, equal to about 55 meters. The top graph
in Fig. 4 plots for each frame the alignment errors com-
puted with Eq. (8) for the poses estimated by [11] with
the simplified, 1K faces model and by [8] and the pro-
posed method with the 30K faces model. The proposed
method yields lower pose errors compared to both [11]
and [8], and succeeds in tracking the target along the en-
tire sequence. On the contrary, [11] loses track around
frame 900 and [8] after 220, and yield much larger errors
before they fail.

In the second sequence (cf. Fig. 3 bottom), which is
1735 frames long, the camera is initially at a distance of
around 30 m from ENVISAT. While the satellite rotates,
the camera gradually approaches it up to approximately
11 m. Owing to its large size, only some parts of EN-
VISAT are within the camera field of view in this range
of distances. This sequence presents more challenging
illumination which results in low contrast images, even
after the enhancement by [1]. Tracked pose errors are
shown in the bottom graph of Fig. 4, from which can be
seen that the tracker of [11] is more accurate than the pro-
posed one for frames between 100 and 400 but gradually
becomes worse and fails completely after around frame
750. The EBT tracker of [8] produces sharper spikes and
fails after frame 780.

Table 1 summarizes the average pose alignment errors
for each algorithm, object model and sequence. The er-

2https://visp.inria.fr/
3https://github.com/CognitiveRobotics/object tracking 2D

Figure 3. Initial frames from the far (top) and close (bot-
tom) tracked sequences; notice their poor contrast.

rors of the proposed tracker when employing the simpli-
fied model are also included for comparison. Expectedly,
they are larger than those for the detailed model, since in
this case, the control points determined by the proposed
method do not always align well with the detected inten-
sity edges, even for the correct poses. Still, the proposed
tracker using the 1K faces model manages to track more
frames with pose errors comparable to both [11, 8].

Concerning execution speed, this depends on the appar-
ent size of the tracked object in the images. Thus, the pro-
posed tracker runs at about 10Hz on an Intel Core i7 CPU
@ 3.60GHz for the far sequence and about 5Hz for the
close one. These frame rates include the time spent load-
ing compressed PNG images from disk and do not bene-
fit from any hardware acceleration. Frame rate on limited
capacity flight processors will be much lower, therefore
ongoing work performs HW/SW co-design to accelerate
the proposed tracker using space-grade FPGAs [25].



Algo & model Far sequence #frames Close sequence #frames
ViSP 1K 56.11 (54.62) 901 19.63 (8.93) 752
EBT 30K 50.22 (77.64) 221 50.19 (81.60) 919
Ours 30K 16.74 (11.83) 1150 18.21 (4.94) 1735
Ours 1K 51.76 (44.32) 898 37.16 (31.09) 1598

Table 1. Average pose errors and standard deviations in cm along with tracking durations in frames for each sequence,
object model and tracking algorithm. Errors were computed from the frames successfully tracked, different in each case.
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Figure 4. Errors for the poses estimated with ViSP [11],
EBT [8] and the proposed tracker for the far (top) and
close (bottom) ENVISAT sequences (cf. Fig. 3). The red
and green graphs correspond to poses estimated by [8]
and the proposed method using the detailed model from
Fig. 2, while the blue graphs correspond to poses esti-
mated with [11] using the simplified model from Fig. 2.

5. CONCLUSION

Relative localization of orbiting satellites is an impor-
tant component of future autonomous proximity opera-

tions in space. Towards this goal, this work has suggested
an approach for model-based tracking that relies on im-
age edges. The developed tracker does not require any
pre-processing of the 3D object model and makes no as-
sumptions about its nature. It is also robust to common
tracking nuisances, such as parts of the tracked object be-
ing out of view, shadowed, occluded or completely unde-
tected. Tracking accuracy has been evaluated with the aid
of simulated image sequences with known ground truth
poses and has been shown to compare favorably to estab-
lished tracking techniques. Future work will address the
issue of bootstrapping the tracker by providing reliable
estimates of the object’s initial pose.

ACKNOWLEDGMENTS

This work was partially supported by the ESA “High Per-
formance Avionics Solution for Advanced and Complex
GNC Systems” (HIPNOS) study (ESA/ESTEC reference
4000117700/16/NL/LF).

REFERENCES

[1] Arici, T., Dikbas, S., and Altunbasak, Y. (2009). A
histogram modification framework and its application
for image contrast enhancement. IEEE Trans. Image
Processing, 18(9):1921–1935.

[2] Armstrong, M. and Zisserman, A. (1995). Robust
object tracking. In Asian Conf. on Computer Vision,
volume I, pages 58–61.

[3] Bjorck, A. (2015). Numerical Methods in Ma-
trix Computations. Texts in Applied Mathematics.
Springer.

[4] Bonnal, C., Ruault, J.-M., and Desjean, M.-C.
(2013). Active debris removal: Recent progress and
current trends. Acta Astronautica, 85:51–60.

[5] Bose, L. and Richards, A. (2016). Fast depth edge
detection and edge based RGB-D SLAM. In Proc.
IEEE Intl. Conf. on Robotics and Automation (ICRA),
pages 1323–1330.

[6] Canny, J. (1986). A computational approach to edge
detection. IEEE Trans. Pattern Anal. Mach. Intell.,
8(6):679–698.

[7] Choi, C. and Christensen, H. I. (2010). Real-time
3D model-based tracking using edge and keypoint
features for robotic manipulation. In Proc. IEEE



Intl. Conf. on Robotics and Automation (ICRA), pages
4048–4055.

[8] Choi, C. and Christensen, H. I. (2012). 3D texture-
less object detection and tracking: An edge-based ap-
proach. In Proc. IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), pages 3877–3884.

[9] Christian, J. and Cryan, S. (2013). A survey of LI-
DAR technology and its use in spacecraft relative nav-
igation. In AIAA Guidance, Navigation, and Control
Conference, Boston, MA.

[10] Clark, F., Spehar, P., Brazzel, J., and Hinkel, H.
(2003). Laser-based relative navigation and guidance
for space shuttle proximity operations. In Advances in
the Astronautical Sciences, volume 113, pages 171–
186.

[11] Comport, A. I., Marchand, É., Pressigout, M., and
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