
January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

International Journal on Artificial Intelligence Tools
c⃝ World Scientific Publishing Company

Exploiting Linked Data for Open and Configurable

Named Entity Extraction

PAVLOS FAFALIOS, MANOLIS BARITAKIS and YANNIS TZITZIKAS

Institute of Computer Science, Foundation for Research and Technology - Hellas, and

Computer Science Department, University of Crete, GREECE
{fafalios,mbaritak,tzitzik}@ics.forth.gr

Received (Day Month Year)

Revised (Day Month Year)
Accepted (Day Month Year)

Named Entity Extraction (NEE) is the process of identifying entities in texts and, very
commonly, linking them to related (Web) resources. This task is useful in several ap-
plications, e.g. for question answering, annotating documents, post-processing of search
results, etc. However, existing NEE tools lack an open or easy configuration although

this is very important for building domain-specific applications. For example, support-
ing a new category of entities, or specifying how to link the detected entities with online
resources, is either impossible or very laborious. In this paper, we show how we can ex-
ploit semantic information (Linked Data) at real-time for configuring (handily) a NEE

system and we propose a generic model for configuring such services. To explicitly define
the semantics of the proposed model, we introduce an RDF/S vocabulary, called “Open
NEE Configuration Model”, which allows a NEE service to describe (and publish as
Linked Data) its entity mining capabilities, but also to be dynamically configured. To

allow relating the output of a NEE process with an applied configuration, we propose an
extension of the Open Annotation Data Model which also enables an application to run
advanced queries over the annotated data. As a proof of concept, we present X-Link, a

fully-configurable NEE framework that realizes this approach. Contrary to the existing
tools, X-Link allows the user to easily define the categories of entities that are interesting
for the application at hand by exploiting one or more semantic Knowledge Bases. The
user is also able to update a category and specify how to semantically link and enrich the

identified entities. This enhanced configurability allows X-Link to be easily configured
for different contexts for building domain-specific applications. To test the approach, we
conducted a task-based evaluation with users that demonstrates its usability, and a case
study that demonstrates its feasibility.

Keywords: Named Entity Extraction, Named Entity Recognition, Semantic Annotation,
Linked Data, Entity Mining, Entity Linking

1. Introduction

Named Entity Extraction (NEE), also known as Named Entity Recognition (NER)

and Semantic Annotation, is the process of identifying entities in text belonging to a

set of pre-defined categories (class labels) such as Person, Location, Organization, etc.

This task usually includes the Entity Linking process which tries to link the named

1

pavlos098
Typewriter
This is a preprint of an article accepted for publication in:
International Journal on Artificial Intelligence Tools, World Scientific (2015)
http://www.worldscientific.com/worldscinet/ijait

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

2 Pavlos Fafalios, Manolis Baritakis and Yannis Tzitzikas

entity with a resource (reference) in a Knowledge Base (KB)a. Entity Linking is also

considered a way of Named Entity Disambiguation (NED), since a resource (e.g. a

URI or a Wikipedia page) can determine the identity of an entity. NEE is useful

in several tasks, e.g. for question answering1, post-processing of search results2,3,

annotating (Web) documents4,5. In addition, the importance of NEE, especially for

the Semantic Web, is justified by the fact that the Semantic Web realization highly

depends on the availability of metadata (structured content in general) describing

Web content, defined through a formal semantic structure. Thus, a major challenge

for the Semantic Web is the extraction of structured data through the development

of automated NEE tools.

There are already several tools that support NEE, e.g. DBpedia Spot-

light6, AlchemyAPI7 and OpenCalais8. However, these tools do not allow the

user/developer to easily configure them, e.g. to define their own interesting types

(categories) of entities (e.g. Swedish First Names) or to extend an existing cate-

gory with additional entities coming from a new KB. Hence, it is quite difficult to

configure them for building domain specific applications. Furthermore, they do not

publish in a standard format the “entity mining” capabilities of their (Web) services.

Consequently, an application cannot dynamically discover and use the services that

best satisfy its annotation needs.

Since a lot of information about named entities is already available as Linked

Open Data (LOD)9, the exploitation of LOD by a NEE system could bring wide

coverage and fresh information. However, existing LOD-based NEE systems (e.g.

DBpedia Spotlight) are mainly dedicated to one specific KB which is indexed be-

forehand, not exploiting thereby the dynamic and distributed nature of LOD. For

instance, consider a NEE system that supports a category of entities X. Consider

now that a new KB appears which contains plenty of information for entities belong-

ing to X. It would be useful if one could somehow “plug” the new KB in the NEE

system (with the less possible effort), enabling thereby the linkage of the identified

entities with resources in the new KB. Moreover, the information that the existing

NEE systems return for the identified entities is not rich enough and cannot be

controlled. For example, one cannot configure the properties that are useful for a

particular application, e.g. to restrict the properties to only images or related enti-

ties, or properties in a specific natural language, or to inspect whether and how the

identified entities are connected, not within the document but as entities in general.

To tackle this lack of functionality, in this paper:

• We elaborate on exploiting the LOD at real time for configuring a NEE

system and we propose a generic (abstract) configuration model. We also

discuss ranking issues that arise within this context.

• We propose the Open NEE Configuration Model, an RDF/S10 vocabulary

which allows a NEE system to describe (and publish as Linked Data) the

entity mining capabilities of its services.

aFrom now on, we consider as NEE the process that includes both NER and Entity Linking.

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

Exploiting Linked Data for Open and Configurable Named Entity Extraction 3

• We present X-Link, a fully configurable (LOD-based) NEE framework that

we have designed and implemented which realizes the proposed configura-

tion model.

• We report the results of a task-based user study that demonstrate the us-

ability of the proposed approach.

• We report the results of a case study that demonstrate the feasibility of

the proposed approach, and we discuss how we can achieve reliability and

scalability.

In addition, to enable relating the output of a NEE process with an applied

configuration, we propose an extension of the Open Annotation Data Model11. This

extension allows also an application to run advanced (SPARQL12) queries over an

annotated set of documents.

The rest of this paper is organized as follows: Section 2 motivates our focus on

the configurability problem. Section 3 analyzes the proposed configuration model

and introduces the Open NEE Configuration Model and the extension of the Open

Annotation Data Model. Section 4 describes in detail the functionality and config-

urability of X-Link. Section 5 reports evaluation results. Section 6 discusses related

works and the difference of our approach. Finally, Section 7 concludes and identifies

directions for future research.

2. Motivation

For justifying the value of the proposed approach, below we first present a vertical

search scenario that stresses that different communities have different and ever-

changing requirements, and then we discuss several benefits of adopting an open

and exchangeable configuration model.

2.1. The Value of Configurability in Vertical Search

The motivation for enhancing configurability can be made evident from the following

scenario, which is a real scenario related to the iMarine projectb:

Consider that you are responsible for maintaining a search system, called

X-Search, a meta-search system that receives a keyword-based query, sends the

query to one or more marine sources and retrieves the results. For giving users

an overview of the search results and allowing them to explore them in a faceted

way, you want to use a NER tool for identifying (at real time) fish species in the

snippets or the full contents of the top results. You think that it would be also useful

to link (on demand) the identified species with related semantic resources, as well as

to retrieve more information (e.g. a short description of the species, an image, its

taxonomy, etc.) by querying (at real-time) online semantic KBs. Figure 1 depicts

a screenshot of X-Search for the query “tuna species”. The user can see (in a left

bar) the fish species identified in the search results and can also explore an identified

species at real-time (the species “Atlantic bluefin tuna” in this example). ⋄

bhttp:/www.i-marine.eu/

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

4 Pavlos Fafalios, Manolis Baritakis and Yannis Tzitzikas

Fig. 1. Semantic post-processing of search results (for the query tuna species) and exploration of
the entity Atlantic bluefin tuna in X-Search.

However, each community of users (e.g. an organization or an institution) has

different needs, which in our scenario means that X-Search should support different

configurations. For instance, scientists in an organization may also want to inspect

other categories of entities in the search results (apart from fish species), e.g. water

areas and countries. In addition, different communities/users may want to link and

enrich the identified species with resources from different sources; one may want

images from DBpedia13, others with papers that describe the genome of the species.

For coping with the above requirements, we would like to be able to easily

configure X-Search for satisfying the needs of each community of users. In addition,

and since the needs of a community constantly change, we would like to be able to

dynamically change the configuration at any time without requiring to redeploy the

system (e.g. for updating the list of fish species, for specifying another KB, etc.). It

would be also useful if X-Search could dynamically (ideally at query-time) discover

the NEE services to use according, for example, to the user information needs.

For instance, if a user submits a query requesting documents about water areas,

X-Search could select to use a service that supports identification of water areas.

Finally, by accessing the output of the NEE process in RDF14, X-Search could

offer advanced exploratory search services over the annotated results. For example,

a user could select to inspect “all results containing information about fish species

of genus Thunnus”.

In this paper we present one method to accomplish this scenario.

2.2. The Value of having Exchangeable/Portable Configurations

Having open and exchangeable configurations offers many benefits including:

• Exchangeability and Portability. Configurations can be exchanged by

users/communities, e.g. for annotating different corpora of documents using

the same configuration, i.e. the same categories, lists of entities, KBs, etc.

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

Exploiting Linked Data for Open and Configurable Named Entity Extraction 5

In addition, the availability of a model like the one that we propose enables

a NEE service to offer an API that accepts and uses such configurations,

while the result of the annotation process can be in a standard format,

allowing its further exploitation in several contexts.

• Aggregation and Integration of multiple configurations. A common model

allows someone to collect such configurations (provided by different NEE

systems) and then, by querying them, to select those services that satisfy

the needs of the intended application.

• Benchmarking. Common configurations would allow comparative evalua-

tion of different NEE systems, e.g. with respect to efficiency, effectiveness

of entity disambiguation, etc.

• Extendability. The expression of the model as an RDF Schema allows some-

one to extend it by exploiting also other vocabularies.

3. The Proposed Approach

At first we provide a few fundamental notions and notations (§3.1), then we intro-

duce the proposed configuration model (§3.2), we give an example of that model

(§3.3), we describe the semantics of such configurations (§3.4), we introduce the

Open NEE Configuration Model (§3.5), and finally we present the extension of the

Open Annotation Data Model (§3.6).

3.1. Notions and Notations

Since the proposed approach is based on Semantic Web technologies, below we first

provide a short introduction to RDF and LOD, and then we introduce a few notions

and notations regarding the NEE process.

Let us first formalize the structured knowledge available as LOD or queryable

through a SPARQL endpoint15. Consider an infinite set U of RDF URI16 references,

an infinite set B of blank nodes17 and an infinite set L of literals. A triple (s, p, o) ∈
(U ∪ B) × U × (U ∪ B ∪ L) is called an RDF triple (s is called the subject, p the

predicate and o the object). An RDF KB K, or equivalently an RDF graph G, is

a set of RDF triples. For an RDF Graph Gi, we shall use Ui, Bi, Li to denote the

URIs, blank nodes and literals that appear in the triples of Gi respectively. The

nodes of Gi are the values that appear as subjects or objects in the triples of Gi.

Let now C be a set of entity categories, e.g. C = {Fish Species, Country, Wa-

ter Area} are possible categories for the marine domain. For a category c ∈ C,
let E(c) denote the set of entity names in c, e.g. E(Country) = {Afghanistan,
Albania, Algeria, . . . }. Inversely, let ctg(e) ∈ C denote the category of an en-

tity name (e.g. ctg(Algeria) = Country). For an entity name e, let U(e) de-

note the URIs that are related to e and exist in one or more RDF graphs,

e.g. U(Chum Salmon) = {http://dbpedia.org/resource/Chum_salmon, https:
//www.googleapis.com/freebase/v1/rdf/m/03ysh6}. For an entity URI u, let

Descr(u) be a set of RDF triples that express information about u.

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

6 Pavlos Fafalios, Manolis Baritakis and Yannis Tzitzikas

For an input document, say doc, we define as Ent(doc, c) the set of entity

names identified in doc (by applying NER) that belong to the category c. Ob-

viously Ent(doc, c) ⊆ E(c). Thus, the set of all entities identified in doc is

Ent(doc) = ∪c∈CEnt(doc, c).

In general, in a set of documents we can identify entities of various categories,

each of these entities is associated with URIs and each of these URIs with triples

that describe these URIs. Specifically, if we have a set of documents D then:

• Ent(D) = ∪d∈DEnt(d) is the set of entities identified in D,

• U(D) = ∪e∈Ent(D)U(e) is the set of URIs of these entities, and

• Graph(D) = ∪u∈U(D)Descr(u) is a set of triples about these URIs which

essentially define an RDF Graph.

Note that in many cases we have a name that corresponds to entities of different

categories. For example, argentina may refer to the country Argentina or the fish

genus Argentina. In general, a name may correspond to n categories. In such cases

we consider that we have n different entities, one for each category. Therefore, each

of these entities will have one category (i.e. |ctg(e)| = 1). This choice enables to

apply afterwards disambiguation methods (more in §4.2.2).

3.2. The Proposed Configuration Model

Figure 2 shows the configuration model that we propose. Each Category has a name

and can be associated with one or more Knowledge Base Mirrors (KBMs).

Fig. 2. A generic (abstract) model for configuring a NEE system.

A KBM holds the URL of a SPARQL endpoint and it is associated with three

kinds of elements: (a) SPARQL Queries, (b) SPARQL Template Queries for Entity

Linking, and (c) SPARQL Template Queries for Entity Enrichment.

The elements of type (a) are used for specifying the entity names of interest by

providing a KBM-answerable SPARQL query. The elements of type (b) allow speci-

fying how entity names correspond to entity URIs, by providing a KBM-answerable

SPARQL query. The elements of type (c) allow specifying what extra information

(in the form of RDF triples) should be fetched for each entity URI, by providing a

KBM-answerable SPARQL query.

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

Exploiting Linked Data for Open and Configurable Named Entity Extraction 7

3.3. Example of the Configuration Model

Let’s now describe an indicative instantiation of the above model. Consider a set of

two categories C = {Fish Species, Country}. The category Fish Species is associated

with two KBMs:

• KBM1 = http://dbpedia.org/sparql (SPARQL endpoint of DBpedia).

• KBM2 = http://www.fao.org/figis/flod/endpoint (SPARQL end-

point of FAO FLOD18).

The category Country is associated with one KBM:

• KBM3 = http://factforge.net/sparql (SPARQL endpoint of Fact-

Forge19).

For the KBM1, we can set the SPARQL query of Figure 3 for specifying the fish

species of interest, or the one shown in Figure 4 in case we are interested only in

English fish names.

SELECT DISTINCT str(?label) WHERE {

?uri rdf:type <http://dbpedia.org/ontology/Fish> ; rdfs:label ?label }

Fig. 3. SPARQL query for retrieving a list of fish names from DBpedia.

SELECT DISTINCT str(?label) WHERE {

?uri rdf:type <http://dbpedia.org/ontology/Fish> .

?uri rdfs:label ?label FILTER(lang(?label)="en") }

Fig. 4. SPARQL query for retrieving a list of English fish names from DBpedia.

For Entity Linking, KBM1 can be associated with the template query shown in

Figure 5 which aims at returning URIs of type Fish whose label contains the name

of an entity (ignoring case)c. Notice that the query contains the character sequence

[ENTITY] (including the [and]) which is replaced (at query-time) by the entity’s

name. For example, by providing the string “chum salmon” as entity name, DBpedia

returns the URI “http://dbpedia.org/resource/Chum_salmon”. Of course, one

could provide a “stricter” SPARQL template query, e.g. the one shown in Figure 6,

focusing on bigger precision.

For Entity Enrichment, KBM1 can be associated with the template query shown

in Figure 7 which retrieves the outgoing properties of a URId. Notice that the

query contains the character sequence [URI] (including the [and]) which is re-

placed (at query-time) by the entity’s URI. For example, by providing the entity

URI “http://dbpedia.org/resource/Chum_salmon”, one of the RDF triples that

is returned by DBpedia is: “http://dbpedia.org/resource/Chum_salmon (sub-

ject) - http://dbpedia.org/ontology/genus (predicate) - http://dbpedia.org/

resource/Oncorhynchus (object)”.

cThe results of this task are shown in the pop-up window “Entity Exploration” in Figure 1.
dThe retrieved triples are those shown if the user clicks the link of a resource in the pop-up window

of Figure 1.

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

8 Pavlos Fafalios, Manolis Baritakis and Yannis Tzitzikas

SELECT DISTINCT ?uri WHERE {

?uri rdf:type <http://dbpedia.org/ontology/Fish> .

?uri rdfs:label ?label FILTER(regex(str(?label), "[ENTITY]", "i")) }

Fig. 5. Example of a SPARQL template query for linking an identified Fish name with resources
in DBpedia.

SELECT DISTINCT ?uri WHERE {

?uri rdf:type <http://dbpedia.org/ontology/Fish> .

?uri rdfs:label ?label FILTER (lcase(str(?label)) = lcase("[ENTITY]")) }

Fig. 6. Example of a “stricter” SPARQL template query for linking an identified Fish name with
resources in DBpedia.

SELECT DISTINCT ?propertyName ?propertyValue WHERE {

<[URI]> ?propertyName ?propertyValue }

Fig. 7. SPARQL template query for retrieving the outgoing properties of resource.

By collecting the RDF triples that correspond to a set of entity URIs, we can

form an RDF graph from which we can infer whether and how these entity URIs

are connected. For example, Figure 8 depicts a simple RDF graph which shows

how the entities Chum salmon, Chinook salmon and Coho salmon are connected

(for simplicity we have omitted the namespaces). Of course, one could extend this

query in order to obtain more information, e.g. all information (triples) that can be

reached (collected) up to a certain radius in the RDF graph.

Chum
Salmon

Oncorhynchus

Salmonidae

Coho
Salmon

Chinook
Salmon

Fig. 8. An example of an RDF graph.

Analogously, one can specify SPARQL queries and template queries for all KBMs

related to the defined categories. Note that any of the above queries can use the

federated features of SPARQL 1.120. This means that information from more than

one SPARQL endpoints will be used.

3.4. The Semantics of the Configuration Model

A configuration essentially defines an information structure as defined in §3.1.
Specifically, it defines the set of categories C. For each category c ∈ C, the cor-

responding set of entity names E(c) is obtained by running the corresponding

SPARQL queries to the related KBMs. For each entity name e ∈ E(c), its linked

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

Exploiting Linked Data for Open and Configurable Named Entity Extraction 9

URIs, U(e), are obtained by running the corresponding Linking Template Queries

(where e is passed as parameter), and for each URI u ∈ U(e) the triples Descr(u)

are obtained by running the corresponding Enrichment Template Queries (where u

is passed as parameter).

We should stress here that the Linking Template Queries can be also considered

a way of “trivial” disambiguation that has the objective to find the resource or the

resources that better characterize the entity name. However, a characteristic of this

“trivial” disambiguation is that we already know the category of the corresponding

entity name and thereby we can form accordingly the SPARQL template query (e.g.

we can compare the entity name with the names of entities belonging to a specific

RDF class, as in the template queries of Figures 5 and 6). Furthermore, we should

clarify that details like the exact NER method that is applied to the document(s), or

the exact NED algorithm that is used for deciding the category of a detected entity

name, regard implementation details that must be specified by the NEE system that

adopts the proposed model. For instance, one can use surface forms for NER (like

DBpedia Spotlight6), advanced machine learning techniques for NED, etc.

Returning to our setting, for a set of documentsD,Graph(D) can now be defined

either by collecting the triples Descr(u) for each URI u ∈ U(D), or by considering

also information that can be reached up to a certain radius r. Regarding the latter,

let us first introduce some notations. Let S be a set of URIs and Gi the RDF graph

of the underlying KB. We define In(S) and Out(S) as follows:

In(S) = {(s, p, u) | u ∈ S, (s, p, u) ∈ Gi},
Out(S) = {(u, p, o) | u ∈ S, (u, p, o) ∈ Gi}

The description of u comprising triples that are reachable in radius 1 is defined as:

Descr(u, 1) = In({u}) ∪Out({u})

This is generalizable to higher values of radius as follows:

Descr(u, r) = Descr(u, r − 1)

∪ In({u′ | (s, p, u′) or (u′, p, o) ∈ Descr(u, r − 1)})
∪ Out({u′ | (u′, p, o) or (s, p, u′) ∈ Descr(u, r − 1)})

Now we can define the graph of D of radius r as follows:

Graph(D, r) = ∪u∈U(D)Descr(u, r) (1)

The value of this graph is that it makes evident how the entities are associated

(more in §4.2.4).

Sometimes there is also the need to rank the detected entities (i.e. the elements

in Ent(D), or in Ent(doc) if we consider a single document) and the URIs that

match an entity name e (i.e. the elements in U(e)), and this can be configurable.

The ranking information is useful, for example, for deciding which entities/URIs to

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

10 Pavlos Fafalios, Manolis Baritakis and Yannis Tzitzikas

promote in a displayed list, for selecting the one entity that best characterizes a

document, or for selecting the one URI that best characterizes an entity name.

As regards the ranking of the detected entities, a straightforward approach is

to rank them according to their frequency in the document. Let count(e) be the

number of occurrences of the entity name e in a set of documents D (the same

approach can be applied considering a single document doc). Then, the normalized

score of e can be computed as:

score(e) =
count(e)∑

e′∈Ent(D) count(e
′)

(2)

Of course, several other approaches can be examined, e.g. taking into account

the application context or the positions of the entities in the document(s), however

this is out of the scope of this paper.

As regards the ranking of the entity URIs, at first we should stress that both

the number of the URIs that match an entity name and their quality (in terms

of relevance) highly depend on the KBs that we exploit and the specified linking

template queries. For instance, a loose and generic template query could return

many irrelevant URIs, while a very “strict” template query could return no URIs.

Note also that there might be more than one URIs that semantically are correct, e.g.

two URIs coming from two different KBs may refer to the same real-world object. In

any case it is useful to score and rank these URIs. One approach is the following: for

each URI u that matches an entity name e, we can compare the string of e with the

label of u (in a graph Gi) or/and the suffix of the URI string. Specifically, let label(u)

be the value of u’s rdfs:label property in Gi and suffix(u) be the substring of the

URI string after the last ‘\’ or ‘#’, replacing the underscore letters that might exist

with the space character. Let now edt(a, b) be the Edit (Levenshtein) Distance21

between the strings a and b (ignoring case). If l(a) denotes the length of a string a,

we can define the similarity between two strings a and b as:

sim(a, b) =
max(l(a), l(b))− edt(a, b)

max(l(a), l(b))
(3)

Then, the score of a URI u that matches an entity name e can be defined as:

URIscore(e, u) = max(sim(e, label(u)), sim(e, suffix(u))) (4)

Instead of comparing the strings using Edit Distance, we can use the distance

function proposed by Stoilos et al.22, where the similarity between two strings is a

function of both their commonalities and their differences. In both cases, the highest

the score of a URI is, the more probably that URI characterizes the correspond-

ing entity name. We have chosen the property rdfs:label because it is the most

common and widely used property for indicating the name/label of an entity. Of

course, and according to the KB that we exploit, one could use another property,

e.g. foaf:name, skos:prefLabel, etc. If a URI contains multiple values for this

property, we can consider all of them and select the one with the highest similarity

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

Exploiting Linked Data for Open and Configurable Named Entity Extraction 11

score. Moreover, if a URI does not contain a value for this property, we can consider

sim(e, label(u)) = 0. In §5.3.3, we report indicative experimental results regarding

the effectiveness of these ranking approaches in a specific domain.

3.5. The Open NEE Configuration Model

Here we introduce an RDF/S vocabulary for describing a configuration based on

the proposed model. This vocabulary, apart from defining explicitly the semantics

of a configuration, allows a NEE system to describe (and publish as Linked Data)

its “entity mining” capabilities. It also allows to better handle the provenance of

the outcome of a NEE process by explicitly describing the configuration used during

the NEE process.

onc:KBM

onc:EntityNamesSpec

onc:Configuration

onc:supports

rdfs:Resource

onc:NEEService

rdfs:Resource

onc:endpoint
onc:Category

onc:supports

onc:EntityLinkingSpec

onc:EntityEnrichmentSpec

onc:usesSparqlQuery

rdfs:Literal

onc:usesSparql

TemplateQuery

rdfs:Literal

onc:usesSparql

TemplateQuery

onc:entitiesSpecFrom

onc:accessibleThrough

rdfs:Literal

onc:usesSparql

TemplateParam

rdfs:Literal

onc:usesSparql

TemplateParam

rdfs:label

rdfs:Literal

rdfs:Literal

foaf:name

rdfs:Literal

onc:usesEntityNamesSpec

onc:usesEntityLinkingSpec

onc:usesEntityEnrichmentSpec

onc: http://www.ics.forth.gr/isl/oncm/core

skos: http://www.w3.org/2004/02/skos/core

foaf: http://xmlns.com/foaf/spec/

rdfs: http://www.w3.org/TR/rdf-schema/

skos:Concept

rdfs:subClassOf

onc:RankingMethod

rdfs:Literal

rdfs:label

rdfs:Resource

onc:isDefinedBy

onc:ranksEntitiesUsingonc:ranksResourcesUsing

Fig. 9. The Open NEE Configuration Model.

Figure 9 depicts the proposed model, which we call “Open NEE Configuration

Model”. The vocabulary is accessible through: http://www.ics.forth.gr/isl/

oncm. We have defined 8 classes and 13 properties (they are briefly described in

Table 1). The model, apart from allowing the description of the supported cate-

gories and the KMBs, also enables specifying the method that it is used for ranking

the detected entities and/or the matched resources. Although the model allows

relating a configuration with a NEE service, we can describe a configuration with-

out providing information about the service (i.e. without connecting an instance of

onc:Configuration with an instance of onc:NEEService) because, for example, we

want to create a general configuration which will be used for configuring one or more

NEE services. Moreover, the model exploits the SKOS23 vocabulary for indicating

that onc:Category is subclass of skos:Concept. Thereby, we can interrelate the

supported categories exploiting the SKOS properties. For example, we can define

that the category Species is a broader concept of the categories Fish Species and

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

12 Pavlos Fafalios, Manolis Baritakis and Yannis Tzitzikas

Table 1. Classes and properties of the Open NEE Configuration Model.

Class Class description
NEEService A Named Entity Extraction (NEE) service.
Configuration The configuration supported by a NEE service.
Category A category/class of entities supported by a configuration.
RankingMethod A method used for ranking the entities or the entity URIs.
KBM A Knowledge Base Mirror: the gateway for accessing a Knowledge Base.
EntityNamesSpec Specification of the entity names of a category.
EntityLinkingSpec Specification of how an entity name corresponds to entity URIs.

EntityEnrichmentSpec
Specification of the extra information that should be fetched for an entity
URI.

Property Property description

supports
Relates a NEE service to a configuration, or a configuration to a sup-
ported category.

accessibleThrough
Relates a NEE service to a resource, e.g. to a URL describing the API
of a service.

ranksEntitiesUsing Relates a configuration to a method for ranking entities.
ranksResourcesUsing Relates a configuration to a method for ranking resources.

isDefinedBy
Relates a ranking method to a resource, e.g. to a URL describing the
ranking approach.

entitiesSpecFrom Relates a category to a KBM.
endpoint Relates a KBM to the URL of a SPARQL endpoint.
usesEntityNamesSpec Relates a KBM to specification of entity names.
usesEntityLinkingSpec Relates a KBM to an entity-linking specification.
usesEntityEnrichmentSpec Relates a KBM to an entity-enrichment specification.
usesSparqlQuery Relates a specification of entity names to a SPARQL query.

usesSparqlTemplateQuery
Relates an entity-linking or entity-enrichment specification to a SPARQL
template query.

usesSparqlTemplateParam
Relates an entity-linking or entity-enrichment specification to a SPARQL
template parameter.

Bird Species. This information can be then exploited by an application for offering

a more advanced visualization, e.g. by using nesting if a category is narrower that

another, etc. We can also provide domain information by relating a category with

concepts/classes from a widely used taxonomy or thesaurus. For instance, if there

is a well-known thesaurus related to the marine domain, we can define that the cat-

egory Fish Species is related to a concept of that thesaurus. We should also stress

that we can exploit the provenance data model (PROV24) and include provenance

information, e.g. who created a configuration, when, etc.

Figure 10 depicts an instantiation example of this model, while Figure 11 shows

the corresponding RDF triples. In this example, the NEE system “X-Link” supports

a configuration which can identify entities of type Fish Species, while for ranking

the matched resources it uses the Stoilos distance function. We can also see the

KBM that is used for linking, enriching and updating the entities of this category.

By publishing the configurations supported by one or more NEE services, an

application can dynamically detect and use the services that satisfy its annotation

needs, while we are able to run (SPARQL) queries of the form:

• Give me the NEE services supporting a category with name “Fish Species”

(Figure 12).

• Give me all categories supported by the NEE service “X-Link” (Figure 13).

• Give me the SPARQL template queries (together with the endpoints) that

are used for linking entities of the category “Fish Species” (Figure 14).

• Give me the NEE services supporting categories related to the marine do-

main (Figure 15).

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

Exploiting Linked Data for Open and Configurable Named Entity Extraction 13

_:kbm

_:spec1

_:config

onc:supports

onc:endpoint

_:categ

onc:supports

_:spec2

_:spec3

onc:usesSparqlQuery

onc:usesSparql

TemplateQuery

onc:usesSparql

TemplateQuery

onc:entitiesSpecFrom

onc:accessibleThrough

http://..../X-Link/api

foaf:name

“X-Link”

“Fish Species”

rdfs:label

“SELECT ….
WHERE…”

“SELECT ….
WHERE…”

“SELECT ….
WHERE…”

http://dbpedia.org/sparql

“[URI]”

onc:usesSparql

TemplateParam

“[ENTITY]”
onc:usesSparql

TemplateParam

onc:Configuration

onc:Category

onc:NEEService

onc:KBM

onc:EntityNamesSpec

onc:EntityEnrichmentSpec

onc:EntityLinkingSpec

onc:usesEntityNamesSpec

onc:usesEntityLinkingSpec

onc:usesEntityEnrichmentSpec

rdf:type rdf:type

rdf:type

rdf:type

rdf:type

rdf:type

rdf:type

onc: http://www.ics.forth.gr/isl/oncm/core

skos: http://www.w3.org/2004/02/skos/core

foaf: http://xmlns.com/foaf/spec/

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns

rdfs: http://www.w3.org/TR/rdf-schema/

http://.../X-Link

onc:RankingMethod

_:rank

onc:ranksResourcesUsing

“Stoilos”

onc:isDefinedBy
rdfs:label

rdf:type

http://dx.doi.org/10.10...

Fig. 10. Instantiation Example of the Open NEE Configuration Model.

PREFIX onc: <http://www.ics.forth.gr/isl/oncm/core>
PREFIX skos: <http://www.w3.org/2004/02/skos/core>
PREFIX foaf: <http://xmlns.com/foaf/spec/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns>
PREFIX rdfs: <http://www.w3.org/TR/rdf-schema/>

<http://.../X-Link> rdf:type onc:NEEService ;
foaf:name "X-Link" ;
onc:accessibleThrough <http://.../X-Link/api> ;
onc:supports _:config .

_:config rdf:type onc:Configuration ;
onc:supports _:categ ;
onc:ranksResourcesUsing _:rank .

_:rank rdf:type onc:RankingMethod ;
rdfs:label "Similarity using Stoilos function." ;
onc:isDefinedBy <http://dx.doi.org/10.1007/11574620_45> .

_:categ rdf:type onc:Category ;
rdfs:label "Fish Species" ;
onc:entitiesSpecFrom _:kbm .

_:kbm rdf:type onc:KBM ;
onc:endpoint <http://dbpedia.org/sparql> ;
onc:usesEntityNamesSpec _:spec1 ;
onc:usesEntityLinkingSpec _:spec2 ;
onc:usesEntityEnrichmentSpec _:spec3 .

_:spec1 rdf:type onc:EntityNamesSpec ;
onc:usesSparqlQuery "SELECT ... FROM ..." .

_:spec2 rdf:type onc:EntityLinkingSpec ;
onc:usesSparqlTemplateQuery "SELECT ... FROM ..." ;
onc:usesSparqlTemplateParam "[ENTITY]" .

_:spec3 rdf:type onc:EntityEnrichmentSpec ;
onc:usesSparqlTemplateQuery "SELECT ... FROM ..." ;
onc:usesSparqlTemplateParam "[URI]" .

Fig. 11. Example of RDF triples describing a configuration.

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

14 Pavlos Fafalios, Manolis Baritakis and Yannis Tzitzikas

SELECT ?tool ?name WHERE {
?tool a onc:NEEService ; foaf:name ?name ; onc:supports ?config .
?config onc:supports ?categ . ?categ rdfs:label "Fish Species" }

Fig. 12. SPARQL query for retrieving the name and the URL of all services that support the

category “Fish Species”.

SELECT ?name WHERE {
<http://../X-Link> onc:supports ?config .
?config onc:supports ?categ . ?categ rdfs:label ?name }

Fig. 13. SPARQL query for retrieving the categories supported by a NEE system.

SELECT ?endpoint ?template WHERE {
?categ a onc:Category ; rdfs:label "Fish Species" ; onc:entitiesSpecFrom ?kbm .
?kbm onc:endpoint ?endpoint ; onc:usesEntityLinkingSpec ?linkspec .
?linkspec onc:usesSparqlTemplateQuery ?template }

Fig. 14. SPARQL query for retrieving the template queries and the corresponding endpoints that
are used for linking entities of the category “Fish Species”.

SELECT ?tool ?name WHERE {
?tool a onc:NEEService ; foaf:name ?name ; onc:supports ?config .
?config onc:supports ?categ . ?categ skos:related example:marine }

Fig. 15. SPARQL query for retrieving the name and the URL of all services that support cate-

gories related to the marine domain.

3.6. Exporting/Exchanging the Annotation Results

It is often useful to know the provenance of a NEE process. Provenance also concerns

the configuration under which an annotation was applied. Towards this direction, we

propose an extension of the Open Annotation Data Model11. The Open Annotation

Data Model specifies an RDF-based framework for creating associations (annota-

tions) between related resources, allowing annotations to be easily shared between

platforms. The extension model (which is an RDF/S vocabulary) is depicted in

Figure 16 and comprises 1 new class, 8 new properties and 1 new instance.

oa:Annotation oa:Motivation

oa:hasBody

oae:Entity

skos:prefLabel

oa:hasTarget

rdfs:Resource
oae:NEE

oa:motivatedBy

skos:Concept

rdfs:subClassOf

rdf:type

skos:broader

oa:tagging

rdfs:Literal
oae:detectedAs

oae:belongsTo
onc:Category

rdfs:Literal
oae:position

onc:Configuration

oae:usingConfiguration

onc:NEEService

oa:annotatedBy

“Result of NEE
process”@enoae:regardsEntityName

rdfs:Literal

oae: http://www.ics.forth.gr/isl/oae/core
onc: http://www.ics.forth.gr/isl/oncm/core
oa: http://www.w3.org/ns/oa
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns
rdfs: http://www.w3.org/TR/rdf-schema/
skos: http://www.w3.org/2004/02/skos/core

oa:SemanticTag

rdfs:subClassOf

rdfs:Literal
oae:score

oae:hasMatchedURI
rdfs:Resource

rdfs:Literal

oae:score

rdfs:Literal
oae:confidence

Fig. 16. The extension of the Open Annotation Data Model.

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

Exploiting Linked Data for Open and Configurable Named Entity Extraction 15

The class oae:Entity is subclass of oa:SemanticTag and is used for repre-

senting a detected entity. The instance oae:NEE is a oa:Motivation representing

the result of a NEE process and can be considered narrower than the oa:tagging

motivation. The property oae:usingConfiguration is used for associating the an-

notation process with a configuration. The property oae:detectedAs is used for

representing the string in the document that was detected and considered an entity,

while the property oae:regardsEntityName represents the actual entity name that

exists in a gazetteer (text file containing a list of sorted entity names) of the NEE

system. The property oae:position is used for representing the positions in the

document in which the entity name was detected, oae:score represents the score of

an entity or of an entity URI, while oae:confidence can represent the confidence

of an ambiguous entity. The property oae:belongsTo is used for representing the

category of the detected entity. Finally, the property oae:hasMatchedURI is used

for representing the URIs that match an entity name.

The extension is available at http://www.ics.forth.gr/isl/oae. Figure 17

depicts an instantiation example in which the fish name “catfish” was detected in

a Wikipedia page by the X-Link NEE system. Figure 18 depicts the RDF triples

of a similar example. In this example, the NEE system detected two entities of

type fish species. Each entity is accompanied by a matched URI which means that

the entity linking process was applied. We notice also that the entity enrichment

process was applied and two properties were retrieved from DBpedia (the properties

dbp-owl:order and dbp-owl:phylum).

_:annot

http://.../wiki/Pleco

oae:Entity
rdf:type

oa:hasBody oa:hasTarget

oa:motivatedBy

oae:NEE

oae:detectedAs

oae:belongsTo

onc:Category

oae:position“catfish”
68 512

_:categ

rdf:type

“Fish Species”

rdfs:label

oa:annotatedBy

http://.../X-Linkonc:NEEService
rdf:type

oa:Motivation

rdf:type_:config

onc:Configuration

rdf:type

oae:usingConfiguration

oae:regardsEntityName
“Catfish”

_:ent

oae: http://www.ics.forth.gr/isl/oae/core
onc: http://www.ics.forth.gr/isl/oncm/core
oa: http://www.w3.org/ns/oa
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns
rdfs: http://www.w3.org/TR/rdf-schema/

oa:Annotation

rdf:type

0.4
oae:score

http://../res/Catfish

oae:hasMatchedURI

oae:score1.0

0.9
oae:confidence

Fig. 17. Instantiation Example of the Open Annotation Extension.

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

16 Pavlos Fafalios, Manolis Baritakis and Yannis Tzitzikas

PREFIX oae: <http://www.ics.forth.gr/isl/oae/core>
PREFIX oa: <http://www.w3.org/ns/oa>
PREFIX onc: <http://www.ics.forth.gr/isl/oncm/core>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns>
PREFIX rdfs: <http://www.w3.org/TR/rdf-schema/>
PREFIX dbp-owl: <http://dbpedia.org/ontology/>
PREFIX dbp: <http://dbpedia.org/resource/>

_:annot rdf:type oa:Annotation ;
oa:annotatedBy <http://.../X-Link> ;
oa:motivatedBy oae:NEE ;
oae:usingConfiguration _:config ;
oa:hasBody _:ent1 ;
oa:hasBody _:ent2 ;
oa:hasTarget <http://.../wiki/Pleco> .

_:ent1 rdf:type oae:Entity ;
oae:detectedAs "loricariidae" ;
oae:regardsEntityName "Loricariidae" ;
oae:confidence 0.95 ;
oae:position 42, 115, 312 ;
oae:score 0.6 ;
oae:belongsTo _:categ ;
oae:hasMatchedURI <http://.../Loricariidae> .

<http://../Loricariidae> dbp-owl:order dbp:Catfish ;
dbp-owl:phylum dbp:Chordate ;
oae:score 1.0 .

_:ent2 rdf:type oae:Entity ;
oae:detectedAs "catfish" ;
oae:regardsEntityName "Catfish" ;
oae:confidence 0.9 ;
oae:position 68, 512 ;
oae:score 0.4 ;
oae:belongsTo _:categ ;
oae:hasMatchedURI <http://../Catfish> .

<http://../Catfish> dbp-owl:order dbp:Ostariophysi ;
dbp-owl:phylum dbp:Chordate ;
oae:score 1.0 .

_:categ rdf:type onc:Category ;
rdfs:label "Fish Species" .

Fig. 18. RDF triples describing the result of a NEE process using the Open Annotation Extension.

By performing NEE in a set of documents and exporting the results using the

proposed extension, we can run (SPARQL) queries of the form:

• Give me documents referring the fish species “Catfish” (Figure 19).

• Give me documents referring entities of type “Fish Species” (Figure 20).

• Give me documents containing information about fish species of phylum

“Chordate” (Figure 21).

• Give me fish species of order “Ostariophysi” detected in the web page

“http://example.html” (Figure 22).

An application can now offer advanced exploratory search services over the anno-

tated set of documents, e.g. according to the faceted interaction paradigm over RDF

data25,26.

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

Exploiting Linked Data for Open and Configurable Named Entity Extraction 17

SELECT ?doc WHERE { ?annot a oa:Annotation ; oa:hasTarget ?doc ; oa:hasBody ?ent .
?ent a oae:Entity ; oae:regardsEntityName "Catfish" ; oae:belongsTo ?cat .
?cat a onc:Category ; rdfs:label "Fish Species" }

Fig. 19. SPARQL query for retrieving the documents referring the fish species “Catfish”.

SELECT ?doc WHERE { ?annot a oa:Annotation ; oa:hasTarget ?doc ; oa:hasBody ?ent .
?ent a oae:Entity ; oae:belongsTo ?cat .
?cat a onc:category ; rdfs:label "Fish Species" }

Fig. 20. SPARQL query for retrieving the documents referring entities of type “Fish Species”.

SELECT ?doc WHERE { ?annot a oa:Annotation ; oa:hasTarget ?doc ; oa:hasBody ?ent .
?ent a oae:Entity ; oae:belongsTo ?cat ; oae:hasMatchedURI ?uri .
?cat a onc:category ; rdfs:label "Fish Species" .
?uri dbp-owl:phylum dbp:Chordate }

Fig. 21. SPARQL query for retrieving the documents containing information about fish species

of phylum “Chordate”.

SELECT ?entName WHERE {
?annot a oa:Annotation ; oa:hasTarget <http://example.html> ; oa:hasBody ?ent .
?ent a oae:Entity ; oae:belongsTo ?cat .
?cat a onc:category ; rdfs:label "Fish Species" .
?ent oae:regardsEntityName ?entName ; oae:hasMatchedURI ?uri .
?uri dbp-owl:order dbp:Ostariophysi }

Fig. 22. SPARQL query for retrieving fish species of order “Ostariophysi” detected in the web
page “http://example.html”.

4. The X-Link Framework

X-Link is a LOD-based NEE framework that we have designed and implemented

which realizes the configuration model described in the previous section. Below, we

describe its architecture (§4.1), its functionality (§4.2), the supported configurability

(§4.3), and two applications that currently use X-Link (§4.4).

4.1. Architecture

X-Link is based on the Gate ANNIE27,28 system and supports both gazetteers

and NLP functions. Gate ANNIE is a ready-made information extraction system

which contains several components (e.g. Tokeniser, Gazetteer, Sentence Splitter,

Orthographic Coreference, etc.). X-Link extends Gate ANNIE in order to be able

to create a new supported category and update an existing one (using gazetteers).

This gives us the opportunity to adapt its functionality according to our needs,

making X-Link configurable and extendible. We should also stress that X-Link can

use any NER system (as a component) that takes as input a text and returns a list

of entity names.

Figure 23 shows the architecture of X-Link. The core component is the

Controller which links and controls all the components. Configuration Manager

is responsible for reading and changing the configuration files (Gate and X-Link

Configuration Files). Entity Miner is an extension of Gate ANNIE and performs

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

18 Pavlos Fafalios, Manolis Baritakis and Yannis Tzitzikas

the entity mining process in the contents of a document (the document is read by the

Text Extractor component). The components Entity Linker, Entity Enricher

and Entity Connector are responsible for retrieving the corresponding seman-

tic information by querying external SPARQL endpoints (using the SPARQL Query

Runner component). Finally, the results are exported using the Result Exporter

component.

Fig. 23. The architecture of X-Link.

4.2. Functionality

4.2.1. Supported File Types

Currently X-Link supports the analysis of plain text files, HTML pages, Microsoft

Word and Powerpoint files (.doc, .docx, .ppt and .pptx), PDF files, and XML-

based files (e.g. XML and RDF files).

4.2.2. Entity Mining and Disambiguation

X-Link at first reads the contents of the requested document. Then it applies entity

mining using Gate ANNIE according to the specified categories of interest. In our

setting, Gate ANNIE takes as input the contents of a document and the categories

of interest, and the output is a set of detected entities. Each detected entity is

accompanied by its category, its position(s) in the document and its score. X-Link

ranks the detected entities according to their frequency in the document as described

in §3.4. Note also that Gate Annie internally “cleans” the document contents by

removing useless text (like the HTML tags of a Web page).

The user is also able to activate or not a “fuzzy matching” function which enables

the identification of an entity that does not match exactly an entity in a category’s

gazetteer (using the Edit - Levenshtein - distance21). The allowed edit distance value

depends on the length of the matched entity and expresses the percentage of the

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

Exploiting Linked Data for Open and Configurable Named Entity Extraction 19

required single-character edits with regard to the entity name’s length. If p denotes

the allowed percentage of single-character edits and l(e) is the length of an entity

e, then the allowed edit distance value (for which the candidate string will match

the entity e) is p ∗ l(e). For instance, if p = 0.2 then we allow 2 edits for an entity

name with length 10 characters. However, although in that case more entity names

are identified, the precision falls off because X-Link may identify entities that are

lexicographically close to an entity in a category but semantically totally different.

In §3.1 we argued that we may have a name that corresponds to entities of dif-

ferent categories (recall the “argentina” example which may refer to the Country

Argentina or the Fish Genus Argentina). Even if only one category is supported, we

cannot be sure if a detected entity (that matches an entity name in the gazetteer of

the supported category) actually belongs to this category. This is the well-known en-

tity disambiguation (or word-sense disambiguation) problem whose solution stills an

open challenge29. Several approaches have been proposed in the literature, e.g. ex-

ploiting Wikipedia data30,31, using statistical methods7, exploiting ontologies32, or

graph-based approaches33,34. X-Link currently does not apply any disambiguation

method, i.e. if an entity name exists in the gazetteers of two supported categories,

then this entity is returned twice, one for each supported category. This allows

the application that uses it to disambiguate afterwards the identified entities, e.g.

by exploiting context information or user feedback. For instance, in Theophrastus

system4 if the user requests the exploration of a detected entity with ambiguous

name (i.e. which belongs to more than one of the supported categories), the system

informs the user through a popup window and the user can disambiguate the entity

by selecting the appropriate category (the Theophrastus system is briefly described

in §4.4). In our setting, exploiting the RDF triples that correspond to the detected

entities, i.e. Graph(doc), can help towards this direction. For example, by adopting

a Link Analysis-based approach35,36 for ranking the elements (entities and proper-

ties) of a graph related to a set of search results, we could isolate entities irrelevant

to the search context (they will receive low score).

Note also that in some application scenarios, especially in professional systems,

even if we are not sure about the relevance of an entity, it is preferable to retrieve

and return it, i.e. recall (the retrieval of as much as possible relevant information)

is crucial. For instance, in professional search (e.g. medical search, patent search,

bibliography search) it is often unacceptable to miss relevant documents, therefore

the retrieval of nearly all relevant documents is sometimes necessary.

A thorough evaluation of word-sense disambiguation approaches that are appro-

priate for our setting is out of the scope of this paper but an important direction

for future research.

4.2.3. Entity Linking

As regards the entity linking process, X-Link returns a ranked list of URIs that

match a detected entity name and lets the application (that uses X-Link) to decide

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

20 Pavlos Fafalios, Manolis Baritakis and Yannis Tzitzikas

how to cope with them. For instance, in the application example of Figure 1 the

system presents to the user all the URIs that match an identified entity, while

another application could return only the top-ranked URI.

For ranking the URIs, X-Link supports the approach described in §3.4 which

computes the similarity between the name of the entity and the label of the URI

in the KB or the suffix of the URI string. As regards the distance function, X-Link

supports both Edit Distance and the one proposed by Stoilos et al.22

4.2.4. Entity Enrichment

As regards entity enrichment, i.e. the retrieval of RDF triples that describe the entity

URIs, X-Link offers two different functions: a) retrieve triples that are interesting

for the application at hand, and b) inspect the connectivity of the entity URIs.

As regards the former, for an entity URI u, Descr(u) is obtained either by

running the corresponding Enrichment Template Queries or by selecting to retrieve

one of the following (common) types of properties: a) outgoing (u is the subject in

the RDF triple), b) incoming (u is the object in the RDF triple), c) both outgoing

and incoming, d) outgoing in a specific language, e) both outgoing in a specific

language and incoming. Note that it is in the responsibility of the application that

uses X-Link to decide how to exploit all this semantic information. For instance,

one can use it even for disambiguating the identified entities, or for ranking the

URIs, etc.

As regards the connectivity of the entity URIs, X-Link supports Graph(D, r)

as defined in §3.4. In addition, it computes a subgraph of Graph(D, r), which is

denoted by ConnectGraph(D, r), for making more evident how the entity URIs are

associated. Specifically, this graph contains only the triples which are involved in

paths whose both start and end vertex are URIs in U(D). For example, for r = 1

the graph can show entity URIs that share common properties or which are directly

connected (so properties that are not reachable by at least two URIs are omitted).

Figure 24 depicts an example of a Graph(D, 1). Consider that the entity URIs in

U(D) are three: Chum Salmon, Chinook Salmon and Coho Salmon (for simplicity we

have omitted the namespaces). The graph enclosed in the dashed shape, containing

the black nodes, is the ConnectGraph(D, 1).

Oncorhynchus

Salmonidae

Coho
Salmon

Chinook
Salmon

59-71

161976

11

Chum
Salmon

161977

67-75

161977

61-69

Fig. 24. An example of a ConnectGraph.

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

Exploiting Linked Data for Open and Configurable Named Entity Extraction 21

4.2.5. Output

X-Link exports the results in XML, CSV and RDF. As regards RDF, X-Link ex-

ploits the extension of the Open Annotation Data Model (described in §3.6) and

supports the formats RDF/XML, N-Triples, and Notation3 (N3).

4.2.6. Ways to Use

X-Link is a framework that can be used (and extended) by other applications ac-

cording to their needs, allowing its exploitation in a plethora of contexts and appli-

cation scenarios. Specifically, X-Link can be used as a:

• Java Library which can be integrated in the code of the intended appli-

cation.

• Web Application that can receive submissions and return the outcomes

of the analysis.

• Web Service which can be used through a REST API.

In the last two cases, it is assumed that a running instance exists, therefore the

X-Link library offers operations that allow changing the configuration model. This

allows changing or refreshing the “knowledge” of X-Link without having to redeploy

the application that uses it.

More information is available at: http://www.ics.forth.gr/isl/X-Link.

4.3. Configurability

X-Link supports the configuration model described in §3 in two ways: (a) it can read

such a configuration from a properties file, and (b) it offers a configuration API. It

can also read a configuration expressed in RDF using the Open NEE Configuration

Model. For publishing the configuration supported by an X-Link service, X-Link

offers a function which creates an RDF file describing its current configuration

using the Open NEE Configuration Model. For instance, the configuration that

is currently supported by an X-Link service configured for the marine domain is

publicly available at http://www.ics.forth.gr/isl/X-Link/marine/config.n3.

4.3.1. File-based Configuration

An indicative part of the properties file (configured for the marine domain) is shown

in Figure 25. In that example, X-Link supports 7 categories of entities (line 1), i.e.

the entity names of these categories have been retrieved and stored in Gate ANNIE.

However, the active categories are only Fish, Country and Water Area (line 2), i.e.

the remaining categories are inactive. The set of active categories allows us to define

which of the supported categories are interesting for an application, thus X-Link

can identify entities that belong to these categories only. The category Fish uses one

KBM (line 3), which is actually the SPARQL endpoint of DBpedia (line 4), and for

updating this category X-Link can use the SPARQL query given in a file (line 5).

In addition, we can see the file paths and the parameters of the template queries

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

22 Pavlos Fafalios, Manolis Baritakis and Yannis Tzitzikas

that are used for linking and enriching the identified fishes (lines 6-9). Finally, the

radius for inspecting the connectivity of the identified entities is 1 (line 10), while

fuzzy matching is allowed with p = 0.2 (lines 11-12).

1 xlink.categories.supported = Fish;Country;Water_Area;Disease;Drug;Protein;Chemical_Substance
2 xlink.categories.active = Fish;Country;Water_Area
3 xlink.categories.Fish.kbms = dbpedia_fish
4 xlink.categories.Fish.kbms.dbpedia_fish.endpoint = http://dbpedia.org/sparql
5 xlink.categories.Fish.kbms.dbpedia_fish.entitynames = C:/xlink/queries/dbp_fishes.sparql;
6 xlink.categories.Fish.kbms.dbpedia_fish.templatequeries.linking =

C:/xlink/templates/dbp_fish_linking.tquery
7 xlink.categories.Fish.kbms.dbp_fish.templatequeries.linking.parameter = [ENTITY]
8 xlink.categories.Fish.kbms.dbp_fish.templatequeries.enriching =

C:/xlink/templates/dbpedia_fish_enriching.tquery
9 xlink.categories.Fish.kbms.dbpedia_fish.templatequeries.enriching.parameter = [URI]
10 xlink.connect.radius = 1
11 xlink.fuzzy = true
12 xlink.fuzzy.value = 0.2

Fig. 25. A part of X-Link’s properties file configured for the marine domain.

4.3.2. Configuration while Running

X-Link can be configured through its API even while a corresponding service is

running. In particular, the following functions are supported:

• Add a new category (using one or more lists of entities and/or one or more

SPARQL queries).

• Update an existing category (using one or more lists of entities and/or one

or more SPARQL queries).

• Remove a category.

• Change the displayed name of a category (i.e. rename).

• Set/change the KBMs of a category.

• Set/change the SPARQL queries and the template queries of a KBM.

• Set/change the active categories.

• Set/change the value of radius r.

• Set/change if fuzzy matching is allowed and the value of p.

• Set/change the URI ranking distance function.

Regarding the update of an existing category, the user/developer is able to either

totally replace a category (i.e. remove its old entity names and add the new ones)

or just add the new entity names. We should also note that each of the above

functions changes accordingly the properties file and also it updates several files

in Gate ANNIE. For example, when a new category is created, the corresponding

gazetteer file is created and loaded in Gate ANNIE, the name of the category is

added in the set of supported categories in the properties file, etc.

4.3.3. Portability of Configurations

The configurations can be exchanged. For instance, consider that a person A con-

figures the system and then sends the configuration files to a person B. The person

B sets the system to use the configurations files received by the person A (by sim-

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

Exploiting Linked Data for Open and Configurable Named Entity Extraction 23

ply providing some paths). Now the person B is able to enjoy exactly the same

configuration as person A.

The size of the configuration files is relatively small and mainly depends on

the number of supported categories and on the number of named entities in each

category. Indicatively, the configuration files for supporting 4 categories related to

the marine domain have size less than 5MB. These files include the gazetteers of the

supported categories and several files required by Gate ANNIE. Note that X-Link

does not store any semantic information (e.g. URIs or RDF triples), since the entity

linking and the entity enrichment processes are performed at real-time.

We should also stress that adopting the Open NEE Configuration Model sim-

plifies even more the exchange of configurations since an RDF file (describing the

configuration using the proposed vocabulary) can be just provided.

4.4. Current Applications of X-Link

X-Link is currently used by the systems X-Searche and Theophrastusf .

X-Search2,37 is a meta-search engine that reads the description of a search

source, queries that source, analyzes the returned results in various ways and also ex-

ploits the availability of semantic repositories. X-Search exploits X-Link in two dif-

ferent contexts: in the marine domain (in the context of the iMarineg project) and

in patent search (in the context of the PerFedPath project). In iMarine, X-Link has

been configured to identify Fish Species, Water Areas, Countries, and Regional Fish-

eries Bodies, while the KB that is exploited is the MarineTLO-based Warehouse38.

In PerFedPat, X-Link has been configured to identify the (medicine-related) cate-

gories Diseases, Drugs, Proteins, and Chemical Substances, while the online version

of DBpedia is exploited as the underlying KB39.

Theophrastus4 is a system that supports the automatic annotation of web doc-

uments through entity mining and provides exploration services by exploiting LOD

at real-time. The system, which aims at assisting biologists in their research about

species and biodiversity, exploits X-Link for performing entity mining and entity

exploration in web documents, and has been designed to be highly configurable

regarding a number of different aspects like entities of interest, information cards

(semantic information related to a detected entity) and external search systems.

5. Evaluation

We first (§5.1) report the results of a user study that demonstrate the usability of

X-Link. Then (§5.2), we report the results of a case study regarding the efficiency of

the functions described in §3. Methods for achieving scalability are also discussed.

Other aspects, as well as indicative experimental results regarding the effectiveness

of the ranking approaches described in §3.4, are discussed in §5.3.

ehttp://www.ics.forth.gr/isl/X-Search
fhttp://www.ics.forth.gr/isl/Theophrastus
ghttp://www.i-marine.eu/
hhttp://www.perfedpat.eu/

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

24 Pavlos Fafalios, Manolis Baritakis and Yannis Tzitzikas

5.1. Task-based User Study

The purpose of the user study is a) to test the usability of the proposed approach, i.e.

how fast and conveniently a user can configure X-Link, and b) to identify usability

problems that will allow us to improve the tool. Note that the target user is an

administrator or a developer who wants to use X-Link for building and dynamically

configuring an application.

5.1.1. Tasks and Scenario

We deployed X-Link as a Web application configured for the marine domain which

can identify Fish Species in a text or Web document. The administrator of the

system can change the configuration through an administration page. Specifically,

he/she can add, remove and update categories, specify how to link and enrich the

identified entities, and define the SPARQL endpoints to use.

The 11 subjects that participated in the user study are 23 to 34 years old, mem-

bers of the Information Systems Laboratory at FORTH-ICS, they have computer

science background and a basic knowledge of Linked Data and the SPARQL query

language. Note that 11 participants are enough for revealing severe usability prob-

lems. Specifically, according to Robert Virzi40, in a usability evaluation, 80% of

the usability problems are detected with four or five subjects, additional subjects

are less and less likely to reveal new information, while the most severe usability

problems are likely to have been detected by the first few subjects. Furthermore,

according to Laura Faulkner41, at least 10 subjects are needed to reduce the risk of

not revealing usability problems.

We shortly (in about 5 minutes) described and demonstrated the application

and its functionality to the participants, and then we asked them to perform the

following tasks:

(T1) Add a new category of entities

(T2) Update a category

(T3) Specify how to link the identified entities of a category

(T4) Specify how to enrich the entity URIs of a category

(T5) Inspect the connectivity (for r = 1) of the entity URIs

The tasks are based on the following scenario:

“Consider that you are the administrator of an application that can identify Fish

names (currently supporting only the English language) in Web pages. You have been

asked to perform some changes. Specifically, by exploiting DBpedia, the application

must also identify European Countries (T1) as well as fish names in Spanish (T2)

(because the application will be used mainly by Spaniards). Also, the identified fishes

must be linked with resources from DBpedia (T3) and must be enriched with all their

outgoing properties (T4). Finally, in order to test that the system has been properly

configured, perform entity mining in the Spanish version of Salmon’s Wikipedia page

and then inspect the connectivity of the identified entities (T5)” ⋄

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

Exploiting Linked Data for Open and Configurable Named Entity Extraction 25

We also provided the participants the following data:

• DBpedia’s SPARQL endpoint (required for T1, T2, T3 and T4):

http://dbpedia.org/sparql

• URI of the resource class European Country (required for T1):

http://dbpedia.org/class/yago/EuropeanCountries

• Language code of Spanish (required for T2): es

• URI of the resource class Fish Species (required for T2 and T3):

http://dbpedia.org/ontology/Fish

• URI of the property ‘label’ (required for T2 and T3):

http://www.w3.org/2000/01/rdf-schema#label

• Spanish version of Tuna’s Wikipedia page (required for T5):

http://es.wikipedia.org/wiki/Thunnus

For the tasks T1 to T4, the participants could also load an example of a SPARQL

query and modify it (instead of writing it from scratch). We recorded whether

they succeeded to complete each task of the above scenario, as well as the time to

successfully accomplish each task. In addition, at the end we asked them to complete

a questionnaire. Specifically, they had to answer the following questions:

(Q0) How easy was to configure the system according to the scenario?

(Q1) How easy was to add the new category of entities?

(Q2) How easy was to update the existing category?

(Q3) How easy was to specify how to link the identified entities?

(Q4) How easy was to specify how to enrich the identified entities?

(Q5) How easy was to inspect the connectivity of the identified entities?

(Q6) What was difficult for you during the execution of the scenario?

(Q7) How familiar are you with SPARQL?

Regarding the questions Q0 to Q5, the user could select one of the following

answers: very easy, easy, normal, difficult, very difficult, impossible. As

regards the question Q6 the user could write free text, while for the question Q7

the user could select a value between 1 (I don’t know SPARQL) and 5 (I am expert

in SPARQL).

5.1.2. Results

Figure 26 (left) depicts the success rate of each task. All participants managed to

complete the tasks T1, T2 and T5. However, 18% of the participants (two persons)

failed to complete T3 and 9% (one person) failed to complete T4. The difficulty

behind T3 and T4 is the comprehension of the SPARQL template query, specifically,

the purpose of the template parameter and how it is used for constructing the

template query (this was also made evident by the responses in Q6).

Figure 26 (right) illustrates the average time for completing (successfully) each

task. The reported times include the actual processing time, i.e. the time for run-

ning the corresponding SPARQL queries in tasks T1, T2 and T5, and the time for

performing entity mining in T5. We notice that the most time consuming task was

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

26 Pavlos Fafalios, Manolis Baritakis and Yannis Tzitzikas

0% 25% 50% 75% 100%

T1

T2

T3

T4

T5
T
a
s
k

% of Success

0

50

100

150

T1 T2 T3 T4 T5

T
im

e
 (

se
c)

Task

Fig. 26. Success rate (left) and average time (right) for completing each task (results from 11
users).

T3 which required about two minutes in average. This is a predictable result be-

cause T3 asked participants to construct (for first time) a SPARQL template query.

In addition, the participants managed to totally configure the system according to

the scenario (T1 to T4) in less than 6 minutes in average.

As regards the questionnaire, Table 2 depicts the results of the first 6 ques-

tions which refer to the difficulty in performing the tasks. None of the participants

considered one of the tasks “difficult”, “very difficult” or “impossible”. 82% of the

participants found the overall configuration (Q0) an “easy” task, while 18% found

it “very easy”. Regarding T3, which according to the success rates of Figure 26

was the most difficult task, 37% answered “normal”, 45% answered “easy”, while

27% answered “very easy”. As regards T4, which was the second most difficult task

according to the success rates, 27% answered “normal”, 55% answered “easy”, and

18% answered “very easy”. Furthermore, all participants considered “very easy” the

creation of a new category (T1). We notice that although some of the participants

failed to complete T3 and T4, none of them found these tasks difficult. This is prob-

ably justified by the fact that during the evaluation, when a participant completed

unsuccessfully a task we explained them their errors. Maybe, they then understood

their errors and considered the task of “normal” difficulty.

Table 2. Evaluation of the difficulty in performing the scenario (results from 11 users).

Q Very easy Easy Normal Difficult Very Difficult Impossible
Q0 18% 82% 0% 0% 0% 0%
Q1 100% 0% 0% 0% 0% 0%
Q2 55% 27% 18% 0% 0% 0%
Q3 27% 45% 27% 0% 0% 0%
Q4 18% 55% 27% 0% 0% 0%
Q5 45% 45% 9% 0% 0% 0%

Regarding Q6, a few participants mentioned a difficulty in understanding the

notion of the template queries (one also suggested to provide a user-friendly interface

for constructing them). This can be justified by the fact that we did not explain

it with many examples during the initial (5-minute) demonstration of X-Link. In

addition, a participant commented that he/she would like to get informed with more

details about the result of each action. For example, when updating a category

it would be nice if the system reported the number of the added entity names.

Finally, regarding Q7, 18% selected the answer “2”, 36% selected “3”, 36% selected

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

Exploiting Linked Data for Open and Configurable Named Entity Extraction 27

“4”, and 9% selected “5”, meaning that about half of the participants were not

very experienced with SPARQL, however most of them managed to configure the

system.

Synopsis. Concluding the above results, we can say that by adopting the LOD-

based approach that we propose and understanding the notion of the SPARQL

template queries, one can easily configure a NEE system within a few minutes. We

should also stress that if we had dedicated more time for explaining the notion of

the template queries (e.g. with more examples), perhaps all the participants would

have also successfully completed T3 and T4.

5.2. Case Study: Querying Online DBpedia

We performed a case study for testing the feasibility of the entire approach. Specif-

ically, we used online DBpedia as the underlying KB and we measured the time for

(1) creating a new category, (2) linking an identified entity with semantic resources,

(3) enriching an entity URI, and (4) inferring the connectivity of the entity URIs.

For improving the accuracy of the results, and since we were querying an online

KB at real-time, we repeated the experiments 20 times (specifically, about 2 times

per day for 10 days) and here we report the average values (including the network’s

delay time). This case study can be also considered an evaluation of a publicly

available KB, since we ran many queries at DBpedia’s SPARQL endpoint. The

experiments were carried out using an ordinary computer with processor Intel Core

i7 @ 3.4Ghz CPU, 8GB RAM and running Windows 7 (64 bit). The implementation

is in Java 1.7.i

5.2.1. Creating a New Category

We used 7 sets of DBpedia resource classes. Each set has 5 different resource classes

containing a particular number of entities (thus, totally 35 different resource classes

were used). Each resource class actually corresponds to the new category that we

want to create in X-Link. We measure a) the time for running the SPARQL query

at DBpedia’s SPARQL endpoint (which retrieves the labels of the entities belonging

to the corresponding resource class, like the query in Figure 3), and b) the time for

reading the answer and creating the category in X-Link.

Figure 27 depicts the average times for each set of resource classes. As expected,

the time consuming task is the execution of the SPARQL query, since we query

DBpedia’s SPARQL endpoint at real time (the remaining tasks cost less than 10

seconds in all cases). We see that for resource classes with small number of entities

(up to 10,000) the time is less than 20 seconds, while for resources classes with about

100,000 entities the time is about 5 minutes. A limitation regarding DBpedia’s

SPARQL endpoint is that it does not return more than 50,000 results at once,

iThe data used in the experiments (queries, resource classes, entity names, URIs, etc.) are accessible

at http://www.ics.forth.gr/isl/X-Link/files/exper_data.zip.

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

28 Pavlos Fafalios, Manolis Baritakis and Yannis Tzitzikas

0

100

200

300

400

500

600

T
im

e
 (

se
c)

Number of entities in the category

Remaining

tasks

Run the

SPARQL query

Fig. 27. Time for adding a new category.

thus we had to run multiple queries for resource classes with more than 50,000

entities (using SPARQL’s LIMIT and OFFSET). For this reason, adding a category

from DBpedia’s endpoint with one million entities costs about 50 minutes. However

note that this task is performed once (in a preprocessing step) or every time we

want to update the entities of the corresponding category.

5.2.2. Time for Linking an Identified Entity

The time highly depends on the total number of entities belonging to the corre-

sponding category. We used 8 sets of DBpedia resource classes, each one containing

classes of a particular number of entities. Each set has 5 different resource classes

(thus, totally 40 different resource classes were used). Note that each resource class

actually corresponds to the category of an identified entity. For every resource class,

we randomly selected 10 labels of entities belonging to that class and measured

the average time for running the SPARQL query shown in Figure 28 ([URI OF

RES CLASS] corresponds to the URI of the resource class, while [ENTITY] corre-

sponds to the randomly selected label).

SELECT DISTINCT ?URI WHERE { ?URI rdf:type <[URI_OF_RES_CLASS]> .

?URI rdfs:label ?Name FILTER(regex(str(?Name),"[ENTITY]","i")) }

Fig. 28. The SPARQL template query used in the experiments for linking the entities with
semantic resources.

Figure 29 depicts the average times. We notice that for entities belonging to

categories with up to 100,000 entities, the average time is less than 1 second, while

for entities in categories with up to 1 million entities, the linking time is about 5

seconds. In addition, for linking an entity belonging to a category with 6 million

entities the time is about 25 seconds.

We should stress here that, in some application scenarios, this functionality can

be offered on-demand. For example, in the scenario of Figure 1, the user can request

to inspect the semantic resources that match an entity by clicking the small icon

next to the entity’s name.

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

Exploiting Linked Data for Open and Configurable Named Entity Extraction 29

5

10

15

20

25

30

T
im

e
 (

se
c)

Number of entities in the category

Fig. 29. Time for linking an identified entity.

5.2.3. Time for Enriching an Entity URI

The time highly depends on the properties that we retrieve. We ran experiments for

the following types of properties: i) incoming, ii) outgoing, iii) outgoing of a specific

language, and iv) union of incoming and outgoing. We expect that the time will be

very low since the entity URI for which we want to retrieve properties is known,

thus no many string comparisons are required like in the case of entity linking.

We randomly selected 160 URIs from DBpedia and measured the average

time required for retrieving the properties. Figures 30-33 show the corresponding

SPARQL queries that we ran for each type of properties, while Figure 34 depicts

the results. As expected, the time is very low (less than 300 ms) for all types of

properties. Like in the case of entity linking, in some application scenarios this func-

tionality can be offered on-demand. For instance, in the example of Figure 1, the

user can explore the properties of a resource by clicking on its URI.

SELECT ?propertyName ?propertyValue WHERE {

?propertyName ?propertyValue <[URI]> }

Fig. 30. SPARQL query for retrieving the incoming properties of a URI.

SELECT ?propertyName ?propertyValue WHERE {

<[URI]> ?propertyName ?propertyValue. }

Fig. 31. SPARQL query for retrieving the outgoing properties of a URI.

SELECT DISTINCT ?propertyName ?propertyValue

WHERE { { <[URI]> ?propertyName ?propertyValue FILTER(!isLiteral(?propertyValue)) }

UNION { <[URI]> ?propertyName ?propertyValue FILTER(lang(?propertyValue)="en") } }

Fig. 32. SPARQL query for retrieving the outgoing properties of a URI, filtered by language.

SELECT DISTINCT ?propertyName ?propertyValue

WHERE { { <[URI]> ?propertyName ?propertyValue }

UNION { ?propertyName ?propertyValue <[URI]> } }

Fig. 33. SPARQL query for retrieving both the incoming and the outgoing properties of a URI.

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

30 Pavlos Fafalios, Manolis Baritakis and Yannis Tzitzikas

0

0,1

0,2

0,3

0,4

Incoming Outgoing Outgoing

Filtered

Incoming &

Outgoing

T
im

e
 (

se
c)

Type of Properties

Fig. 34. Time for enriching an entity URI.

5.2.4. Time for Inspecting the Connectivity of the Entity URIs

We ran experiments for r = 1 and r = 2. Obviously, the time depends on the number

of entity URIs for which we want to inspect the connectivity. We ran experiments

for 10, 50 and 100 randomly selected URIs belonging to the same resource class. We

repeated the experiments for 5 different resource classes and we report the average

values.

Figure 35 depicts the results. We notice that for r = 1 the time is proportional to

the number of URIs (specifically, about 10 seconds are required for every 50 URIs).

However, for r = 2 the task is very time consuming; the time increases exponentially

to the number of URIs (e.g. for 100 URIs about 12 minutes are required). This is a

predictable result since each URI may have many related URIs. Nevertheless, this

is often acceptable in professional systems and the users may desire to pay the cost.

For example, persons working in patent offices spend many hours for a particular

patent search request and the same is true in bibliographic and medical search. Of

course, for r = 1 and in case we have already retrieved the properties of the entity

URIs, the time will be very low.

0

20

40

60

10 50 100

T
im

e
 (

se
c)

Number of linked URIs

r=0

r=1

r=2

285'' 697''

Fig. 35. Time for inspecting the connectivity of a set of entity URIs.

5.2.5. Reliability and Scalability

From our experimentation with LOD, we have noticed that the existing publicly

available online KBs (like DBpedia) are not optimized for efficiency. The fact that

everyone can query them affects their efficiency and availability (this is the rea-

son for repeating the experiments many times). They also do not serve multiple

concurrent requests in order to avoid overloading their systems. Nevertheless, the

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

Exploiting Linked Data for Open and Configurable Named Entity Extraction 31

aforementioned experimental results showed that even if we query an online KB at

real-time we can support the exploitation of LOD. This is very important since the

“real-time” approach exploits the dynamic and “open” nature of LOD. In addition,

we have seen that if an entity belongs to a category with millions of entities then

the linking time can be high. The same is true in case the application requires to

retrieve semantic information for numerous entities at once, i.e. when this func-

tionality is not offered on-demand. In the near future, as such technologies mature

and get used in applications, we expect that the aforementioned problems will be

handled.

In the meantime, to increase the efficiency and the reliability of such services,

we could adopt a caching mechanism or we could index a part of the underlying

KB. Furthermore, as proposed by Umbrich et al.42, we could keep a local copy of

data that hardly changes and offer a hybrid query execution approach for improving

the response time and reducing the load on the endpoints, while keeping the results

fresh. Of course, the underlying KBs may not be publicly available, or a dedicated

Warehouse can be constructed that will only serve a particular application, like

the marineTLO-based warehouse38 for the marine domain. The KBs (or the Ware-

house) could also be distributed in many servers, taking advantage of load balancing

techniques43. Such approaches can highly improve the performance and the served

throughput, however with the cost of loosing the freshness of the results.

5.3. Other Aspects

5.3.1. Formulation of SPARQL Queries

There are many tools that can facilitate the construction of SPARQL queries, with-

out requiring any advanced knowledge in SPARQL44,45. Furthermore, there are

natural language approaches that guide users in formulating queries in a language

seemingly akin to English and translate them to SPARQL46. In this paper, we con-

sider that the administrator of the underlying application knows the SPARQL query

language.

5.3.2. Effectiveness of NEE

There are various papers that aim at evaluating the effectiveness of NEE tools47–50.

The effectiveness of X-Link highly depends on how the user/developer has con-

figured it, i.e. on the completeness of the specified categories, the quality of the

underlying KBs, the specified SPARQL template queries, etc. In this paper we have

focused on the configurability of a NEE system and on how we can exploit the LOD;

we have not proposed a new entity mining or disambiguation method (the proposed

approach can be also applied by existing NEE systems). X-Link is a framework that

realizes the proposed configuration model and it currently relies on Gate ANNIE.

Therefore, the quality of the identified entities is out of the scope of this paper.

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

32 Pavlos Fafalios, Manolis Baritakis and Yannis Tzitzikas

5.3.3. Effectiveness of the URI Ranking Approaches

In order to get a first feedback about the effectiveness of the URI ranking ap-

proaches described in §3.4, we performed an evaluation in the marine domain. The

objective is to inspect if the proposed ranking schemes can detect the URI that best

characterizes the corresponding entity name.

We ran indicative experiments using a collection of 464 Wikipedia pages regard-

ing several fish species.j Specifically, we performed entity mining with fish species

from DBpedia as the entities of interest, and for each top-ranked (i.e. more frequent)

detected entity we retrieved its matched URIs by querying DBpedia’s SPARQL

endpoint and using the linking template query of Figure 5. Then, we computed the

top-ranked URI using a) the Edit Distance function, b) the Stoilos function22,

and we manually inspected if that URI actually represents or not the corresponding

entity name.

The number of entities for which we retrieved their matched URIs was 412

(some pages returned the same top-ranked entity). In average, about 10 matched

URIs were returned for each entity name, while for 232 entity names the SPARQL

query returned only one (correct) URI and thus we ignored them. Using the Edit

Distance function, for the 91.1% of the remaining entity names the top-ranked URI

was correct, while for the 2.2% the top-ranked URI was false. Moreover, for the 5.6%

of entity names there were more than one URIs with the same top score, containing

the correct URI, while for the 1.1% there were more than one URIs with the same

top score, not containing however the correct one. Using the Stoilos function, for

the 91.1% of the entity names the top-ranked URI was correct, for the 1.1% the

top-ranked URI was false, for the 6.1% there were more than one URIs with the

same top score, containing the correct URI, while for the 1.7% there were more

than one URIs with the same top score, not containing however the correct one.

By inspecting the false cases, we noticed that the main cause is that the cor-

responding entity name is a disambiguated entity and its type/category has been

added in parentheses in both its URI and its rdfs:label. For example, in DBpedia

the label of the fish genus “Gila” is “Gila (genus)” and not “Gila”. Thus, an opti-

mization of this ranking method would be to remove any text in parentheses from

the rdfs:label and the suffix of the URI.

From the above results, we can conclude that comparing the name of the detected

entity with the label of the matched URI or the suffix of the URI string, we can

find the correct matched resource with precision more than 90%. As regards the

distance function, we saw that both Edit Distance and Stoilos behave well with

almost the same performance.

jThe dataset used in the evaluation as well as the results are available to download through:

http://www.ics.forth.gr/isl/X-Link/files/rankEval.zip.

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

Exploiting Linked Data for Open and Configurable Named Entity Extraction 33

6. Related Work

There is a plethora of non LOD-based NEE tools like Wikipedia Miner51, Yahoo!

Content Analysis API52, and TagMe53. Since the approach that we propose is

based on LOD, below we first discuss the most relevant LOD-based NEE tools of

general purpose (§6.1), we then report some semantic annotation systems tailored

for the life sciences domain (§6.2), and finally we discuss the main differences of our

approach (§6.3).

6.1. LOD-based NEE Tools of General Purpose

DBpedia Spotlight6 is a REST API tool for annotating mentions of DBpedia

resources in text, providing a solution for linking unstructured information sources

to the LOD. It finds and returns entities that are found in a text, ranks them

depending on how relevant they are to the text content, and links them with URIs

from DBpedia. The results of the entity extraction process can be stored into various

forms (HTML, XML, JSON or XHTML+RDFa). As regards configurability, users

can provide whitelists (allowed) and blacklists (forbidden) of resource types for

annotation. The available types are derived from the class hierarchy provided by

the DBpedia Ontology. In addition, the interesting resources can be constrained

using a SPARQL query. However, this configurability allows only the specification

of the interesting resources from the existing ones; the user/administrator cannot

add a new category of entities (e.g. describing resources coming from another KB),

update a category or specify how to link and enrich the identified entities.

AlchemyAPI7 is a Natural Language Processing (NLP) service which provides a

scalable platform for analyzing web pages, documents and tweets along with APIs

for integration. The retrieved entities are ranked based on their importance in the

given text and the results can be stored as JSON, Microformats, XML and RDF

(using a dedicated schemak). In addition, the named entity extractor is able to

disambiguate the detected entities, link them to various datasets on the LOD and

resolve co-references.

OpenCalais: Calais8 is a toolkit that allows incorporating semantic functionality

within a blog, content management system, website or application. The OpenCalais

Web Service automatically creates semantic metadata for the submitted content.

Using NLP, machine learning and other methods, Calais analyzes a document, finds

the entities within it and gives them a score based on their text relevance. The

results can be saved as JSON, RDF (using a dedicated schemal), Microformats, N3

or simple text. In addition, it supports automatic connection to the LOD.

AIDA54 is a framework and online tool for entity detection and disambiguation.

Given a natural-language text, AIDA maps mentions of ambiguous names to enti-

ties registered in the YAGO2 KB55. It accepts plain text, HMTL as well as semi-

khttp://rdf.alchemyapi.com/rdf/v1/s/aapi-schema#
lhttp://www.opencalais.com/files/owl.opencalais-4.3a.xml

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

34 Pavlos Fafalios, Manolis Baritakis and Yannis Tzitzikas

structured inputs like tables, lists, or short XML files. AIDA is centered around

collective disambiguation exploiting the prominence of entities, similarity between

the context of the mention and its candidates, and the coherence among candidate

entities for all mentions. The results can be stored in JSON.

Wikimeta56 is a NLP semantic tagging and annotation system that allows incor-

porating semantic knowledge within a document, website or content management

system. It tries to link each detected named entity with an entity in DBpedia based

on a disambiguation process that is described in Charton et al.57. Wikimeta API

is compliant with REST and the responses are formatted in XML and JSON. The

datasets used to train the NLP tools of Wikimeta are derived from Wikipedia.

Lupedia58 uses a gazetteer which is a list of surface forms associated to a subset of

entities in DBpedia and LinkedMDB (a dataset that contains movies descriptions).

The default configuration takes the longest sequence of consecutive words that cor-

responds to an entry in the gazetteer and annotates it with the corresponding entity

in the KB. The results can be stored in HTML, JSON, RDFa or XML.

6.2. Life Sciences-tailored Annotation Tools

Domeo Annotation Toolkit59 is a collection of software components that enables

users to create, share and curate ontology-based annotations for online documents. It

supports fully automated, semi-automated, and manual biomedical annotation with

full representation of the provenance of annotations, as well as personal or commu-

nity annotations with authorization and access control. Annotations are represented

using the Annotation Ontology (AO) RDF model60. However, Domeo is currently

being extended to also support the Open Annotation Data Model11. Its user inter-

face is an extensible web component which enables direct biomedical annotation of

HTML and XML documents. Domeo performs entity mining and accesses ontologies

as well as other automated markup facilities via web service calls.

Utopia Documents61 is a desktop application for reading and exploring PDF

files like scientific papers. By exploiting domain-specific ontologies and plugins,

it links both explicit and implicit information (of biological or chemical interest)

embedded in the articles to online resources. Utopia Documents allows editors and

authors to annotate terms with definitions from online resources and allows readers

to easily find these definitions. It also transforms static tables and figures into

dynamic, interactive objects and simplifies the process of finding related articles by

automatically linking references to their digital online versions. Via its plugins it

has access to a wealth of bioinformatics data: each plugin uses appropriate client

libraries to access web-service endpoints and other remotely accessible resources,

such as relational databases and RDF stores.

The NCBO Annotator62 is an ontology-based web service for annotating textual

biomedical data with biomedical ontology concepts. The NCBO Annotator provides

access to almost two hundred ontologies from BioPortal and UMLS and is an al-

ternative to manual annotation through the use of a concept recognition tool. The

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

Exploiting Linked Data for Open and Configurable Named Entity Extraction 35

annotator is not limited to the syntactic recognition of terms, but also leverages the

structure of the ontologies to expand annotations. Such annotations allow unstruc-

tured free-text data to become structured and standardized, and also contribute to

create a biomedical Semantic Web that facilitates data integration.

Whatizit63 is a text processing system that allows a user to perform text-mining

tasks. Whatizit identifiesmolecular biology terms and links them to related (publicly

available) databases. The identified terms are wrapped with XML tags that carry

additional information, such as the keys to the databases where relevant information

is kept. Any vocabulary can be integrated into Whatizit as a pipeline and also several

vocabularies can be integrated in a single pipeline. Examples of already integrated

vocabularies are Swissprot, the Gene Ontology and Medline Plus.

6.3. Differences of the proposed approach

The main difference of our approach is that we focus on configurability. Specifically,

we propose a method which exploits the dynamic and open nature of LOD for

specifying the entities of interest, as well as for specifying how to link and enrich the

identified entities. This enhanced configurability allows the dynamic configuration

of a NEE system even while a corresponding service is running. On the contrary,

the configuration of the existing systems is a laborious task even for persons with

computer science background and requires many technical skills. Other differences

include:

• The proposed approach does not index semantic information (e.g. RDF

triples or URIs); it just indexes plain lists of entities (gazetteers) regard-

ing only the supported categories of entities. This makes the NEE system

lightweight and portable.

• By adopting the proposed approach, a NEE system can retrieve at real-

time more information about the identified entities (e.g. properties and

related entities) and this is configurable. On the contrary, the majority of

the existing systems return only the corresponding URIs and maybe some

related web pages.

• Existing systems do not describe/publish their entity mining capabilities in

a standard format.

We should also stress that the Open NEE Configuration Model that we propose,

as well as the extension of the Open Annotation Data Model, can be applied by

existing systems. For instance, a NER system that also performs Entity Linking can

describe its service through the supported categories of entities and the Knowledge

Bases that it exploits. Of course, in this case it is not needed/required to also specify

linking template queries since it can directly return the corresponding URI (that has

been derived by the Entity Linking process). Likewise, a system that only performs

NER and Word-Sense Disambiguation can be LOD aware by offering entity linking

and entity enrichment capabilities. In all cases, the result of the NEE process can

be described using the proposed extension of the Open Annotation Data Model.

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

36 Pavlos Fafalios, Manolis Baritakis and Yannis Tzitzikas

7. Conclusion

We have proposed a method that exploits Linked Data for configuring dynamically

and handily a NEE system. For tackling the configuration requirements we have

defined a generic configuration model, while for being able to exchange a supported

configuration we have proposed an RDF/S vocabulary, called Open NEE Config-

uration Model. By publishing the configurations supported by one or more NEE

services using the proposed model, an application can dynamically discover and use

the NEE services that best satisfy its annotation needs. In addition, a NEE service

that is able to read such configurations can dynamically (at request-time) use a

given configuration for annotating a set of documents. To enable relating the out-

put of a NEE process with an applied configuration, we have proposed an extension

of the Open Annotation Data Model. By accessing the annotation results in this

format, an application can offer advanced query services over the annotated data

but also integrate external semantic information coming from the LOD.

Furthermore, we have presented the design and functionality of X-Link, a fully

configurable (LOD-based) NEE framework that realizes the proposed configuration

model. X-Link allows the user/administrator to easily define the categories of enti-

ties that are interesting for the application at hand, as well as to update a category

and specify how to link and enrich the identified entities, by exploiting one or more

online semantic KBs. This enhanced configurability allows X-Link to be used for

building and dynamically configuring domain-specific applications (e.g. for identi-

fying drugs in a medical search system, for annotating and exploring fish species in

a marine-related web page, etc.).

We should stress that it would be beneficial for the community if every NEE

system supported the configuration model that we propose for making them LOD-

aware, and also if every NEE system published the configurations supported by its

services using the Open NEE Configuration Model.

We evaluated the proposed approach in terms of usability and feasibility. As

regards usability, we performed a task-based user study. The results showed that

by adopting the proposed approach, one can configure a NEE system within a few

minutes. In addition, the majority (80%) of the participants managed to success-

fully configure the system according to the specified scenario and also found it an

easy task. Regarding feasibility, the results of a case study over online DBpedia

demonstrated that even if we query a publicly available KB we can support the

exploitation of LOD at real-time. We also discussed how we can achieve scalability

which highly depends on the application context and the reliability of the underlying

KBs. For example, querying a dedicated Warehouse which applies a load balancing

technique, or adopting a hybrid query execution approach, can highly improve sys-

tem’s throughput and performance. Finally, we evaluated approaches for ranking

the matched resources. The results showed that the similarity between the name of

the detected entity and the label or the suffix of the matched URI can be efficiently

used for finding the correct matched resource with precision more than 90%.

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

Exploiting Linked Data for Open and Configurable Named Entity Extraction 37

Regarding future work and research, there are several aspects that are worth

investigating. One is to extend the proposed configuration model to allow modeling

also non-functional aspects of the NEE service like the average annotation time, the

average linking time, etc. Our long term vision is to offer a model that can wholly

describe the functionality, the API (i.e. how to use it) and the configurability of a

NEE service. This would allow a client application to dynamically discover and use

NEE services by exploiting only standard Web protocols, without needing to set up

a corresponding service. As regards X-Link, a future direction is to elaborate on

methods for entity disambiguation that are appropriate for our setting, e.g. in cases

where entity mining is based only on gazetteers.

Acknowledgments

We thankfully acknowledge the support of iMarine (FP7 Research Infrastructures,

2011-2014), NoE APARSEN (FP7, Proj. No 269977, 2011-2014) and MUMIA COST

action (IC1002, 2010-2014).

References

1. D. Mollá, M. Van Zaanen and D. Smith, Named Entity Recognition for Question
Answering, Proceedings of ALTW (2006) 51–58.

2. P. Fafalios, I. Kitsos, Y. Marketakis, C. Baldassarre, M. Salampasis and Y. Tzitzikas,
Web Searching with Entity Mining at Query Time, in Proceedings of the 5th Informa-
tion Retrieval Facility Conference2012.

3. P. Fafalios and Y. Tzitzikas, X-ENS: Semantic Enrichment of Web Search Results
at Real-Time, in Proceedings of the 36th International ACM SIGIR Conference on
Research and Development in Information Retrieval2013.

4. P. Fafalios and P. Papadakos, Theophrastus: On demand and real-time automatic an-
notation and exploration of (web) documents using open linked data, Web Semantics:
Science, Services and Agents on the World Wide Web (2014).

5. S. Kulkarni, A. Singh, G. Ramakrishnan and S. Chakrabarti, Collective Annotation
of Wikipedia Entities in Web Text, in Proceedings of the 15th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining ACM2009.

6. P. N. Mendes, M. Jakob, A. Garćıa-Silva and C. Bizer, DBpedia Spotlight: Shedding
Light on the Web of Documents, in Proceedings of the 7th International Conference
on Semantic Systems ACM2011, pp. 1–8.

7. AlchemyAPI http://www.alchemyapi.com/.
8. OpenCalais, Thomson Reuters http://www.opencalais.com/.
9. C. Bizer, T. Heath and T. Berners-Lee, Linked Data - The Story so Far, International

Journal on Semantic Web and Information Systems 5(3) (2009).
10. RDF Schema 1.1 http://www.w3.org/TR/rdf-schema/.
11. R. Sanderson, P. Ciccarese and H. Van de Sompel, Open annotation data model, W3C

Community Draft (2013).
12. SPARQL Query Language for RDF http://www.w3.org/TR/rdf-sparql-query/.
13. S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak and Z. Ives, Dbpedia: A

Nucleus for a Web of Open Data, in The Semantic Web (Springer, 2007)
14. Resource Description Framework (RDF) http://www.w3.org/RDF/.
15. SPARQL endpoint http://semanticweb.org/wiki/SPARQL_endpoint.

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

38 Pavlos Fafalios, Manolis Baritakis and Yannis Tzitzikas

16. Universal Resource Identifier (URI) http://www.w3.org/Addressing/URL/URI_

Overview.html.
17. D. Beckett and B. McBride, Rdf/xml syntax specification (revised), W3C recommen-

dation 10 (2004).
18. FAO Fisheries Linked Open Data http://www.fao.org/figis/flod/.
19. B. Bishop, A. Kiryakov, D. Ognyanov, I. Peikov, Z. Tashev and R. Velkov, Factforge:

A Fast Track to the Web of Data, Semantic Web 2(2) (2011) 157–166.
20. SPARQL 1.1 Federated Query, W3C Recommendation, 21 March 2013 http://www.

w3.org/TR/sparql11-federated-query/.
21. G. Navarro, A Guided Tour to Approximate String Matching, ACM computing surveys

(CSUR) 33(1) (2001) 31–88.
22. G. Stoilos, G. Stamou and S. Kollias, A string metric for ontology alignment, in The

Semantic Web–ISWC 2005 (Springer, 2005) pp. 624–637.
23. Simple Knowledge Organization System http://www.w3.org/2004/02/skos/.
24. W3C Provenance Data Model (PROV) http://www.w3.org/TR/prov-overview/.
25. S. Ferré and A. Hermann, Semantic search: Reconciling expressive querying and ex-

ploratory search, in The Semantic Web–ISWC 2011 (Springer, 2011) pp. 177–192.
26. G. Joris and S. Ferré, Scalewelis: a scalable query-based faceted search system on

top of sparql endpoints, in Work. Multilingual Question Answering over Linked Data
(QALD-3)2013.

27. H. Cunningham, D. Maynard, K. Bontcheva and V. Tablan, GATE: A Framework
and Graphical Development Environment for Robust NLP Tools and Applications,
in Proceedings of the 40th Anniversary Meeting of the Association for Computational
Linguistics (ACL’02)2002.

28. K. Bontcheva, V. Tablan, D. Maynard and H. Cunningham, Evolving GATE to Meet
New Challenges in Language Engineering, Natural Language Engineering 10(3-4)
(2004) 349–373.

29. D. Carmel, M.-W. Chang, E. Gabrilovich, B.-J. P. Hsu and K. Wang, Erd’14: Entity
recognition and disambiguation challenge, in Proceedings of the 37th International
ACM SIGIR Conference on Research and Development in Information Retrieval SI-
GIR ’14, (ACM, 2014), pp. 1292–1292.

30. S. Cucerzan, Large-scale named entity disambiguation based on wikipedia data., in
EMNLP-CoNLL 7, Citeseer2007, pp. 708–716.

31. X. Han and J. Zhao, Named entity disambiguation by leveraging wikipedia semantic
knowledge, in Proceedings of the 18th ACM conference on Information and knowledge
management ACM2009, pp. 215–224.

32. J. Hassell, B. Aleman-Meza and I. B. Arpinar, Ontology-driven automatic entity dis-
ambiguation in unstructured text (Springer, 2006).

33. R. Usbeck, A.-C. N. Ngomo, M. Röder, D. Gerber, S. A. Coelho, S. Auer and A. Both,
Agdistis - graph-based disambiguation of named entities using linked data, in The
Semantic Web–ISWC 2014 (Springer, 2014)

34. A. Moro, A. Raganato and R. Navigli, Entity linking meets word sense disambiguation:
A unified approach, Transactions of the Association for Computational Linguistics 2
(2014).

35. P. Fafalios and Y. Tzitzikas, Post-analysis of keyword-based search results using entity
mining, linked data and link analysis at query time, in 2014 IEEE Eighth International
Conference on Semantic Computing (ICSC 2014) IEEE, (Newport Beach, California,
USA, 2014).

36. P. Fafalios, P. Papadakos and Y. Tzitzikas, Enriching textual search results at query
time using entity mining, linked data and link analysis, International Journal of Se-

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

Exploiting Linked Data for Open and Configurable Named Entity Extraction 39

mantic Computing (2015).
37. P. Fafalios and Y. Tzitzikas, Exploratory Professional Search through Semantic Post-

Analysis of Search Results, in Professional Search in the Modern World Lecture Notes
in Computer Science 8830 (Springer, 2014) pp. 166–192.

38. Y. Tzitzikas, C. Alloca, C. Bekiari, Y. Marketakis, P. Fafalios, M. Doerr, N. Mi-
nadakis, T. Patkos and L. Candela, Integrating Heterogeneous and Distributed Infor-
mation about Marine Species through a Top Level Ontology, in Proceedings of the 7th
Metadata and Semantic Research Conference (MTSR’13)November 2013.

39. P. Fafalios, M. Salampasis and Y. Tzitzikas, Exploratory Patent Search with Faceted
Search and Configurable Entity Mining, in 1st International Workshop on Integrating
IR technologies for Professional Search (ECIR’13 Workshop)2013.

40. R. A. Virzi, Refining the Test Phase of Usability Evaluation: How Many Subjects is
Enough?, Human Factors: The Journal of the Human Factors and Ergonomics Society
34(4) (1992) 457–468.

41. L. Faulkner, Beyond the Five-User Assumption: Benefits of Increased Sample Sizes
in Usability Testing, Behavior Research Methods, Instruments, & Computers 35(3)
(2003) 379–383.

42. J. Umbrich, M. Karnstedt, A. Hogan and J. X. Parreira, Hybrid SPARQL Queries:
Fresh vs. Fast Results, in The Semantic Web–ISWC 2012 2012 pp. 608–624.

43. V. Cardellini, M. Colajanni and P. S. Yu, Dynamic Load Balancing on Web-Server
Systems, Internet Computing, IEEE 3(3) (1999) 28–39.

44. O. Ambrus, K. Möller and S. Handschuh, Konduit VQB: a Visual Query Builder for
SPARQL on the Social Semantic Desktop, in Workshop on Visual Interfaces to the
Social and Semantic Web2010.

45. A. Russell, P. R. Smart, D. Braines and N. R. Shadbolt, NITELIGHT: A Graphical
Tool for Semantic Query Construction, in Semantic Web User Interaction Workshop
(SWUI 2008)April 2008.

46. M. T. Enrico Franconi, Paolo Guagliardo, Quelo: a NL-based Intelligent Query Inter-
face, in 2nd Workshop on Controlled Natural Languages (CNL 2010)2010.

47. M. Gagnon, A. Zouaq and L. Jean-Louis, Can We Use Linked Data Semantic Annota-
tors for the Extraction of Domain-Relevant Expressions?, in Proceedings of the 22nd
international conference on World Wide Web companion International World Wide
Web Conferences Steering Committee2013, pp. 1239–1246.

48. G. Rizzo and R. Troncy, NERD: Evaluating Named Entity Recognition Tools in
the Web of Data, in ISWC 2011, Workshop on Web Scale Knowledge Extraction
(WEKEX’11), October 23-27, 2011 (Bonn, GERMANY, 2011).

49. G. Rizzo and R. Troncy, NERD: A Framework for Unifying Named Entity Recogni-
tion and Disambiguation Extraction Tools, in Proceedings of the Demonstrations at
the 13th Conference of the European Chapter of the Association for Computational
Linguistics Association for Computational Linguistics2012, pp. 73–76.

50. G. Rizzo, R. Troncy, S. Hellmann and M. Bruemmer, NERD meets NIF: Lifting NLP
Extraction Results to the Linked Data Cloud, LDOW 937 (2012).

51. D. Milne and I. H. Witten, An open-source toolkit for mining wikipedia, Artificial
Intelligence 194 (2013) 222–239.

52. Yahoo! content analysis api http://developer.yahoo.com/contentanalysis/.
53. P. Ferragina and U. Scaiella, Fast and accurate annotation of short texts with

wikipedia pages, arXiv preprint arXiv:1006.3498 (2010).
54. M. A. Yosef, J. Hoffart, I. Bordino, M. Spaniol and G. Weikum, AIDA: An Online

Tool for Accurate Disambiguation of Named Entities in Text and Tables, Proceedings
of the VLDB Endowment 4(12) (2011) 1450–1453.

January 18, 2015 12:46 WSPC/INSTRUCTION FILE openConfigNEE

40 Pavlos Fafalios, Manolis Baritakis and Yannis Tzitzikas

55. J. Hoffart, F. M. Suchanek, K. Berberich, E. Lewis-Kelham, G. De Melo and
G. Weikum, YAGO2: Exploring and Querying World Knowledge in Time, Space,
Context, and Many Languages, in Proceedings of the 20th international conference
companion on World wide web ACM2011, pp. 229–232.

56. Wikimeta http://www.wikimeta.com/.
57. E. Charton, M. Gagnon and B. Ozell, Automatic Semantic Web Annotation of Named

Entities, in Advances in Artificial Intelligence (Springer, 2011) pp. 74–85.
58. Lupedia Enrichment Service, Ontotext http://lupedia.ontotext.com/.
59. P. Ciccarese, M. Ocana and T. Clark, Open semantic annotation of scientific publica-

tions using domeo, Journal of biomedical semantics 3 (2012) 1–14.
60. P. Ciccarese, M. Ocana, L. J. G. Castro, S. Das and T. Clark, An open annotation

ontology for science on web 3.0, Journal of Biomedical Semantics 2 (2011).
61. T. K. Attwood, D. B. Kell, P. McDermott, J. Marsh, S. Pettifer and D. Thorne,

Utopia documents: linking scholarly literature with research data, Bioinformatics
26(18) (2010) i568–i574.

62. C. Jonquet, N. Shah, C. Youn, C. Callendar, M.-A. Storey and M. Musen, Ncbo
annotator: semantic annotation of biomedical data, in International Semantic Web
Conference2009.

63. D. Rebholz-Schuhmann, M. Arregui, S. Gaudan, H. Kirsch and A. Jimeno, Text pro-
cessing through web services: calling whatizit, Bioinformatics 24(2) (2008).

