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Abstract

We are witnessing an explosion of available data from
the Web, government authorities, scientific databases,
sensors and more. Such datasets could benefit from the
introduction of rule sets encoding commonly accepted
rules or facts, application- or domain-specific rules,
commonsense knowledge etc. This raises the question
of whether, how, and to what extent knowledge rep-
resentation methods are capable of handling the vast
amounts of data for these applications. In this paper,
we consider nonmonotonic reasoning, which has tradi-
tionally focused on rich knowledge structures. In par-
ticular, we consider defeasible logic, and analyze how
parallelization, using the MapReduce framework, can
be used to reason with defeasible rules over huge data
sets. Our experimental results demonstrate that defea-
sible reasoning with billions of data is performant, and
has the potential to scale to trillions of facts.

1 Introduction
Recently, we experience an unprecedented increase in the
quantity of available data consisting of raw data com-
ing from sensor readings, data stored from scientific
databases, governmental data etc. In most cases, such data
are published on the Web, in order to facilitate exchange
and interlinkage of knowledge ((Roussakis, Flouris, and
Christophides 2011)). The recent rising of the Linked Open
Data initiative1 ((Bizer, Heath, and Berners-Lee 2009)) is an
answer to the need for such large and interconnected data.

Traditionally, the area of knowledge representation has
focused on complex knowledge structures and reasoning
methods for processing these structures. The new arising
challenge is to study how reasoning can process such inter-
esting knowledge structures in conjunction with huge data
sets. To fully exploit the immense value of such datasets and
their interconnections, one should be able to reason over
them using rule sets that would allow the aggregation, vi-
sualization, understanding and exploitation of the raw data
that comprise the databases. Such reasoning is based on
rules which capture the inference semantics of the under-
lying knowledge representation formalism, but also rules
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which encode commonsense, practical knowledge that hu-
mans possess and would allow the system to automatically
reach useful conclusions based on the provided data and in-
fer new and useful knowledge based on the data. For ex-
ample, in ((Urbani et al. 2009)) for 78,8 million statements
crawled from the Web, the number of inferred conclusions
(RDFS closure) consists of 1,5 billion triples.

In this paper, we consider nonmonotonic rule sets ((An-
toniou and van Harmelen 2008), (Maluszynski and Szalas
2010)). Such rule sets provide additional benefits because
they are more suitable for encoding commonsense knowl-
edge and reasoning. In addition, nonmonotonic rules avoid
triviality of inference, which could easily occur when low-
quality raw data is fed to the system; the latter is common in
this setting, given the interconnection of data from different
sources, over which the data engineer has no control.

The main challenge rising in such a setting is the feasi-
bility of reasoning over such large volumes of data. One
of the most promising methods to address this problem is
by using massively parallel reasoning processes that would
handle reasoning by using several computers in the cloud,
assigning each of them a part of the parallel computation.

In the last two of years, there has been significant progress
in parallel reasoning e.g., in ((Oren et al. 2009)), ((Urbani
et al. 2009)), ((Kotoulas, Oren, and van Harmelen 2010)),
((Goodman et al. 2011))), scaling reasoning up to 100 bil-
lion triples ((Urbani et al. 2010)). Nevertheless, current
approaches have been restricted to monotonic reasoning,
namely RDFS and OWL-horst, or have not been evaluated
for scalability ((Mutharaju, Maier, and Hitzler 2010)).

However, in many application scenarios, one needs to deal
with poor quality data (e.g., involving inconsistency or in-
completeness), which could easily lead to reasoning trivial-
ity when considering rules based on monotonic formalisms;
this problem can be managed with nonmonotonic rules and
nonmonotonic reasoning.

We study the problem of reasoning over huge datasets
equipped with nonmonotonic (defeasible) rules using mas-
sively parallel (cloud) computational techniques. Follow-
ing previous works, we adopt the MapReduce framework
((Dean and Ghemawat 2004)), suited for parallel processing
of huge datasets.

A restricted form of defeasible logic is studied: single-
argument defeasible logic. A MapReduce algorithm is pre-



sented, followed by an extensive experimental evaluation.
The findings show that reasoning with billions of facts is
possible for a variety of knowledge theories. Due to space
restrictions the presentation of the work on multi-argument
defeasible logic is deferred to a future paper.

To our best knowledge, this is the first work addressing
nonmonotonic reasoning using mass parallelization tech-
niques. As a long-term plan, we intend to apply mass par-
allelization to a variety of inconsistency handling logics.
This would allow the use of defeasible reasoning as a non-
monotonic rule ”layer” on the semantic web. Moreover, we
plan to apply similar approaches to systems of argumenta-
tion, well-founded semantics, answer-set semantics ((Gel-
fond 2008)), and ontology ((Konstantinidis et al. 2008)) and
repair ((Roussakis, Flouris, and Christophides 2011)).

The paper is organized as follows: Section 2 introduces
the MapReduce Framework and Defeasible Logics. An al-
gorithm for single-argument defeasible logic and its evalua-
tion are presented in Sections 3 and 4 respectively.

2 Preliminaries
2.1 MapReduce Framework
MapReduce is a framework for parallel processing over
huge data sets ((Dean and Ghemawat 2004)). Processing is
carried out in a map and a reduce phase. For each phase, a
set of user-defined map and reduce functions are run in par-
allel. The former performs a user-defined operation over an
arbitrary part of the input and partitions the data, while the
latter performs a user-defined operation on each partition.

MapReduce is designed to operate over key/value pairs.
Specifically, each Map function receives a key/value pair
and emits a set of key/value pairs. Subsequently, all
key/value pairs produced during the map phase are grouped
by their key and passed to reduce phase. During the reduce
phase, a Reduce function is called for each unique key, pro-
cessing the corresponding set of values.

Let us illustrate the wordcount example. In this example,
we take as input a large number of documents and calculate
the frequency of each word. The pseudo-code for the Map
and Reduce functions is depicted in Algorithm 1.

Algorithm 1 Wordcount example
map(Long key, String value) :

// key: position in document
// value: document line
for each word w in value

EmitIntermediate(w, ”1”);

reduce(String key, Iterator values) :
// key: a word
// values : list of counts
int count = 0;
for each v in values

count += ParseInt(v);
Emit(key , count);

During map phase, each map operation gets as input

a line of a document. Map function extracts words from
each line and emits that word w occurred once (<w, 1>).
Consider the line : ”Hello... Hello!”. Instead of emitting
<Hello, 2>, Map function emits <Hello, 1> twice. As
mentioned above, the MapReduce framework will group and
sort pairs by their key. Specifically for the word Hello, a pair
<Hello, <1,1>> will be passed to the Reduce function.
The Reduce function has to sum up all occurrence values
for each word emitting a pair containing the word and the
frequency of the word. The final result for the word Hello
will be <Hello, 2>.

2.2 Defeasible Logic
A defeasible theory D is a triple (F,R,>) where F is a finite
set of facts (literals), R a finite set of rules, and > a superi-
ority relation (acyclic relation upon R).

A rule r consists (a) of its antecedent (or body) A(r) which
is a finite set of literals, (b) an arrow, and, (c) its consequent
(or head) C(r) which is a literal. There are three types of
rules: strict rules, defeasible rules and defeaters represented
by a respective arrow→,⇒ and .

Given a set R of rules, we denote the set of all strict rules
in R by Rs, and the set of strict and defeasible rules in R by
Rsd. R[q] denotes the set of rules in R with consequent q. If
q is a literal, ∼q denotes the complementary literal (if q is a
positive literal p then∼q is ¬p; and if q is ¬p, then∼q is p).

A conclusion of D is a tagged literal and can have one of
the following four forms:
• +∆q, which is intended to mean that q is definitely prov-

able in D.
• −∆q, which is intended to mean that we have proved that

q is not definitely provable in D.
• +∂q, which is intended to mean that q is defeasibly prov-

able in D.
• −∂q, which is intended to mean that we have proved that

q is not defeasibly provable in D.
Provability is defined below. It is based on the concept of a

derivation (or proof) in D = (F, R, >). A derivation is a finite
sequence P = P(1), ..., P(n) of tagged literals satisfying the
following conditions. The conditions are essentially infer-
ence rules phrased as conditions on proofs. P(1..ı) denotes
the initial part of the sequence P of length i. More details
on provability are omitted due to lack of space, but can be
found in ((Maher 2004)).

+∆: We may append P(ı + 1) = +∆q if either
q ∈ F or
∃r ∈ Rs[q] ∀α ∈ A(r): +∆α ∈ P(1..ı)

−∆: We may append P(ı + 1) = −∆q if
q /∈ F and
∀r ∈ Rs[q] ∃α ∈ A(r): −∆α ∈ P(1..ı)

+∂: We may append P (ı + 1) = +∂q if either
(1) +∆q ∈ P(1..ı) or
(2) (2.1) ∃r ∈ Rsd[q] ∀α ∈ A(r): +∂α ∈ P(1..ı) and

(2.2) −∆ ∼q ∈ P(1..ı) and
(2.3) ∀s ∈ R[∼q] either

(2.3.1) ∃α ∈ A(s): −∂α ∈ P(1..ı) or



(2.3.2) ∃t ∈ Rsd[q] such that
∀α ∈ A(t): +∂α ∈ P(1..ı) and t > s

−∂: We may append P(ı + 1) = −∂q if
(1) −∆q ∈ P(1..ı) and
(2) (2.1) ∀r ∈ Rsd[q] ∃α ∈ A(r): −∂α ∈ P(1..ı) or

(2.2) +∆ ∼q ∈ P(1..ı) or
(2.3) ∃s ∈ R[∼q] such that

(2.3.1) ∀α ∈ A(s): +∂α ∈ P(1..ı) and
(2.3.2) ∀t ∈ Rsd[q] either
∃α ∈ A(t): −∂α ∈ P(1..ı) or t ≯ s

3 Algorithm description
The implementation for single-argument predicates is based
on the combination of defeasible logic with MapReduce. In
order to achieve this combination we have to take into con-
sideration the characteristics of each component.

As a running example, let us consider the following rule
set:

r1 : bird(X)→ animal(X) r2 : bird(X)⇒ flies(X)
r3 : brokenWing(X)⇒¬flies(X) r3 > r2

In this simple example we try to decide whether some-
thing is an animal and whether it is flying or not. Given
the facts bird(eagle) and brokenWing(eagle), as well as the
superiority relation, we conclude that animal(eagle) and
¬flies(eagle).

Taking into account the fact that all predicates have only
one argument, we can group together facts with the same
argument value (using Map) and perform reasoning for each
value separately (using Reduce). Pseudo-code for Map and
Reduce functions is depicted in Algorithm 2. Equivalently,
we can view this process as performing reasoning on the rule
set:

r1 : bird→ animal r2 : bird⇒ flies
r3 : brokenWing⇒¬flies r3 > r2

for each unique argument value.

Algorithm 2 single-argument inference
map(Long key, String value) :

// key: position in document (irrelevant)
// value: document line (a fact)
argumentValue = extractArgumentValue(value);
predicate = extractPredicate(value);
EmitIntermediate(argumentValue, predicate);

reduce(String key, Iterator values) :
// key: argument value
// values : list of predicates (facts)
List listOfFacts;
Reasoner reasoner = Reasoner.getCopy();
for each v in values

listOfFacts.add(v);
reasoner.Reason(listOfFacts);
Emit(key , reasoner.getResults());

As far as MapReduce is concerned, Map function reads
facts of the form predicate(argumentValue) and emits pairs
of the form <argumentValue, predicate>.

Given the facts: bird(eagle), bird(owl), bird(pigeon), bro-
kenWing(eagle) and brokenWing(owl), Map function will
emit the following pairs :

<eagle, bird> <owl, bird> <pigeon, bird>
<eagle, brokenWing> <owl, brokenWing>

Then, reasoning is performed for each argument value
(e.g., eagle, pigeon etc) separately, and in isolation. There-
fore, the MapReduce framework will group/sort the pairs
emitted by Map, resulting in the following pairs:

<eagle, <bird, brokenWing>>
<owl, <bird, brokenWing>> <pigeon, <bird>>

Reasoning is then performed during the reduce phase
for each argument value in isolation, using the second rule
set presented earlier (propositional form). For each Reduce
function, a copy of reasoner (described later on) gets as
input a list of predicates and performs reasoning deriving
and emitting new data. When all reduces are completed, the
whole process is completed guaranteeing that every possible
new data is inferred.

Returning to our example, the bullets below show the rea-
soning tasks that need to be performed. Note that each of
these reasoning tasks can be performed in parallel with the
others.
• eagle having bird and brokenWing as facts, deriving ani-

mal(eagle) and ¬flies(eagle)
• owl having bird and brokenWing as facts, deriving ani-

mal(owl) and ¬flies(owl)
• pigeon having bird as fact, deriving animal(pigeon) and

flies(pigeon).
For the purpose of conclusion derivation, we implemented

a reasoner based on a variation of algorithm for proposi-
tional reasoning, described in ((Maher 2004)). Prior to any
Reduce function is applied, given rule set must be parsed
initializing indexes and data structures required for reason-
ing. Although implementation details of the reasoner are out
of the scope of this paper, we will explain all the functions
used in Algorithm 2.

Each Reduce function has to perform, in parallel, rea-
soning on the initial state of the reasoner. Thus, we use
Reasoner.getCopy(), which provides a copy of the initial-
ized reasoner. Subsequently, reasoner.Reason(listOfFacts)
performs reasoning on each copy. In order to perform rea-
soning, reasoner.Reason(listOfFacts) gets as input the cor-
responding list of predicates (listOfFacts). Derived data are
stored internally by each copy of the reasoner. The extraction
of the derived data is performed by the reasoner.getResults().

The algorithm for single-argument predicates is sound
and complete since it performs reasoning using every given
fact. This data partitioning does not alter resulting conclu-
sions since facts with different argument values cannot pro-
duce conflicting literals and cannot be combined to reach
new conclusions. Moreover, the reasoner is designed to de-
rive all possible conclusions for each unique value. Thus,
maximal and valid data derivation is assured.



4 Experimental results
We have implemented the algorithm for single-argument
predicates in the Hadoop MapReduce framework2, version
0.20. We have performed experiments on a cluster with 16
IBM System x iDataPlex nodes, using a Gigabit Ethernet
interconnect. Each node was equipped with dual Intel Xeon
Westmere 6-core processors, 128GB RAM and a single 1TB
SATA hard drive.

4.1 Dataset
Due to no available benchmark, we generated our data set
manually. In order to store facts directly to Hadoop Dis-
tributed File System (HDFS), facts were generated using
MapReduce framework. We created a set of files consisting
of generated pairs of the form<argumentValue, predicate>,
with each pair corresponding to a unique fact. Finally, con-
sidering storage space, 1 billion facts correspond to 10 GB
of data.

4.2 Rule set
To the best of our knowledge, there exist no standard defea-
sible logic rule set to evaluate our approach. For this rea-
son, we decided to use synthetic data sets, namely the artifi-
cial rule set teams(n) appearing in ((Maher et al. 2001)). In
teams(n) every literal is disputed, with 2(2∗i)+1 rules of the
form ai+1⇒ai and 2(2∗i)+1 rules of the form ai+1⇒¬ai, for
0 ≤ i ≤ n. The rules for ai are superior to the rules for ¬ai,
resulting in 2(2∗i)+1 superiority relations, for 0 ≤ i ≤ n.
For our experiments, we generated a teams(n) rule set for
n = 1 which resulted in 20 defeasible rules, 10 superiority
relations, 20 predicates appearing in the body of rules and
5 literals for conclusion derivation. This particular rule set
was chosen because it is the only known benchmark for de-
feasible logics that involves ”attacks”.

4.3 Evaluation settings
We have evaluated our system in terms of the following pa-
rameters:
• Runtime, as the time required to calculate the inferential

closure of the input, in minutes.
• Number of nodes performing the computation in parallel.
• Dataset size, expressed in the number of facts in the input.

• Scaled speedup, defined as s = runtime1node∗N
runtimeNnodes

, where
runtime1node is the required run time for one node, N is
the number of nodes and runtimeNnodes is the required
run time for N nodes. It is a commonly used metric in
parallel processing to measure how a system scales as the
number of nodes increases. A system is said to scale sub-
linearly, superlinearly and linearly when s < 1, s > 1 and
s ' 1 respectively.

4.4 Results
Figure 1 shows the runtime plotted against the size of the
dataset, for various numbers of processing nodes and Fig-
ure 2 shows the scaled speedup for increasing number of

2http://hadoop.apache.org/mapreduce/

T
im

e 
in

 m
in

ut
es

0

100

200

300

400

500

600

700

800

Billions of facts
0 1 2 3 4 5 6 7 8

1 Node    
2 Nodes  
4 Nodes  
8 Nodes  
16 Nodes    

Figure 1: Runtime in minutes as a function of dataset size,
for various numbers of nodes.
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nodes, and for various dataset sizes. Our results indicate the
following:

• Our system easily scales to several billions of facts, even
for a single node. In fact, we see no indication of the
throughput decreasing as the size of the input increases.

• Our implementation demonstrates very high throughput
(about 2,2 million facts per second) and is in league with
state-of-the-art methods for monotonic logics ((Urbani et
al. 2010)).

• Our system scales fairly linearly with the number of
nodes. The loss in terms of scaled speedup for larger
numbers of nodes and small datasets is attributed to plat-
form overhead. Namely, starting a computational job in
Hadoop incurs a significant computational overhead.

• In some cases, our system scales superlinearly. This is at-
tributed to being able to store a larger part of the data in
RAM. Although MapReduce relies on the hard drives for
data transfer, the operating system uses RAM to improve
disk access time and throughput, which explains the im-
proved performance at some points.

In general, we attribute the demonstrated scalability to:
(a) the limited communication required in our model, (b)
the carefully designed load-balancing attributes of our algo-
rithm, and, (c) the efficiency of Hadoop in handling large
data volumes. To our best knowledge, this is the first work
addressing nonmonotonic reasoning using mass paralleliza-
tion techniques. Thus, we were unable to compare our find-
ings with related work.



5 Conclusion and Future Work
This work is the first to explore the feasibility of nonmono-
tonic reasoning over huge data sets. We focused on simple
nonmonotonic reasoning in the form of defeasible logic. We
described how defeasible logic can be implemented in the
MapReduce framework, and provided an extensive experi-
mental evaluation for the case of reasoning with defeasible
logic rules containing only single-argument predicates. Our
results are very encouraging, and demonstrate that one can
handle billions of facts using our approach.

We consider this to be just the starting point of a research
effort towards supporting scalable parallel reasoning. We
have been also considering the case of multi-argument pred-
icates, and already have some encouraging results, which are
not presented in this paper due to space limitations. As a next
step, we intend to test its efficiency, as well as to study the
effect of introducing increasingly complex defeasible rule
sets, like those used in ((Maher et al. 2001)). Our expectation
is that this case will also turn out to be fully feasible. Once
achieved, this will allow the support of RDFS3 reasoning
and the execution of experiments over the Linked Open Data
cloud4. In the longer term, we intend to apply the MapRe-
duce framework to more complex knowledge representa-
tion methods, including Answer-Set programming ((Gel-
fond 2008)), RDF/S ontology evolution ((Konstantinidis et
al. 2008)) and repair ((Roussakis, Flouris, and Christophides
2011)).
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