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A Generative Neighborhood-based Deep
Autoencoder for Robust Imbalanced Classification

Eirini Troullinou, Gregory Tsagkatakis, Attila Losonczy, Panayiota Poirazi and Panagiotis Tsakalides

Abstract—Deep learning models perform remarkably well on
many classification tasks recently. The superior performance
of deep neural networks relies on the large number of train-
ing data, which at the same time must have an equal class
distribution in order to be efficient. However, in most real-
world applications the labeled data may be limited with high
imbalance ratios among the classes and thus the learning process
of most classification algorithms is adversely affected resulting to
unstable predictions and low performance. Three main categories
of approaches address the problem of imbalanced learning, i.e.
data level, algorithmic level and hybrid methods, which combine
the two aforementioned approaches. Data generative methods
are typically based on Generative Adversarial Networks, which
require significant amounts of data, while model level methods
entail extensive domain expert knowledge to craft the learning
objectives, thereby being less accessible for users without such
knowledge. Moreover, the vast majority of these approaches is
designed and applied to imaging applications, less to time series,
and extremely rarely to both of them. To address the above
issues, we introduce GENDA, a generative neighborhood-based
deep autoencoder, which is simple yet effective in its design and
can be successfully applied to both image and time series data.
GENDA is based on learning latent representations that rely
on the neighboring embedding space of the samples. Extensive
experiments, conducted on a variety of widely-used real datasets
demonstrate the efficacy of the proposed method.

Impact Statement—Imbalanced data classification is an actual
and important issue in many real-world learning applications
hampering most classification tasks. Fraud detection, biomedical
imaging categorizing healthy people versus patients, and object
detection are some indicative domains with an economic, social
and technological impact, which are greatly affected by inherent
imbalanced data distribution. However, the majority of the
existing algorithms that address the imbalanced classification
problem are designed with a particular application in mind,
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and thus they can be used with specific datasets and even
hyperparameters. The generative model introduced in this paper
overcomes this limitation and produces improved results for a
large class of image and time series data even under severe
imbalance ratios, making it quite competitive.

Index Terms—Data augmentation, image data, imbalanced
classification, latent space, timeseries data

I. INTRODUCTION

IMBALANCED classification poses a significant challenge
for predictive modeling as most machine and deep learning

algorithms are designed based on the assumption of an equal
number of samples for each class. But imbalanced data distri-
bution is present in many real-world applications affecting the
learning process of most classification algorithms resulting to
unstable predictions and low performance.

In general, a given training dataset may have a slight
imbalance between majority and minority classes or it could
have a severe imbalance, where there might be hundreds or
thousands of examples in one class and just tens of examples
in the other. In the latter case, the performance of predictive
models is greatly affected, as the models are biased towards
the majority classes, which may result to high error, or even
complete omission of the minority classes, which are actually
of greater interest, depending on the application [1]. Such a
situation cannot be accepted in most real-world applications,
as it could result in heavy costs (e.g. disease diagnosis,
fraud detection) highlighting the importance of the imbalanced
classification problem and the urgent need to be addressed.

Motivated by the serious performance degradation [1]
caused by imbalanced class distribution, the research com-
munity has proposed three major approaches [2] to solve the
imbalanced classification problem: data level, model level,
and hybrid level. Data level approaches focus mostly on
data augmentation by generating samples or features for
the minority class. They include simple techniques, such as
vanilla resampling [3], which is usually not preferred because
although it balances the training set, it fails to provide any
additional information to it, or they include more heuristic
augmentation methods, such as the Synthetic Minority Over-
sampling Technique (SMOTE) and its extensions [4], [5],
which have proved quite successful in a variety of applications
making them quite competitive. Data level methods also in-
clude generative models, such as the Variational Autoencoders
(VAEs) [6], the Generative Adversarial Networks (GANs) [7]
and their variants, which all these have become the established
solutions to model the data generation mechanism with deep
architectures. GAN-based solutions though require significant
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amounts of data, are difficult to tune, and may suffer from
model collapse [8], which all these make them inappropriate
to be applied to imbalanced datasets or even worse to long-
tailed data. On the other hand, model level methods [9], [10],
[11], [12] introduce cost-sensitive functions and change the
objective function of the classifier in order to alleviate the bias,
and thus to increase the importance of the minority class. They
work directly within the training procedure of the considered
classifier, and therefore they lack the flexibility offered by
data-level approaches. Additionally, they require an in-depth
understanding of how a given training procedure is conducted
and what specific part of it may lead to bias towards the
majority class, making them less accessible for users without
such knowledge. Hybrid methods [13], [14], [15] combine the
aforementioned approaches.

In an attempt to overcome the deficiencies of the afore-
mentioned data driven and model level methods, we introduce
GENDA, a deep generative autoencoding framework, which
generates data that can be used to address the multiclass (as
well as the binary) imbalance classification problem. Specifi-
cally, we propose an encoding-decoding mechanism modelled
by a deep latent variable with the aim to capture the feature
similarity between a given minority sample and its existing
neighbors in latent space. In other words, the decoded (i.e. the
generated) minority sample is represented via the embedding
space of its neighbours. After the system has been trained, it
can be used to generate as many samples as needed, so that a
classification-based model can be trained with a class-balanced
dataset.

In order to evaluate the efficacy of GENDA, a series of
experiments have been conducted on widely-used real image
and time series data. We also considered the neuronal cell-type
classification problem [16] and used a real-world scientific
time series dataset [17]. Specifically, the dataset describes the
activity of four neuronal cell-types across time in the CA1
subregion of the hippocampus. Neuronal activity is measured
using Ca2+ imaging, which is a powerful technique for
monitoring the activity of distinct neurons in brain tissue in
vivo and is currently the most popular recording technique for
behaving animals [18]. This dataset is naturally imbalanced,
as by construction the brain does not have the same number
of cells. Additionally, neuroscientists do the labeling of the
cells by using qualitative descriptors, such as the expression of
specific molecular markers (proteins). Some cells however co-
express the same protein, and as a result their exact type cannot
be identified by marking. Neglecting the cells whose label is
unknown results to cells-categories that are underrepresented.
This causes an imbalance to the dataset as various minority
classes are created.

Overall, the key contributions of this paper are summarized
as follows:

• We introduce GENDA a novel deep generative encoding-
decoding framework, which learns interpretable latent
representations that can model the underlying distribution
of the minority samples under high imbalance ratios.

• The proposed method is designed and successfully ap-
plied to both image and time series data highlighting its
wide applicability.

• Our approach makes no assumption on the statistical
distribution of the data, while most encoding-decoding
algorithms consider for convenience that the data follow
a Gaussian density and model the latent representation as
such, which can lead to ineffective representations.

• While our proposed framework addresses primarily the
imbalance classification problem, it can also be used in
several other applications. Specifically, given that our
approach is generative-based, it can be applied to various
fields, including the medical, military and surveillance
domains, where security, privacy and ethical reasons
prohibit the use of original data, and thus artificially
generated data are required. So, our approach has a
clear advantage over model-based methods, which by
construction address the imbalance classification problem
without data augmentation.

• We conduct a series of experiments on a variety of
benchmark datasets, including image and time series data,
and we empirically prove the quantitative and qualitative
merits of GENDA.

• To the best of our knowledge this is the first work that
addresses the neuronal cell-type imbalance classification
problem.

The remainder of the paper is organized as follows: In
section II, we report the related work and in Section III,
we describe and analyze the proposed approach. Experimental
results are presented in Section IV and conclusions are drawn
in Section V.

II. RELATED WORK

Classification is an essential process in artificial intelligence
and machine learning as it is used to identify different patterns
from the data. As classification results depend on the data
distribution, one of the major issues arising in the area of
data mining and knowledge discovery is known as the class
imbalance problem. In general terms, any kind of dataset
which shows unequal distribution between its classes comes
under the category of imbalanced dataset. Existing classifica-
tion algorithms cannot successfully handle imbalanced data,
as their results deviate towards the majority class, which
possesses bigger amount of data. In the case of highly im-
balanced datasets, naive algorithms tend to ignore the smaller
(minority) class as noise. Hence, researchers have devised
several methods for tackling the class imbalance problem.
These methods can be categorized into data-level, model-level
and hybrid-level approaches.

A. Data-level Methods

Data driven approaches aim to characterize the underlying
data distribution by approximating the data generation pro-
cess. This mechanism, in imbalance classification, is mostly
employed to augment the minority classes thus helping the
classifier to determine the proper class boundaries.

A common data driven method is resampling [3], which
aims to balance the class priors in two ways, namely by
deleting samples from the majority class (under-sampling)
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and by generating new samples in the minority class (over-
sampling). Resampling is a simple mechanism to balance the
training set, but it has two main drawbacks: over-sampling
may cause overfitting and poor generalization to the test set
while under-sampling leads to substantial loss of information
from the majority class.

The Synthetic Minority Oversampling Technique
(SMOTE) [4] is a popular oversampling approach, which
selects examples that are close in the feature space, drawing a
line between the examples in the feature space and generating
a new sample at a point along that line. A general drawback
of the approach is that synthetic examples are created
without considering the majority class, possibly resulting
in ambiguous examples if there is a strong overlap for
the classes. Based on SMOTE several variants have been
proposed, such as borderline-SMOTE [19] and the adaptive
synthetic sampling approach (ADASYN) [20], which both
focus on the minority samples that are harder to learn and
classify.

Augmentative oversampling [21] is another widely used
technique to inflate the size of the training dataset. Common
augmentation techniques in image applications include trans-
lation, cropping, padding, rotation and flipping, operations
which are amenable mostly to image data, thus restricting their
applicability to other domains that face imbalance problems.

Deep generative models have gained a lot of attention in
recent years due to numerous applications in deep learning.
Among them, VAEs and GANs are regarded as the two most
popular approaches to generative modeling. But vanilla VAEs
and GANs suffer from several limitations, which lead to a
poor quality of generated samples, especially when they are
trained with a small amount of data.

VAEs [6] constitute the most popular class of autoencoders
(AE). They can be directly applied on the given imbalanced
data to capture the dimensional dependencies via latent vari-
ables, and then generate new samples from the learnt latent
variables. This strategy however assumes that the data follow
a single Gaussian distribution, which is not always the case,
as samples may have a mixture of distributions or even follow
a non-Gaussian distribution. Researchers have proposed many
VAE variations [22] based on different task requirements with
the goal of greatly improving the quality of the generated data.

GANs [7] learn the underlying data distributions from the
available training data and then use the learned distributions to
generate synthetic samples. However, training a vanilla GAN
with a limited number of data is a challenging task. The
key problem with having a small dataset, referred to as the
vanishing gradients problem, is that the discriminator quickly
overfits to the training examples. As a result, the generator
receives very little feedback to improve its generations and
the training collapses [23], [24]. To improve the performance
and stability of GANs several variants have been proposed.
Conditional GANs (cGANs) [25], [26] learn to sample from
a conditional, p(x|y), instead of marginal, p(x), distribution,
thus generating class-specific minority samples with desired
properties [27].

Moreover, GAN-based generation methods are usually fed
with a random noise, which may result in a highly entan-

gled process and disrupt the orientation-related features [28],
especially when dealing with minority classes. To solve this
problem, researchers proposed Balancing GAN (BAGAN) [29]
by integrating AE and cGAN via a two-step framework. The
method learns the latent codes via AE and feeds them to a
cGAN instead of random noise. However, attempting to over-
sample the minority classes using GANs can lead to boundary
distortion [30], [31], resulting to a worse performance on the
majority class. To overcome the unstable issue in original
BAGAN, Huang et al. proposed BAGAN with gradient penalty
(BAGAN-GP) [31], where they added a gradient penalty term
in the loss function. They also incorporated a supervised
autoencoder with an intermediate embedding model to learn
the label information directly, which helps to encode the
similar but different class images separately. BAGAN-GP ex-
hibits an improved performance compared to vanilla GAN and
BAGAN, as it converges faster to better-quality generations.

B. Model-level Methods

Contrary to the data level approaches, model level solutions
work directly within the training procedure of the considered
classifier. Model-level methods, such as cost-sensitive learning
[32] tailor task-specific loss functions, which are more focused
on the minority classes during the optimization process. Es-
sentially, these are penalized learning algorithms that increase
the cost of classification mistakes on the minority classes.

Recent advances include focal loss [9] and dice loss [10].
Specifically, focal loss [9] reshapes the standard cross entropy
loss, such that it down-weights the loss assigned to well-
classified examples, while dice loss [10] attaches similar
importance to false positives and false negatives and it is more
immune to the data-imbalance issue. The two approaches have
manifested a good performance in the tasks of computer vision
and natural language processing, respectively.

Additionally, several studies have employed cost-sensitive
learning with a focus to medical diagnosis applications. For ex-
ample, breast cancer classification is a challenging task due to
the skewed class distribution of the dataset. Extreme Gradient
Boosting (XGBoost) is a scalable, distributed gradient-boosted
decision tree (GBDT) machine learning method [33] that
provides parallel tree boosting. Decision trees were shown to
perform well on imbalanced data and a cost-sensitive XGBoost
technique [11] was demonstrated to achieve good classification
accuracy in a study utilizing four breast cancer datasets with
uneven class distribution.

In another study [12], researchers developed a cost-sensitive
random forest to deal with the imbalanced class problem
in medical diagnosis. The study addressed the problem by
assigning individual weights for each class instead of a single
weight and employed several medical datasets, for which the
proposed algorithm showed improved performance in accu-
rately predicting both the minority and majority classes.

The main disadvantage of the model-level approaches is that
they entail extensive domain expert knowledge to craft the
learning objectives and to tune the hyperparameters, thereby
being less accessible for users without such knowledge.
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Fig. 1. Flowchart of the proposed generative model GENDA: During the encoding phase, the system takes as input the k nearest neighbors (NNs) of a
random sample xi. Each of these k inputs goes through a convolutional neural network (ConvNet), which is identical for all of them, and results to an
encoding vector {zj}kj=1. Then, the latent vector ẑi, which corresponds to the sample xi is represented by the linear combination of the calculated vectors
{zj}kj=1, where the scalar coefficients {uj}kj=1 of this combination are random numbers in (0, 1). At the decoding phase, the system takes as input the
latent vector ẑi, which goes through another ConvNet and outputs a new generated sample x̂i. After the system has been trained, in order to generate new
samples, the trained encoder accepts k NNs of a random sample xi, and the trained decoder generates x̂i. This procedure can be iteratively repeated, so via
ẑi (i.e. different sets of {uj}kj=1), we can obtain as many new samples as needed.

C. Hybrid Methods

Hybrid methods combine data-level and model-level ap-
proaches. In addition to the GAN architectures discussed
in Section II.A, several alternative objective functions for
GANs have been proposed. Standard GANs [7] use the Jensen
Shannon divergence (JSD) to measure similarity between real
and GAN generated data distributions. However, JSD fails
to effectively measure the distance between two distributions
with negligible or no overlap. Wasserstein GAN (WGAN) [13]
replaces JSD with the Earth mover Distance, also known as
the Wasserstein Distance, which is smooth and can provide
appropriate distance measures between close distributions with
negligible or no overlap. Least square GAN (LSGAN) [14]
employs a least square loss function instead of the cross
entropy loss in the discriminator of the standard GAN to
overcome the problem of vanishing gradient and to improve
the quality of the generated data.

The Deep Generative Classifier (DGC) [15] is an end-to-end
classification framework applied to imbalanced image data,
whose objective function comprises three terms. It measures
the distance between real and generated data via an l2 recon-
struction loss; it evaluates the difference between ground truth
and generated label information via a cross entropy loss; and it
adopts the maximum mean discrepancy distance measured in
latent space between a conditional distribution Q(Z|X,Y ) and

a prior distribution P (Z). To make up for the limited amount
of samples in minority classes, DGC samples a set of latent
codes for each minority sample by taking advantage of the
reparameterization trick for the Gaussian distribution. These
oversampling codes are used internally during the training of
the model to generate synthetic data, and thus to infer a more
robust classifier.

III. GENDA: GENERATIVE NEIGHBORHOOD-BASED DEEP
AUTOENCODER

In this work, we propose a generative encoding-decoding
framework modelled by a deep latent variable ẑ, which is
able to learn the distribution of the training data X so that
by sampling from it, we can generate new data X̂ , which is
essentially an approximation of the original data X . Specif-
ically, the proposed encoder accepts as input the k nearest
neighbors of a random sample xi ∈ RD and outputs a latent
vector ẑi. This vector will be given as input to the decoder,
which will generate the new sample x̂i.

A. Model Training

1) Encoding: Consider an imbalanced training set X con-
sisting of M samples and let the training point xi ∈ RD

represent the ith sample containing feature information. Our
encoder aims to learn an efficient compressed representation
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of the data into a lower dimensional space Rd, also known
as the latent space, where d ≪ D. Specifically, as shown in
Fig. 1, the proposed encoder takes as input the data N(xi),
where N represents the neighborhood of the sample xi. In
other words, N(xi) is the set of the k nearest neighbors of
xi. Given N(xi) as input, the encoder outputs a latent vector
{zj}kj=1 for each neighbor of the given sample xi.

From a probabilistic perspective, our encoder parameterises
the following posterior conditional probability:

p(ẑi|N(xi)) ≡ p(ẑi|(x1, x2, ..., xk))

=
p(ẑi, N(xi))

p(N(xi))
∀i = 1, ...,M. (1)

The proposed encoder is a deep convolutional neural network
architecture that contains k identical subnetworks, which have
the same configuration, the same parameters and weights,
where parameter updating is mirrored across all k subnet-
works, i.e. weight and bias updates happen simultaneously
for all k subnetworks. So, each one of these k subnetworks
accept a different input and the weight updates of all these
subnetworks with respect to that input happen simultaneously.
These subnetworks work in tandem on the k different inputs
(i.e. on x′

is neighbors), in order to find the similarity features
and to eventually output a latent vector ẑi for each sample
xi, as demonstrated in Fig. 1. Each zj is the output of each
subnetwork and is calculated by a dense layer given by the
following equation

zj = f(Whj + b) ∀ j = 1, ..., k (2)

where f is the tanh activation function, W is the weight
matrix, hj is the output of the previous layer (i.e. it is the
layer, which precedes the dense layer) with each hj coming
from a subnetwork that corresponds to a specific neighbor, and
b is the added bias term.

Eventually, the latent variable ẑi for the specific sample xi is
represented as the linear convex combination of each {zj}kj=1

as shown in the following equation,

ẑi =

k∑
j=1

uj · zj = u1 · z1 + u2 · z2 + ...+ uk · zk

∀i = 1, ...,M (3)

where {uj}kj=1 are random numbers in (0, 1), which follow
the uniform distribution and

∑k
j=1 uj = 1.

Modelling ẑi as shown in Eq. 3, causes the selection of
a random vector along the line segment between k specific
features in latent space. Our approach makes no assumption
on the distribution p(ẑi|xi), whereas most encoding-decoding
methods assume for convenience that p(ẑi|xi) follows the
Gaussian distribution, which imposes limitations in the latent
space. Assuming a Gaussian prior model leads to unimodal
learnt representations and does not allow for different
or mixed data distributions, which results to ineffective
representations. Our approach takes advantage of the x′

is
local features, whose combination in latent space leads to
efficient representations, as the decision region of the minority
class is effectively forced to become more general.

2) Decoding: As shown in Fig. 1, the proposed decoder
accepts as input the latent vector ẑi and learns to reconstruct
a new x̂i based on this latent representation. In terms of
probability models, the proposed decoder is a deep generative
convolutional neural network, which parameterizes the con-
ditional probability distribution q(x̂i|ẑi) ∀ i = 1, ...,M , and
outputs x̂i via a 2D-transpose convolutional layer as shown in
the following equation,

x̂i = σ(W ′h+ b′) (4)

where σ is the sigmoid activation function, W ′ is the weight
matrix, h is the output of the previous layer (i.e. it is the
layer, which precedes the last 2D-transpose convolutional
layer) and b′ is the added bias term.

In order to achieve a useful approximation of the original xi,
a decoder must minimize a mean-squared reconstruction loss
given by the following equation

L =
1

M

M∑
i=1

(xi − x̂i)
2. (5)

In our case though, the new sample x̂i is not directly generated
from the sample xi, as the encoder does not take the sample
xi as its input, and thus Eq. 5 can be rewritten as,

L =
1

M

M∑
i=1

(xi − x̂i)
2 =

1

M

M∑
i=1

(xi − d(e(N(xi))))
2 (6)

where d and e are the decoder and encoder networks, respec-
tively. By reconstructing the sample xi as shown in Eq. 6,
i.e. via the embedding space of its neighbours, we ensure that
the generated sample x̂i will be a good approximation of the
original sample xi, yet not its replica. Thus, except from the
generation of high-quality samples in general, our mechanism
avoids serious overfitting problems during classification. The
proposed encoding-decoding framework is applied for all the
samples {xi}Mi=1, accordingly.

B. Data Generation and Classification

After the proposed model has been trained, as discussed in the
previous subsection, it can be used to generate new samples for
all the classes. Specifically, one can sample a point from the
latent vector ẑi produced by the trained encoder, and then pass
it through the trained decoder, which will generate samples
similar to those in the dataset. Moreover, as shown in Eq.
3, the coefficients {uj}kj=1 provide the flexibility to generate
an unlimited number of samples. After the new samples have
been created, we use a deep convolutional classifier, which
is trained with a balanced dataset consisting of the original
data and the new data generated by our proposed method.
The overall algorithm for training the proposed model and
generating synthetic samples is summarized in Algorithm 1.
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Dataset Shape Classes IR Training Set Testing Set

MNIST 28x28x1 10 100 4000 (0), 2000 (1), 1000 (2), 750 (3),
500 (4), 350 (5), 200 (6), 100 (7), 60 (8), 40 (9)

980 (0), 1135 (1), 1032 (2), 1010 (3), 982 (4)
892 (5), 958 (6), 1028 (7), 974 (8), 1009 (9)

Fashion-MNIST 28x28x1 10 100 4000 (0), 2000 (1), 1000 (2), 750 (3),
500 (4), 350 (5), 200 (6), 100 (7), 60 (8), 40 (9) Each class contains 1000 samples

HAR 128x9 6 30.65 1226 (0), 800 (1), 500 (2),
300 (3), 100 (4), 40 (5) 496 (0), 471 (1), 420 (2), 491 (3), 532(4), 537 (5)

TwoLeadECG 82x1 2 14.225 569 (0), 40 (1) 12 (0), 11 (1)
Ca2+ Imaging 4000x1 4 7.39 5600 (0), 1183 (1), 757 (2), 3500 (3) 1400 (0), 296 (1), 190 (2), 700 (3)

TABLE I
Summarization of the experimental datasets.

Algorithm 1 GENDA
Input: X = {xi}Mi=1: Set of training data,
B = {bt}nt=1: Batch of training data, k: Number of NNs
Output: Balanced Training Set
Symbols: L: Loss
Encoding:
zj = Encoder(xj), xj : NN of xi, ∀xi ∈ X , ∀j = 1, .., k

ẑi =
∑k

j=1 uj · zj , ∀i = 1, ...,M , ∀j = 1, ..., k
Decoding:
x̂i = Decoder(zi)
Training Step:
for e← epochs do

for b← batches do
Eb ← Encoder(b)
Db ← Decoder(Eb)
L = ( 1n )

∑n
i=1(bi −Dbi)

2

end for
end for
Generate Samples:
for i← number of classes do

X ← Select class data
E ← Encoder(X)
X̂ ← Decoder(E)

end for

IV. EXPERIMENTAL STUDY

In this Section, a series of experiments are conducted to
evaluate GENDA across various imbalance settings for a
large collection of real data sets. The models that were used
in our method were implemented using the Tensorflow and
Keras open-source libraries written in the Python programming
language. For our experiments we used Python version 3.6.10
and Tensorflow version 2.2.0 running on a NVIDIA GeForce
GTX 750 Ti GPU model under the Windows 10 operating
system.

A. Datasets

Four benchmark datasets and a scientific neuronal cell
dataset were selected for our experimental analysis on im-
balanced classification. The benchmark datasets that we used
were the image single-channel MNIST [34] and Fashion-
MNIST [35], and the timeseries datasets HAR [36] and
TwoLeadECG [37] from the UCI and UCR repositories,

respectively. None of these four datasets is imbalanced in
nature, and thus we artificially forced imbalance by ran-
domly selecting instances with different sizes from differ-
ent classes. On the other hand, the neuronal cell dataset
is naturally imbalanced and was collected during a goal
oriented task in awake, behaving mice [17]. The neural signals
were recorded using the two-photon Ca2+ imaging technique
and the data were then processed in order to translate the
video recordings into fluorescence signals over time. Four
different neuronal types were recorded during the aforemen-
tioned task, i.e. the excitatory pyramidal cells (PY), which
is the majority class and three GABAergic interneuronal
subtypes, namely somatostatin-positive (SOM), parvalbumin-
positive (PV), which is the minority class and vasoactive
intestinal polypeptide-positive (VIP) cells making the problem
a four-class imbalanced classification task.

Details for all the datasets, such as shape, number of classes,
imbalance ratio and number of training as well as testing
examples for each class are shown in Table I. Note that
for the Fashion-MNIST, HAR and TwoLeadECG datasets,
we associated each class with an integer number, as exactly
assigned in the original datasets, while for the Ca2+ imaging
dataset, 0 label corresponds to PY neurons, and labels 1, 2
and 3 correspond to SOM, PV and VIP cells respectively.

B. Setup

1) Evaluation metrics: In order to validate the imbalance
classification performance, three widely-used, skew-insensitive
metrics are adopted: Average class specific accuracy (ACSA),
which is the averaged accuracy achieved for each class
separately, also known as balanced accuracy, F1-score and
precision.

2) Reference generative methods: In order to evaluate the
effectiveness of GENDA both on image and time series data,
we compared it with the most relevant state-of-the-art image
and time series data augmentation methods. For the image
datasets, we selected SMOTE [4], DGC [15] and BAGAN-GP
[31], while for the time series datasets we selected TimeGAN
[38] and SMOTE [4], which is an algorithm applied and
designed both for image and time series datasets. The
parameters of all algorithms we compared with are adopted
from their original papers.
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3) Implementation details of the proposed method: The
encoder structure of GENDA for the image datasets consists
of five 2D-convolutional layers with 16, 32, 64 and 128 filters
of size (4, 4). Each layer is followed by a 2D-average pooling
layer of size (2, 2) and the tanh activation function. The final
layer is linear, yielding a latent dimension of 16. For the time
series data, we used a smaller network, as we noticed that a
larger network increases time and computational complexity
with no gain in performance. Thus, the encoder consists of
three 2D-convolutional layers with 16, 32 and 64 filters of
size (2, 1) for the TwoLeadECG and Ca2+ imaging datasets
and (2, 2) for the HAR dataset. Each layer is followed by a
2D-average pooling layer of size (2, 1) for the TwoLeadECG
and Ca2+ imaging datasets and (2, 2) for the HAR dataset,
also followed by the tanh activation function. The final layer
is linear, yielding a latent dimension of 32.

Accordingly, the decoder structure for the image datasets
consists of three 2D-transpose convolutional layers with 128,
64 and 32 filters of size (4, 4). Each layer is followed by a
2D-average pooling layer of size (2, 2) and the LeakyReLu
activation function. The final layer is a 2D-transpose convo-
lutional layer with 1 filter followed by the sigmoid activation
function. For the time series data, the decoder is composed
of three 2D-transpose convolutional layers with 64, 32 and 16
filters of size (2, 1) for the TwoLeadECG and Ca2+ imaging
datasets and (2, 2) for the HAR dataset. Moreover, each layer
is followed by a 2D-average pooling layer of size (2, 1) for
the TwoLeadECG dataset and (2, 2) for the HAR dataset and
the LeakyReLu activation function. The final layer is a 2D-
transpose convolutional layer with 1 filter followed by the
sigmoid activation function.

The proposed encoding-decoding system was trained for
40 epochs, and we used the Adam optimizer for both the
encoder and the decoder model with a 0.001 learning rate for
all the datasets. Eventually, as it is later described in Table 4,
the optimal value with respect to the number of neighbors is
k = 2.

4) Classification model: All methods except from the DGC
[15], which is an end-to-end framework, use an identical 2D-
convolutional network as their base classifier, which takes
as input the original data and a requisite number of gener-
ated samples, so that it is trained with a balanced dataset.
Specifically, the classifier consists of five 2D-convolutional
layers with 128, 64, 32 and 16 filters of size (5, 1) for the
TwoLeadECG and Ca2+ imaging datasets and (5, 5) for the
rest of the datasets. Each layer is followed by a dropout
layer and the LeakyReLu activation function. The final layer
is linear, yielding a dimension that depends on the number
of classes of each dataset and is followed by the softmax
activation function. The classifier in all cases is trained for 80
epochs and the Adam optimizer is used with a 0.001 learning
rate.

C. Results and Discussion

In our experiments, we address the following four facets
of the problem: (i) we compared the performance of GENDA

with that of the most recent balancing techniques on real image
and time series data using established quantitative metrics; (ii)
we explored the extent to which classification performance is
affected with respect to several parameters, such us the ui’s
distribution, the number of neighbors and the dimensionality
of latent space. For these experiments we indicatively selected
the image dataset MNIST and the timeseries dataset HAR;
(iii) we investigated the stability of the method, and (iv) we
demonstrated the qualitative merit by providing some visu-
alization results on raw and generated MNIST and Fashion-
MNIST images.

To make a fair comparison, all models were given as input
the same dataset for training and were evaluated on the same
testing dataset. The overall classification performance on four
benchmark image and time series datasets is listed in Tables II
and III, respectively. The best results are highlighted in bold.

From the results shown in Table II, we initially observe
the extent to which the baseline performance improves for
both datasets and especially for Fashion-MNIST after data
augmentation has been applied. Note that baseline refers to
the achieved performance when the classifier is trained with
the imbalanced dataset. We observe that only DGC slightly
outperforms our model with respect to the ACSA and F1-score
measures, while GENDA outperforms all methods with respect
to the precision metric. But the slight superiority of DGC
comes with a severe time complexity and computational cost,
due to the high-values assigned to the various hyperparameters.
Moreover, to make up for the limitation of input data, DGC
takes advantage of the reparameterization trick for Gaussian
distributions, and applies an internal data augmentation only
for the samples in minority classes during the training of the
model. Thus, after DGC has been trained, it cannot be used to
generate samples, and as a result DGC can only be used for
classification applications, while our approach is designed to
generate diverse samples from all classes, as many as required.
So, our proposed method is a generic framework that can
be used in several other applications including the medical,
the military and surveillance domains, where security, privacy
and ethical reasons prohibit the use of original data, and thus
multiple artificially generated data are required. BAGAN-GP
exhibits the worst performance compared to the other mod-
els. Although BAGAN-GP employs an enhanced autoencoder
initialization to stabilize the GAN training, its performance is
still unstable compared to the non-GAN models.

Overall, we observe that all methods exhibit a worse perfor-
mance on Fashion-MNIST data than on MNIST data. We think
that the reason that Fashion-MNIST is a more challenging
dataset compared to MNIST is because of the big diversity
that exists among the samples of the same class. Therefore,
the models are not able to efficiently learn the basic features of
each class, and especially those which belong to the minority
classes.

Table III demonstrates the results on the time series data.
We observe that regardless of the metric used, GENDA out-
performs SMOTE and TimeGAN for all datasets. Specifically,
TimeGAN has the worst performance compared to the other
methods, which could be justified by the unstable training
of the GAN. It is also remarkable that all methods exhibit
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MNIST Fashion-MNIST
Method ACSA F1-Score Precision ACSA F1-Score Precision
Baseline 0.579 0.563 0.45 0.499 0.475 0.454
SMOTE 0.895 0.894 0.883 0.738 0.708 0.712

DGC 0.948 0.947 0.911 0.836 0.831 0.781
BAGAN-GP 0.863 0.85 0.841 0.731 0.729 0.69

GENDA 0.925 0.922 0.926 0.811 0.801 0.794

TABLE II
Comparing overall classification performance on image datasets.

HAR TwoLeadECG Ca2+ Imaging
Method ACSA F1-Score Precision ACSA F1-Score Precision ACSA F1-Score Precision
Baseline 0.605 0.536 0.555 0.5 0.342 0.26 0.65 0.674 0.714
SMOTE 0.731 0.682 0.652 0.81 0.823 0.815 0.77 0.78 0.792

TimeGAN 0.713 0.67 0.643 0.735 0.716 0.693 0.697 0.674 0.654
GENDA 0.877 0.878 0.883 0.829 0.838 0.817 0.787 0.797 0.809

TABLE III
Comparing overall classification performance on timeseries datasets.

MNIST HAR
Distribution ACSA F1-Score Precision ACSA F1-Score Precision

Uniform 0.925 0.922 0.926 0.877 0.878 0.883
Normal 0.921 0.922 0.924 0.873 0.876 0.88

Lognormal 0.919 0.92 0.921 0.869 0.855 0.843

TABLE IV
Classification performance with respect to ui’s distribution.

the worst performance when trained with the Ca2+ imaging
dataset (except from the case of SMOTE with HAR), which
could be put down to the fact that Ca2+ imaging is an
inherently noisy method due to the high spatiotemporal in-
formation desired from a sample often showing low signal-to-
noise alongside drift or cell movement, particularly for living
organisms.

Regarding the ui’s distribution, our method uses the uniform
distribution, as there is no prior information with respect
to this. Nevertheless, we also experimented with two more
distributions, i.e. the normal and the lognormal distribution
both with zero mean and one for the standard deviation, and
as it was previously stated, we indicatively applied it to the
image dataset MNIST and to the timeseries dataset HAR. So,
from Table IV we observe that the obtained results are close to
the initial results, where ui followed the uniform distribution,
which demonstrates the robustness of the algorithm with
respect to ui’s distribution.

Table V demonstrates the classification performance with
respect to the rebalancing approaches of oversamlping and
undersampling. We observe that by oversampling the minor-
ity class(es) the results are slightly better compared to the
performance of the baseline classifier, but still there is poor
generalization performance with respect to the test set, as by
randomly duplicating the minority samples the classifier does
not really receive new information. On the other hand, by
undersampling the rest of the classes, which do not belong
to the minority class leads to substantial loss of information
from these classes, and thus we observe a significant decrease

in classification performance.
Table VI demonstrates the classification performance with

respect to the number of neighbors (k). We observe that for
k = 2 and k = 3 neighbors we get the highest performance for
both datasets, while when using more neighbors (i.e. k = 4
or k = 5) the performance gradually deteriorates. This can
be attributed to the fact that the fifth neighbor of the original
signal can be distinctly different from the original one and
its closest neighbors. Thus, the experiments of the original
manuscript presented in Tables 2 and 3, and also in Figure 2
were implemented by using k = 2 neighbors, as we observe
that as k increases the performance deteriorates and also the
proposed method becomes more computationally expensive.
The rest of the datasets have also the same behaviour with
respect to the number of neighbors.

Table VII demonstrates the classification performance with
respect to the dimension of latent space (d). We notice that
by using d = 16 and d = 32 we obtain the highest
classification performance for MNIST and HAR respectively.
For both datasets, d = 16 and d = 32 give almost the same
results, while for d = 64 the performance slightly deteriorates,
which can be due to overfitting. Eventually, by reducing the
dimensionality of latent space to d = 8, we observe that the
performance for both datasets decreases almost by 10%. This
decrease indicates that d = 8 is not an adequate value in
order for the encoder to capture efficiently the features of the
input data resulting to representations of worse quality and
performance respectively. The rest of the datasets have also
the same behaviour with respect to the dimensionality of latent
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(a) Original image – Zero (b) Generated Image (c) Original image – Four (d) Generated Image

(e) Original image – Five (f) Generated Image (g) Original image – Six (h) Generated Image

(i) Original image – Eight (j) Generated Image (k) Original image – Nine (l) Generated Image

Fig. 2. Raw and generated MNIST images by GENDA for (a)-(b) the majority class, (k)-(l) the minority class, and (c)-(j) randomly selected classes.

MNIST HAR
Rebalancing Approach ACSA F1-Score Precision ACSA F1-Score Precision

Oversampling 0.61 0.603 0.598 0.642 0.645 0.65
Undersampling 0.522 0.52 0.51 0.53 0.52 0.525

TABLE V
Classification performance with respect to rebalancing approaches.

MNIST HAR
k ACSA F1-Score Precision ACSA F1-Score Precision
2 0.925 0.922 0.926 0.877 0.878 0.883
3 0.927 0.926 0.925 0.875 0.877 0.88
4 0.911 0.913 0.917 0.863 0.867 0.872
5 0.89 0.893 0.895 0.833 0.841 0.85

TABLE VI
Classification performance with respect to k.

space.
Fig. 2 and 3 present the artificially generated images for

MNIST and Fashion-MNIST, respectively. Fig. 2 (a)-(b) rep-
resent the majority class, Fig. 2 (k)-(l) represent the minority
class, while all the rest are randomly selected classes. Respec-
tively, for the Fashion-MNIST dataset, Fig. 3 (a)-(b) represent

MNIST HAR
d ACSA F1-Score Precision ACSA F1-Score Precision
8 0.826 0.829 0.835 0.789 0.793 0.796

16 0.925 0.922 0.926 0.861 0.866 0.869
32 0.926 0.927 0.928 0.877 0.878 0.883
64 0.9 0.89 0.89 0.862 0.866 0.87

TABLE VII
Classification performance with respect to d.

the majority class, Fig. 3 (k)-(l) represent the minority class
and all the rest are randomly selected classes. The outcomes
demonstrate that the GENDA generates artificial images that
are both information-rich (i.e., they improve the discriminative
ability of the classifier and counter majority bias), and are
also visually meaningful (i.e., even for the minority classes,
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(a) Original image – T-shirt (b) Generated Image (c) Original image – Trousers (d) Generated Image

(e) Original image – Dress (f) Generated Image (g) Original image – Pullover (h) Generated Image

(i) Original image – Sandal (j) Generated Image (k) Original image – Ankle
boot

(l) Generated Image

Fig. 3. Raw and generated Fashion-MNIST images by GENDA for (a)-(b) the majority class, (k)-(l) the minority class, and (c)-(j) randomly selected classes.

Fig. 4. Convergence of the proposed method.

GENDA generates meaningful and realistic samples)
Fig. 4 illustrates the loss of our proposed method over

epochs for all the datasets. Our algorithm exhibits a smooth
and fast convergence (i.e. GENDA converges in less than 10
epochs) for all the datasets, which guarantees the stability of
the proposed model. Furthermore, due to the fast convergence,

an early stopping can be applied to the training of the model,
thus saving computational time and resources. Eventually, we
observe a higher loss with respect to the time series datasets
(i.e., HAR, TwoLeadECG and Ca2+ imaging) compared to
the image datasets. This can be attributed to the versatility
that time signals exhibit compared to static images, and thus
time series data are more difficult to be modelled.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed GENDA, a deep generative
encoding-decoding system, whose design lies in the learning
of latent yet interpretable representations that capture the non-
linear structured underlying data. It models the data generating
mechanism, as it creates artificial instances that balance the
training set, which can then be used to train any classifier
without suffering from bias. The proposed method fulfills three
crucial characteristics of a successful generative algorithm:
The ability to operate on both image and timeseries data,
the creation of efficient low-dimensional embeddings, and
the generation of diverse and meaningful artificial instances.
Experimental studies showed that our proposed method is
quite competitive compared to other methods and with high
model stability even under high imbalance ratios.

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2023.3249685

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



FIRST A. AUTHOR et al.: BARE DEMO OF IEEETAI.CLS FOR IEEE JOURNALS OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 11

Our next efforts will focus on enhancing our model’s loss
function with instance-level penalties so that the encoder
and decoder training considers instances that exhibit border-
line/overlapping features while discarding outliers and noisy
instances. Moreover, given that the quality of nearest neighbors
gets worse as the dimensionality of the data increases, we will
work on finding an efficient way, so that nearest neighbors are
found in the learned latent space instead of using them in
data space. Finally, the proposed method will be extended to
incorporate other data modalities, such as graphs.

REFERENCES

[1] A. Somasundaram and U. S. Reddy, “Data imbalance: effects and
solutions for classification of large and highly imbalanced data,” in
international conference on research in engineering, computers and
technology (ICRECT 2016), 2016, pp. 1–16.

[2] A. Fernández, S. Garcı́a, M. Galar, R. C. Prati, B. Krawczyk, and
F. Herrera, Learning from imbalanced data sets. Springer, 2018, vol. 10.

[3] M. Khushi, K. Shaukat, T. M. Alam, I. A. Hameed, S. Uddin, S. Luo,
X. Yang, and M. C. Reyes, “A comparative performance analysis of data
resampling methods on imbalance medical data,” IEEE Access, vol. 9,
pp. 109 960–109 975, 2021.

[4] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial intel-
ligence research, vol. 16, pp. 321–357, 2002.

[5] A. Fernández, S. Garcia, F. Herrera, and N. V. Chawla, “Smote for
learning from imbalanced data: progress and challenges, marking the
15-year anniversary,” Journal of artificial intelligence research, vol. 61,
pp. 863–905, 2018.

[6] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[7] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
Advances in neural information processing systems, vol. 27, 2014.

[8] Z. Pan, W. Yu, B. Wang, H. Xie, V. S. Sheng, J. Lei, and S. Kwong,
“Loss functions of generative adversarial networks (gans): opportunities
and challenges,” IEEE Transactions on Emerging Topics in Computa-
tional Intelligence, vol. 4, no. 4, pp. 500–522, 2020.

[9] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2980–2988.

[10] X. Li, X. Sun, Y. Meng, J. Liang, F. Wu, and J. Li, “Dice loss for
data-imbalanced nlp tasks,” arXiv preprint arXiv:1911.02855, 2019.

[11] M. Phankokkruad, “Cost-sensitive extreme gradient boosting for imbal-
anced classification of breast cancer diagnosis,” in 2020 10th IEEE In-
ternational Conference on Control System, Computing and Engineering
(ICCSCE). IEEE, 2020, pp. 46–51.

[12] M. Zhu, J. Xia, X. Jin, M. Yan, G. Cai, J. Yan, and G. Ning,
“Class weights random forest algorithm for processing class imbalanced
medical data,” IEEE Access, vol. 6, pp. 4641–4652, 2018.

[13] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative ad-
versarial networks,” in International conference on machine learning.
PMLR, 2017, pp. 214–223.

[14] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. Paul Smolley, “Least
squares generative adversarial networks,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp. 2794–2802.

[15] X. Wang, Y. Lyu, and L. Jing, “Deep generative model for robust
imbalance classification,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020, pp. 14 124–14 133.

[16] E. Troullinou, G. Tsagkatakis, S. Chavlis, G. F. Turi, W. Li, A. Losonczy,
P. Tsakalides, and P. Poirazi, “Artificial neural networks in action for an
automated cell-type classification of biological neural networks,” IEEE
Transactions on Emerging Topics in Computational Intelligence, 2020.

[17] G. F. Turi, W.-K. Li, S. Chavlis, I. Pandi, J. O’Hare, J. B. Priestley, A. D.
Grosmark, Z. Liao, M. Ladow, J. F. Zhang et al., “Vasoactive intestinal
polypeptide-expressing interneurons in the hippocampus support goal-
oriented spatial learning,” Neuron, vol. 101, no. 6, pp. 1150–1165, 2019.

[18] A. Birkner, C. H. Tischbirek, and A. Konnerth, “Improved deep two-
photon calcium imaging in vivo,” Cell calcium, vol. 64, pp. 29–35, 2017.

[19] H. Han, W.-Y. Wang, and B.-H. Mao, “Borderline-smote: a new over-
sampling method in imbalanced data sets learning,” in International
conference on intelligent computing. Springer, 2005, pp. 878–887.

[20] H. He, Y. Bai, E. A. Garcia, and S. Li, “Adasyn: Adaptive synthetic
sampling approach for imbalanced learning,” in 2008 IEEE interna-
tional joint conference on neural networks (IEEE world congress on
computational intelligence). IEEE, 2008, pp. 1322–1328.

[21] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmen-
tation for deep learning,” Journal of Big Data, vol. 6, no. 1, pp. 1–48,
2019.

[22] R. Wei, C. Garcia, A. El-Sayed, V. Peterson, and A. Mahmood, “Varia-
tions in variational autoencoders-a comparative evaluation,” Ieee Access,
vol. 8, pp. 153 651–153 670, 2020.

[23] M. Arjovsky and L. Bottou, “Towards principled methods for train-
ing generative adversarial networks,” arXiv preprint arXiv:1701.04862,
2017.

[24] T. Karras, M. Aittala, J. Hellsten, S. Laine, J. Lehtinen, and T. Aila,
“Training generative adversarial networks with limited data,” in IEEE
Conference on Neural Information Processing Systems;, 2020.

[25] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
arXiv preprint arXiv:1411.1784, 2014.

[26] A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with
auxiliary classifier gans,” in International conference on machine learn-
ing. PMLR, 2017, pp. 2642–2651.

[27] G. Douzas and F. Bacao, “Effective data generation for imbalanced
learning using conditional generative adversarial networks,” Expert
Systems with applications, vol. 91, pp. 464–471, 2018.

[28] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and
P. Abbeel, “Infogan: Interpretable representation learning by information
maximizing generative adversarial nets,” in Proceedings of the 30th
International Conference on Neural Information Processing Systems,
2016, pp. 2180–2188.

[29] G. Mariani, F. Scheidegger, R. Istrate, C. Bekas, and C. Mal-
ossi, “Bagan: Data augmentation with balancing gan,” arXiv preprint
arXiv:1803.09655, 2018.

[30] S. Santurkar, L. Schmidt, and A. Madry, “A classification-based study
of covariate shift in gan distributions,” in International Conference on
Machine Learning. PMLR, 2018, pp. 4480–4489.

[31] G. Huang and A. H. Jafari, “Enhanced balancing gan: minority-class
image generation,” Neural Computing and Applications, pp. 1–10, 2021.

[32] A. Fernández, S. Garcı́a, M. Galar, R. C. Prati, B. Krawczyk, and
F. Herrera, “Cost-sensitive learning,” in Learning from Imbalanced Data
Sets. Springer, 2018, pp. 63–78.

[33] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785–794.

[34] Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten digit database.
at&t labs,” 2010.

[35] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

[36] D. Anguita, A. Ghio, L. Oneto, X. Parra Perez, and J. L. Reyes Ortiz,
“A public domain dataset for human activity recognition using smart-
phones,” in Proceedings of the 21th international European symposium
on artificial neural networks, computational intelligence and machine
learning, 2013, pp. 437–442.

[37] H. A. Dau, E. Keogh, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi,
C. A. Ratanamahatana, Yanping, B. Hu, N. Begum, A. Bagnall,
A. Mueen, G. Batista, and Hexagon-ML, “The ucr time series classi-
fication archive,” October 2018, https://www.cs.ucr.edu/∼eamonn/time
series data 2018/.

[38] J. Yoon, D. Jarrett, and M. Van der Schaar, “Time-series generative
adversarial networks,” Advances in Neural Information Processing Sys-
tems, vol. 32, 2019.

Eirini Troullinou received her B.Sc. (2014) from
the Math Department and her M.Sc. (2018) from the
Computer Science Department both from University
of Crete. She is currently pursuing the Ph.D. degree
in the Computer Science Department of University
of Crete and is funded by the State Scholarships
Foundation (IKY). Since 2015, she has been affili-
ated with the Signal Processing Lab at FORTH-ICS
as a graduate researcher. Her main research interests
include signal processing and machine learning.

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2023.3249685

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/


12 JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, MONTH 2020

Grigorios Tsagkatakis is a research associate with
the Institute of Computer Science at the Foundation
for Research and Technology– Hellas (FORTH) in
Greece. He received his BE and MS degrees in
Electronics and Computer Engineering from the
Technical University of Crete, Greece in 2005 and
2007 respectively, and his Ph.D. in Imaging Science
from the Rochester Institute of Technology, New
York, in 2011. Between 2019 and 2021, he was a
Marie Skłodowska–Curie fellow at the Department
of Electrical and Computer Engineering of the Uni-

versity of Southern California. His research focuses on topics related to
signal/image processing and machine learning with applications in remote
sensing and astrophysics.

Attila Losonczy is a Professor of Neuroscience in
the Mortimer B. Zuckerman Mind Brain Behavior
Institute at Columbia University, New York. Dr.
Losonczy’s research is aimed to uncover neuronal
mechanisms of learning and memory by linking
synaptic, cellular and microcircuit processes with
memory behaviors in the mammalian hippocampus.
Thus, his research uses largescale functional imag-
ing in combination with electrophysiology, cell-type
specific manipulations and computational modeling.
Currently, he is part of a team that aims to under-

stand mechanism of memory replay.

Panayiota Poirazi is a Director of Research at
the Institute of Molecular Biology and Biotech-
nology, Foundation for Research and Technology-
Hellas (FORTH) and head of the Dendrites lab. She
received the B.S. in Mathematics from the University
of Cyprus in May 1996, the M.S. degree in Biomedi-
cal Engineering in May 1998 and the Ph.D. degree in
Biomedical Engineering in July 2000, both from the
University of Southern California. Her work focuses
on understanding the role of dendrites in complex
brain functions. She uses primarily computational

modeling of neurons and networks, brain-inspired machine learning and
recently in vivo experiments in mice. She has received several awards for
academic excellence, including the EMBO Young Investigator award in 2005,
two Marie Curie fellowships (2002 and 2008), an ERC Starting Grant in 2012,
the Friedrich Wilhelm Bessel award of the Humboldt Foundation in 2018 and
an EINSTEIN foundation visiting fellowship in 2019. She is a member of
EMBO and the Secretary General elect of FENS.

Panagiotis Tsakalides Panagiotis Tsakalides re-
ceived the diploma degree in electrical engineer-
ing from the Aristotle University of Thessaloniki,
Greece, in 1990, and the PhD degree in electrical
engineering from the University of Southern Cal-
ifornia, Los Angeles in 1995. He is a professor
in computer science at the University of Crete,
Heraklion, Greece, and the Head of the Signal Pro-
cessing Laboratory at FORTH-ICS. His research in-
terests include statistical signal processing, machine
learning, sparse representations, and applications in

remote sensing, astrophysics, audio, imaging, and multimedia systems. He
has coauthored over 250 technical publications in these areas. Since 2003, he
has been the project coordinator in 9 European Commission and 13 national
projects with a budget in excess of 15 M e totaling more than 8 M e in
actual funding for FORTH-ICS and the University of Crete.

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2023.3249685

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


	Introduction
	Related Work
	Data-level Methods
	Model-level Methods
	Hybrid Methods

	GENDA: GEnerative Neighborhood-based Deep Autoencoder
	Model Training
	Encoding
	Decoding

	Data Generation and Classification

	Experimental Study
	Datasets
	Setup
	Evaluation metrics
	Reference generative methods
	Implementation details of the proposed method
	Classification model

	Results and Discussion

	Conclusion and Future Work
	References
	Biographies
	Eirini Troullinou
	Grigorios Tsagkatakis
	Attila Losonczy
	Panayiota Poirazi
	Panagiotis Tsakalides


