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Abstract—This work focuses on the problem of surface soil
moisture estimation from multi-modal remote sensing observa-
tions. We focus on the scenario where both passive radiometer
observations from NASA SMAP satellite, as well as active radar
measurements from ESA Sentinel 1 are available. We formulate
the problem as multi-source observation fusion and develop a
deep learning model for SM estimation. To train and validate
the performance of the proposed scheme, we consider obser-
vations from in-situ SM sensor networks over the continental
USA. Experimental results demonstrate that the proposed model
achieves high quality SM estimation, surpassing the performance
of available products.

I. INTRODUCTION

Residing at the land-atmospheric boundary, surface and
near-surface Soil Moisture (SM) have profound implications
on Earth’s water and energy cycles. SM retrieval techniques
rely on two primary sources of observations, namely observa-
tions from remote sensing platforms, typically satellites, and
in-situ measurements from wireless sensor networks.

NASA’s Soil Moisture Active Passive (SMAP) satellite,
is tasked with providing a high-quality estimation of global
surface SM and freeze-thaw by capturing observations from
an active L-band radar instrument and a passive L-band
radiometer. Due to hardware problems, only the radiometer
is still operational. To address the lack of radar observations,
the use of the European Space Agency Sentinel-1 C-band
radar observations has been recently proposed [1]. The active
radar measurements from Sentinel-1 encode radar backscatter
at 1 km spatial resolution, while the passive radiometer from
SMAP capture brightness temperature at 36 km (L2 SM P)
spatial resolution, however, a high quality 9 km (SPL2SMP-
E) product is also available. Using these two sources of
information, disaggregated 9 km (SMAP L2 SM P E) and 1
km (SMAP L2 SM SP) L2 products of SM can be generated.

In this work, we propose a deep learning model for SM
retrieval from coarse-resolution passive microwave (radiome-
ter) brightness temperature maps and fine-resolution active
microwave (synthetic aperture radar) backscattering cross-
section imagery. The proposed model is able to provide both
coarse (9 km) and fine (1 km) resolution SM. To train and
validate the proposed model, SM measurements from localized
in-situ sensor networks cover the Continental United States of
America (CONUS) are employed.

II. STATE-OF-THE-ART

Estimation of SM from in-situ and/or satellite observations
is an extensively investigated topic and numerous approaches
have been proposed [2], while machine learning based ap-
proaches have gained considerable attention due to their flex-
ibility and ability to process a large number of inputs [3], [4],
[5]. More recently, the Deep Learning framework has gained
considerable attention for the enhancement of remote sensing
observations [6] and has been considered for the problem of
SM estimation. In order to capture the information encoded in
time-series (LSTM) networks were explored for SM estima-
tion from Brightness Temperature measurements from SMAP,
MODIS Vegetation Water Content and soil temperature in
[7]. A work similar to the one reported here is the method
proposed by Mao et al. [8] where the authors employed
machine learning, random forests in particular, for estimating
the high-resolution SMAP/Sentinel-1 estimation given low-
resolution SMAP radiometry data. An earlier version con-
sidered CNNs for downscaling SMAP radiometer brightness
temperature measurements, focusing only on the period when
both SMAP radar and radiometer were operational [9]. In [10],
a deep learning model was also proposed for SM estimation,
however, this model did not assume the availability of in-situ
observations or observations from multiple satellite platforms.

III. OBSERVATION SOURCES PROFILES

The data used for the generation of the dataset include
remote sensing observations from the NASA SMAP mission,
provided by the National Snow and Ice Data Center, obser-
vations from ESA Sentinel-1A and -1B satellites, provided
by Copernicus, and in-situ observations from the International
Soil Moisture Network (ISMN) [11].

Brightness temperatures (TBs) in kelvin are derived from
native 36 km SMAP footprint using Backus-Gilbert interpo-
lation on the 9 km EASE-Grid over horizontal and vertical
polarization. The Sentinel-1 C-band Synthetic Aperture Radar
(C-SAR) measures dual polarization VV + VH in the interfer-
ometric wide swath Mode over land, with a center frequency
of 5.405 GHz, while σ0 measurements are derived using SAR
processing.

To generate the required datasets, a diverse set of in-situ
sensor locations from the International Soil Moisture Networks
is explored. In general, these sensors record soil moisture using
different techniques, and at different depths. In this work,
we are interested in surface soil moisture so only the soil



Fig. 1. Block diagram of the proposed deep multi-modal fusion network for SM estimation. SMAP and S1 observations are introduced to a deep learning model
which first produces high spatial resolution SM estimation and then lower-resolution ones. Training and validation are performed using in-situ observations
for the high-resolution model and an L2 product for the coarse resolution.

moisture at the top 5 cm is considered. We select sensors
currently in operation and focus on networks using the same
class of hardware sensors (Stevens Hydraprobe). Specifically,
we incorporate data from the ARM, the SCAN, the SNOTEL,
and the USCRN networks. The location of the in-situ sensors
considered in this work is shown in Figure 2.

Fig. 2. Location of in-situ sensors over CONUS.

A. Satellite derived SM product

The baseline model is the “High-Resolution Enhanced Prod-
uct Based on SMAP Active-Passive Approach using Sentinel
1A and 1B SAR Data” [12]. The data correspond to the
Level-2 (L2), which contains calibrated, geolocated, time-
ordered TB during 6:00 a.m. descending (and 6:00 p.m.
ascending) half-orbit passes and Sentinel 1 C-band backscatter
coefficients, transformed to sigma-naught (σ0) values, at a
special resolution of 1 km and 3 km.

IV. SM ESTIMATION MODEL

Our model assumes the availability of two inputs, namely
X1 for the Tb measurements at 36km spatial resolution and
X2 for the σ0 measurements at 1km from SMAP and S1
respectively. The primary objective of the model is to estimate
the SM value of in-situ at 1km spatial resolution, y1, while
an auxiliary estimation target could be the SM values at 9km
encoded in the NASA L2 product, Y2.

The primary objective of the model is thus to estimate the
parameters w by minimizing function L1:

min
w
L1 = min

w
[y1 − PΩ(f(X1,X2;w))] (1)

where PΩ is the sampling operator which only preserves the
values at locations where in-situ measurements are available.
In addition to minimizing L1 which focused on high-quality
estimation using point-like ground-truth, we additionally intro-
duce L2 in which case the objective is to match the predicted
SM at image-level, but at a courser-resolution of 9km, to the
estimated SM in the L2 product. In this case, the objective is
to minimize

min
w
L2 = min

w
Y2 −Df(X1,X2;w) (2)

where D is a downsampling operator which downscales the
SM from 1km to 9km spatial resolution. The end-goal of the
model is to minimize the composite of the two loss function,
weighted through the value α, i.e.,

min
w
L = αL1 + (1− α)L2 (3)

A. Deep multi-modal observation fusion network
In the above described framework, the objective is to esti-

mate the model parameters w which will minimize the com-
posite loss function in Eq. 3. Although different approaches



could be taken, in this work, the non-linear modeling function
f in Eq. 1 and Eq. 2 corresponds to a Convolutional Neural
Network (CNN) which consists of four convolution blocks,
each one performing the following actions

• 32 filters 3D convolution filters applied to the input.
• A non-linear relu activation function
• A spatial dropout layer
• A batch normalization layer

The output of the last layer is collapsed across channels/filter
in order to extract a single value at each spatial location (pixel).
A mask is utilized for selecting on available observation during
model training. Furthermore, the outputs is also introduced to
a downsampling process which corresponds to the application
of an average pooling followed by an upsampling layer. The
total number of trainable parameters of the network is in the
order of 50k.

V. EXPERIMENTAL ANALYSIS

A. Dataset characteristics observations

We consider observations during September 2020 since data
for new versions of SMAP Level-1, -2, and -3 are currently
available from 27 August 2020 onwards. Input corresponds
to 3D image patches of size 256 × 256 × 4 at 1 km spatial
resolution where 4 corresponds to the concatenation of the 2
polarization from the radiometer and 2 polarization from the
radar. Figure 3 presents the distribution of SM value for the
training and the validation set. For a patch to be eligible as a
training example, at least 5 locations (pixel) must be associated
with in-situ sensor locations. We observe that the training set
distribution covers to a very large extend the validation set,
which is required when training a deep learning model.

Fig. 3. SM value distribution for training and validation set.

B. Experimental results

Figures 4 and 5 present scatter plots of in-situ (actual) and
satellite retrieved (predicted) SM value pairs. In both cases,
we consider the SMAP/S1 L2 product (in blue), the proposed
approach (orange) and the ideal behavior (green). Figure 4

corresponds to the performance on the training set, once
training is completed, while Figure 5 corresponds to validation
examples. In terms of absolute error between prediction and

Fig. 4. Scatter plot of prediction-actual pair from training set.

Fig. 5. Scatter plot of prediction-actual pair from validation set.

in-situ SM value, Figure 6 presents the unRMSE for all the
examples in the validation set. We observe that in most cases,
the proposed method achieves lower error compared to the L2
product. The average estimation error for each method is also
provided in the figure.

In Figure 7 we focus on a representative example and
visually present the inputs (top row), the SM prediction at
1km spatial resolution (middle row) and the SM prediction at
9km (bottom row).

VI. CONCLUSION

Retrieving surface soil moisture from remote sensing obser-
vation over large scales is a challenging topic. In this work, we
developed an analysis-ready dataset encoding satellite and in-
situ sensor measurements and propose a deep learning model
for high accuracy retrieval. In future work, the potential of



Fig. 6. Absolution ubRMSE error between satellite and in-situ observations
on the Validation set.

Fig. 7. Visual illustration of inputs and the predicted SM at different spatial
resolutions.

introducing additional sources of information like land cover
will be explored.
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