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Target Problem

▪ Implicit Schema Discovery

▪ Explicit Schema Enrichment

▪ Pattern Discovery
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Implicit Schema Discovery

▪ Schema discovery from the instances of the 
dataset

▫ No additional information required

▫ Based on grouping instances / paths
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Implicit Schema Discovery

▪ Resulting schema

▫ Classes / types : subsets
of similar instances

▫ Links between the 
classes

8

Professor
Student

University

Person

rdfs:subClassOfrdfs:subClassOf

worksAt

supervises



Explicit Schema Enrichment

▪ Enriching the existing schema using the 
declarations provided in the dataset
▫ rdf:type, rdfs:domain, rdfs:range

▪ Inference of new statements using machine 
learning or statistical approaches
▫ rdf:type, rdfs:subclassOf, rdfs:subPropertyOf, 

owl:SymetricProperty
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Structural Pattern Discovery

▪ Identifying all the existing patterns (versions) of 
the entities in a dataset / type
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Structural Pattern Discovery

▪ Characterizing the co-occurrence relationships
among the properties of the dataset

▪ Output: Exact or Approximate patterns
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Underlying Techniques for Schema
Discovery

▪ Machine learning
▫ Supervised learning algorithms (classification)
▫ Unsupervised learning algorithms (clustering, 

frequent pattern mining) 
▪ Formal methods

▫ Formal Concept Analysis, Bisimulation
▪ Statistical techniques

▫ Frequency or distribution of the properties
13



Machine Learning Algorithms

▪ Classification algorithms
▫ K-NN

▪ Clustering algorithms
▫ K-means, Dbscan, H clustering

▪ Frequent pattern mining
▫ Apriori
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Other Techniques

▪ Bisimulation

▪ Statistical techniques

▪ Formal Concept Analysis
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Scalability

▪ Ability of the existing approaches to deal with
massive datasets

▪ Highly depens on the underlying technique and 
computational complexity of the algorithm
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Stability

▫ Providing the same schema for different
executions of the schema discovery algorithm
on the same dataset

▫ Dependent on the sensitivity of the underlying
algorithm to the exploration order of the dataset
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Incrementality

▪ Dealing with the changes occurring in the 
dataset and propagating these changes into the 
schema

▪ Ability to incrementally adapt the existing
schema instead of generating a new one
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Hybrid Approaches

▪ Ability to exploit both the instances and the 
schema related information when provided

▪ Taking into account the existing schema related
statements during schema discovery
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Online Schema Discovery

▪ Ability to process remote datasets that can not 
be copied locally

▪ Coping with access restrictions enforced by the 
server
▫ Number of issued queries, size of the result, etc.
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Inputs

▪ User Defined Parameters
▫ Required by the algorithms used for schema

discovery
▫ Similarity thresholds, number of clusters, etc.

▪ Dataset-Related Inputs
▫ Schema declarations

▫ RDF Type definitions, RDFS / OWL classes and 
sub-classes, OWL ontologies23



Outputs

▪ Types
▫ rdf:type statements

▪ Semantic links
▫ Ex: rdfs:domain, rdfs:range statements

▪ Hierarchical links
▫ Ex: rdfs:subClassOf, rdfs:subPropertyOf

▪ Patterns / co-occurrence of properties
▪ Path plans
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Schema Completeness

▪ Implicit schema discovery approaches
▫ Comparing the generated classes to the actual

classes of the instances: have all the classes been 
extracted ?
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Schema Completeness

▪ Explicit schema enrichment approaches
▫ The completeness of the generated declarations

depends on the completeness of the existing
ones
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Class Accuracy

▪ Implicit schema discovery
▫ Are the instances grouped in a generated class 

actually instances of this class?

▪ Explicit schema enrichment
▫ Are the instances assigned to an existing class 

class actually instances of this class?
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Class Accuracy
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Implicit Schema 
Discovery
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Implicit Schema Discovery

▪ Inferring the schema of a dataset from
its instances

▫ Classes, properties, relationships
▫ Path-based summary

33



Implicit Schema Discovery

▪ Two alternative approaches

▫ Grouping the instances of the dataset

▫ Grouping the paths in the dataset
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Implicit Schema Discovery by Grouping
Instances
▪ The classes of the schema are defined

as clusters of similar instances
▫ Instances having similar property sets

▪ Underlying techniques
▫ Clustering algorithms
▫ Formal Concept Analysis
▫ Indexing

▪ Most of the approaches deal with RDF 
datasets

35

a1

a2

a3

p1
p2

name

address

hasAuthored

name
address

hasAuthored

hasAuthored

hasAuthored

title

year

title

year

Authors

Papers



Implicit Schema Discovery Approaches
Based on Instance Grouping
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StaTIX – Statistical Type Inference
[Lutov et al. Big Data 2018]

▫ Input: RDF data graph
▫ Output: a set of overlapping types for the 

instances
▫ Using an enhanced hierarchical clustering 

algorithm
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StaTIX Type Inference Principle

▪ Similarity Matrix
▫ Property vectors of weighted properties

▫ For each pi, wi =1/ 𝑓𝑟𝑒𝑞𝑖

▫ Cosine similarity
▪ Matrix Reduction

▫ Identifying insignificant links
▫ among the ones having insignificant weights

▫ Up to a maximal number of reducible links for 
each node
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StaTIX Type Inference Principle

▪ Louvain clustering algorithm
▫ Hierarchical, extended for overlap detection
▫ Iterative optimization of the modularity gain ∆𝑄𝑖, 𝑗
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SDA - Schema Discovery for RDF 
Datasets [Kellou-Menouer & Kedad ER 2016] 

▪ Input: RDF data graph
▪ Output: Overlapping types, Hierarchical and semantic

links
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Type and Link Inference Principles

▪ Density based clustering (DBScan)
▫ Entities described by their set of 

incoming/outgoing properties
▫ Jaccard similarity
▫ Probabilistic type profiles

▪ Overlapping types
▫ Analysis of the shared properties

between type profiles
41 Author  Person



Type and Link Inference Principles

▪ Semantic links
▫ Analysis of incoming/outgoing properties in type 

profiles

▪ Hiearchical links (rdfs:subClassOf)
▫ Hierarchical clustering over the type profiles
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SC-DBScan: Scalable Density Based
Schema Discovery [Bouhamoum et al. ESCW 2021]

▪ Distributed density-based clustering algorithm, 
implemented on Spark
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SC-DBSCAN Type Discovery Principle

▪ Entity Distribution: 
▫ A data chunk is created for each property pi and contains

entities described by pi

44

e1 [p1, p2] 
e2 [p2, p3]
…..

p1 p2 p3

e2
e1

e2
e2



SC-DBSCAN Type Discovery Principle

▪ Local clustering on each computing node using
DBScan

▪ Merging local clusters if they share a core entity
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FCD – Formal Concept Discovery in 
Semantic Web Data [Kirchberg et al. FCA 2012]

▪ Input: An RDF data Graph
▪ Output: A lattice of concepts
▪ Using Formal Concept Analysis
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Disco PG – Property Graph Schema
Discovery [Bonifati et al. VLDB 2022]
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Disco PG – Property Graph Schema
Discovery

▪ Compute the subtypes of a set of node C 
labelled L

▫ Hierarchical clustering
▫ Each cluster corresponds to a subtype
▫ Nodes in a cluster are characterized by a unique 

combination of labels and properties
▫ Dice similarity
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HInT – Hybrid and Incremental Schema
Discovery [Kardoulakis et al. SSDBM 2021]

▪ Input: RDF data graph
▪ Output: a set of types

▪ Discovery principle : processing instances 
independently using Locality-Sensitive Hashing

▪ No pairwise comparison required
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HInt – Hybrid and Incremental Schema
Discovery

▪ Locality Sensitive Hashing: Two similar instances have 
a high probability of having the same signature
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Implicit Schema Discovery

▪ Two alternative approaches

▫ Grouping the instances of the dataset

▫ Grouping the paths in the dataset
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Implicit Schema Discovery by Grouping
Paths

▪ Providing a representation of the data graph where
identical paths are grouped

▪ Underlying techniques
▫ Bisimulation
▫ Path merging
▫ Clustering algorithms

▪ RDF or OEM Data graphs
52



Implicit Schema Discovery Approaches
Based on Path Grouping

53



Bisimulation of RDF Graphs
[Schatzle et al. SWIM 2013]

▪ Input: an RDF graph G
▪ Output: a bisimulation reduction of G

▪ Building a bisimulation partition
▫ Grouping nodes s and s’ if for each path starting

from s, there is a path starting from s’ with the 
same lenght and same sequence of predicates
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Building a Bisimulation Partition
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Dataguides [Goldman et al.  VLDB 1997]

▪ Input: Semi-structured data described in OEM
▪ Output: Path Plans

▪ A DataGuide D for an OEM graph G is a graph such 
that:
▫ Every label path of G has exactly one data path 

instance in D
▫ Every label path of D is a label path of G
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Example
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Approximate Dataguides [Wang et al. EDBT 2000]

▪ Input: Semi-structured data described in OEM
▪ Output: Path Plans

▪ Nodes in the input graph are grouped according to 
the similarity of their incoming/outgoing edges
▫ COBWEB clustering algorithm
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Example
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Comparing Path-Based Approaches

▪ Query/Indexing Oriented
▪ Not always accurate, may be larger than the initial graph61



Comparing Instance-Based
Approaches
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Comparing Instance-Based
Approaches

▪ Clustering-based approaches
▫ Require the computation of  a similarity matrix and/or input 

parameters
▫ Clusters with arbitrary shapes are more suited to very

heterogeneous datasets

▪ Formal Concept Analysis
▫ Concepts vs. Types
▫ The generated lattice can be very large
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Open Issues

▪ Most of the approaches generate
Types/Classes but not links

▪ Annotation of the resulting types is not always
supported
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Open Issues

▪ Most of the approaches do not make use of schema
related declarations if provided

▪ Dealing with online remote sources and coping with
access restrictions has not been addressed yet
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THANKS!
Any questions?
You can find us at
https://users.ics.forth.gr/~kondylak/
iswc_2022_tutorial/
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