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CIDOC-CRM is an event-based international standard for cultural documentation that has been widely used for offering semantic
interoperability in the Cultural Heritage (CH) domain. Although there are several Knowledge Graphs (KGs) expressed by using
CIDOC-CRM, the task of Question Answering (QA) has not been studied over such graphs. For this reason, in this paper we propose
and evaluate a Radius-based QA pipeline over CIDOC-CRM KGs for single-entity factoid questions. In particular, we propose a generic
QA pipeline that comprises several models and methods, including a keyword search model for recognizing the entity of the question
(and linking it to the KG), methods that are based on path expansion for constructing subgraphs of different radius (or depths) starting
from the recognized entity, i.e., for being used as a context, and pre-trained neural models (based on BERT) for answering the question
using the mentioned context. Moreover, since there are no available benchmarks over CIDOC-CRM KGs, we construct (by using a
real KG) an evaluation benchmark having 10,000 questions, i.e., 5,000 single-entity factoid, 2,500 comparative and 2,500 confirmation
questions. For evaluating the QA pipeline, we use the 5,000 single-entity factoid questions. Concerning the results, the QA pipeline
achieves satisfactory results both in the entity recognition step (78% accuracy) and in the QA process (51% F1 score).
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1 INTRODUCTION

The digitization and scientific documentation of cultural heritage objects is a research field that has grown significantly
in the last two decades, since it is of primary importance to curate, restore and preserve cultural artefacts [14]. For this
reason, formal models have been created for modelling cultural objects, like the CIDOC Conceptual Reference Model
(CIDOC-CRM); an ISO 21127 standard event-based ontology for the cultural domain [8] that has been widely used
[1, 33] for offering interoperability between the Cultural Heritage (CH) domain metadata standards and ontologies.
However, due to its complex (event-based) nature, it is difficult for non-experts to exploit the data expressed through
the CIDOC-CRM model. A user-friendly interface to such Knowledge Graphs is to provide a Question Answering (QA)
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service, where any user can express a natural question (e.g., such as those in [4]). Indicatively, such QA pipelines can
be used for enabling users to ask questions through text or voice (e.g., chatbots) [34] and to retrieve answers from a
Knowledge Graph. For instance, suppose a scenario where a museum visitor stands in front of a painting [3] and desires
to ask more questions about the painting, such as about its creator, the history of the painting, etc.

However, there are no evaluated pipelines for QA over CIDOC-CRM [33], especially, due to the following difficulties:
a) CIDOC-CRM model complexity, b) lack of QA pipelines for (complex) event-based ontologies, and c) absence of
QA benchmarks for CIDOC-CRM based KGs. In particular, regarding a) and b), CIDOC-CRM has a complex structure,
i.e., it is an event-centric ontology with a plethora of classes and associations structured in specialization hierarchies,
which makes it difficult to apply successful QA techniques that are applicable for simpler ontologies/models (e.g., [22]).
Therefore, one has to exploit various deductions from the KG. Regarding c), there are no available benchmarks for
evaluating such QA tasks that support CIDOC-CRM KGs [33]. For tackling these limitations, in this paper we focus on
answering the following research questions:

• RQ1: How effective is an existing generic QA pipeline over non-event based models, such as for CIDOC-CRM?
• RQ2: How to traverse the CIDOC-CRM KG for creating the subgraph that contains the desired answer, given that:

a) subgraphs of a small radius may not contain the desired answer and b) subgraphs of a large radius may contain
redundant data?

Concerning our contribution, since there is a high need for facilitating access to cultural knowledge through
interactive pipelines (and applications), we provide a radius-based QA pipeline for answering single-entity factoid
questions. In particular, i) we explain why existing generic QA pipelines, such as Elas4RDF-QA [22], are not (in their
current form) sufficient for CIDOC-CRM KGs, ii) we propose an extension of Elas4RDF-QA, for being compatible with
event-based models (by focusing on CIDOC-CRM), by supporting different entity path expansion methods for the
creation of subgraphs (for text construction), and iii) we construct an evaluation benchmark with 10,000 question-answer
pairs, called CIDOC-QA, by using the real Smithsonian American Art Museum (SAAM) KG [30]. It includes 5,000
single-entity factoid questions, 2,500 comparative and 2,500 confirmation questions. Finally, iv) we use the mentioned
5,000 single-entity factoid questions for evaluating the effectiveness and efficiency of the proposed pipeline.

As regards the novelty, to the best of our knowledge it is the first work that offers a) a QA pipeline for answering
natural questions over any CIDOC-CRM KG and b) an evaluation benchmark of QA over CIDOC-CRM KGs.

The results of our evaluation show that through the path expansion methods, it is feasible to answer questions that
require a certain radius from a starting resource. Indicatively, we achieved 78% accuracy for the entity recognition step,
and 51% F1 score for the QA process (+28.4% comparing to the original Elas4RDF-QA pipeline). Finally, the average
query time is approximately 1 second.

The rest of the paper is described as follows: Section 2 discusses the related work, and Sect. 3 presents the evaluation
benchmark and the requirements. Sect. 4 introduces the proposed QA pipeline. Sect. 5 presents comparative results for
the proposed methods. Finally, Sect. 6 concludes the paper and identifies directions for future research.

2 RELATEDWORK

Here, we describe approaches for a) QA over RDF KGs, b) for QA over event-based KGs (including CIDOC-CRM KGs),
and c) NLP tasks over CIDOC-CRM.

QA over RDF KGs. There is an increasing trend for QA approaches over KGs [7], which can be divided in 3 categories
[31]: i) template based approaches [2, 16], i.e., matching questions to SPARQL templates, ii) semantic parsing methods
[12, 18], i.e., translating questions into logic query forms, and iii) information retrieval-based methods [31], i.e., they
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extract the entity and words of each question, and tries to find the best candidate answer (e.g., by ranking the different
triples/paths). The proposed approach, which extends Elas4RDF-QA, is hybrid, i.e., it combines Information Retrieval,
SPARQL and Neural Networks techniques. Concerning the KGs that are used from QA systems, there are usually
popular KGs, such as DBpedia [17] and Wikidata [35], e.g., see QAnswer [6], Platypus [32] and Elas4RDF-QA [22].

QA and Collections for Event-based KGs. Concerning event-based QA, [31] combines information retrieval
methods and similarity functions for detecting the best path for answering a question. Also, [27] exploits KG embeddings
for finding the best answer for multi-hop QA. Regarding event QA collections, there exists the EVENT-QA [28] and
LC-QUAD [10] benchmarks, that use the EventKG [13], DBpedia [17] and Wikidata [35] KGs, accordingly. These
benchmarks contain thousands of complex and diverse questions, however, the complexity of the queries in the dataset
is restricted in a maximum of two relations (two hops). Moreover, the MetaQA [36] is a large scale multi-hop collection
(from one to three hops) with more than 400k questions in the movie domain.

Concerning CIDOC-CRM, [29] performs QA over genealogical graphs expressed in GEDCOM format. These graphs
are converted into subgraphs represented using CIDOC-CRM, and then text passages and question-answer pairs are
generated from the obtained subgraphs using a combination of Deep Neural Network models. In [5] the authors
proposed a logic-based QA system over CIDOC-CRM, that transforms a question to a SPARQL query and returns the
result in natural text. However, it does not provide an evaluation of the approach.

NLP tasks for CIDOC-CRM KGs. Apart from QA, there are few approaches that use NLP techniques over
CIDOC-CRM [33]. Firstly, TEXTCROWD [11] offers part-of-speech tagging and Named Entity Recognition for Italian
archaeological reports and produces the output using CIDOC-CRM, whereas [9] extracts entities and relations from
Chinese cultural texts and uses CIDOC-CRM classes for classifying the extracted entities. Furthermore, in [20] text
classification and extraction is performed over Portuguese National Archives records, for modelling the extracted
information data by using CIDOC-CRM.

Comparison and Novelty. Comparing to QA approaches over CIDOC-CRM, we provide a general QA pipeline that
can be adjusted for any CIDOC-CRM KG, and not for a specific domain, e.g., genealogical data [29], whereas we create
and convert subgraphs to texts instead of transforming the question into a SPARQL query [5]. As regards event-based
evaluation collections, the existing ones are not applicable for CIDOC-CRM KGs, i.e., they include Knowledge Graphs
that have not been modelled through CIDOC-CRM. Moreover, they contain questions that need paths of length 2 to be
answered, whereas we cover also questions for larger paths (i.e. of a large radius). On the contrary, they offer a larger
diversity (i.e., questions are dissimilar to others), whereas we mainly use similar questions for different entities/events.
Regarding the novelty, to the best of our knowledge it is the first work that offers a) a generic QA pipeline for answering
natural questions over any CIDOC-CRM KG (by also supporting entity recognition and linking), and b) an evaluation
benchmark of QA over CIDOC-CRM KGs, including thousands of questions.

3 EVALUATION BENCHMARK AND REQUIREMENTS

This section presents the evaluation benchmark, the context and the requirements.

3.1 CIDOC-QA: Evaluation Benchmark for QA over CIDOC-CRM

Since there are no available benchmarks for QA over such KGs [33], we create a benchmark for evaluating CIDOC-CRM
QA approaches. Specifically, we use the Smithsonian American Art Museum [30] (SAAM) KG, which contains 2,792,865
triples and 720,767 entities, including thousands of artworks and artists (e.g., paintings, sculptures, photographies).
The objective is to focus on the radius complexity, i.e., for including questions that need subgraphs of different radius
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ID Question Template Rad-
ius

Number
of Ques-
tions

Question
words
length

Answer
Words length

Single Entity Factoid Questions (5000 Questions)
Q1 Which is the type of {Art Work}? 1 500 8.66 1.45
Q2 What material was used for creating the {Art Work}? 1 500 7.65 3.59
Q3 Who gave the {Art Work} to the museum? 1 500 7.71 7.00
Q4 Who is the creator of {Art Work}? 2 500 7.65 2.37
Q5 Which is the birth place of {Artist}? 2 500 8.32 3.57
Q6 When the production of {Art Work} started? 3 500 4.76 1.00 (date)
Q7 When the production of {Art Work} ended? 3 500 7.69 1.00 (date)
Q8 Which is the nationality of the creator of {Art Work}? 3 500 10.67 1.00
Q9 Which is the birth place of the creator of {Art Work}? 4 500 11.59 4.11
Q10 Which year died the creator of {Art Work}? 4 500 8.70 1.00

Comparative Questions (2500 Questions)
Q11 Which painting is taller {Painting 1} or {Painting 2}? 1 500 13.04 4.05
Q12 Who has more art works in the museum, {Artist 1} or {Artist 2}? 1 500 12.64 2.34
Q13 Who was born first, {Artist 1} or {Artist 2}? 2 500 9.66 2.45
Q14 Which Artwork produced first, {Art Work 1} or {Art Work 2}? 3 500 15.39 4.75
Q15 Who was born first, the creator of {Art Work 1} or {Art Work 2}? 4 500 21.56 2.46

Confirmation Questions (2500 Questions)
Q16 Was {Art Work} given as a gift to the museum? 1 500 10.57 1.00 (Yes/No)
Q17 Had the {Material} used for the production of {Art Work}? 1 500 14.70 1.00 (Yes/No)
Q18 Is {Artist} the creator of {Art Work}? 2 500 8.98 1.00 (Yes/No)
Q19 Was the production of {Art Work} ended before 1900? 3 500 9.70 1.00 (Yes/No)
Q20 Is {Place} the birth place of the creator of {Art Work}? 4 500 14.72 1.00 (Yes/No)

Table 1. Evaluation Benchmark: Question templates (in total 10000 questions) and statistics of the benchmark

for being answered. For automating the process of creating the questions, we created 20 question templates (each one
having 500 questions), for three question types. Specifically, Table 1 shows each template, grouped by their question
type and radius (from radius 1 to 4), the number of questions of each template, and the average words for each question
and answer. Below, we provide a small description for each question type.

A. Single Entity Factoid Questions (Q1-Q10): There are 5,000 questions from 10 templates (from radius 1 to 4),
and they contain questions about a single artwork or artist.

B. Comparative Questions (Q11-Q15): There are 2,500 questions from 5 templates (from radius 1 to 4), and they
contain comparative questions about either pairs of art works or pairs of artists.

C. Confirmation Questions (Q16-Q20): There are 2,500 confirmation questions from 5 templates (from radius 1 to
4), about artworks and artists. Each template includes 250 questions with answer "Yes" and 250 with answer "No".

The benchmark is rule-based generated, by sending SPARQL queries to the endpoint of the SAAM KG (https:
//triplydb.com/smithsonian/american-art-museum/). The evaluation benchmark, the code for creating the questions
and more details are available in https://github.com/NicolaiGoon/CIDOC-QA-BENCHMARK/. Fig. 1 shows the SPARQL
query of Q9. Regarding the output of this process, an indicative benchmark entry of Q9 is shown in Fig. 2.

Howwill we use this benchmark in this paper:We decided to first investigate techniques for factoid single-entity
questions since this is a fundamental step for more complex questions, thereby the evaluation is conducted on the
question templates Q1-Q10 of Table 1.
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1PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
2PREFIX cidoc: <http://www.cidoc-crm.org/cidoc-crm/>
3SELECT ?artwork ?label ?place WHERE {
4 ?artwork rdfs:label ?label .
5 ?artwork cidoc:P108i_was_produced_by ?production .
6 ?production cidoc:P14_carried_out_by ?actor .
7 ?actor cidoc:P92i_was_brought_into_existence_by ?existence .
8 ?existence cidoc:P7_took_place_at ?placeLabel .
9 ?place rdfs:label ?placeLabel .
10}

Fig. 1. The SPARQLQuery of template Q9

1 "id": 3501,
2 "question": "Which is the birth place of the creator of Head of a Woman in Jerusalem?",
3 "entity": "<http://data.americanart.si.edu/object/id/1983.95.194>",
4 "answer": ["Pittsburgh, Pennsylvania, United States"],
5 "type": "single-entity factoid",
6 "radius": "4"

Fig. 2. An indicative JSON entry for the template Q9

Fig. 3. Van Gogh birth date representation in DBpedia vs CIDOC-CRM

3.2 Context and Requirements

In this paper, we extend the generic Elas4RDF-QA pipeline [22], for being able to answer single-entity factoid questions
over any CIDOC-CRM KG. Elas4RDF-QA uses a Keyword Search over RDF [15], SPARQL queries for text generation
(to be used as a context), BERT for Answer Extraction, and Answer Type Prediction. Although Elas4RDF has been
successfully used for DBpedia, it is not sufficient in its current form for CIDOC-CRM KGs for the following reasons:

• Named Entity Recognition and Linking. The Elas4RDF-QA pipeline recognizes DBpedia entities, by using indexing
mechanisms over DBpedia, that use the suffix of the URI of each entity. In DBpedia, the suffix of the URIs is informative,
however, this is not the case for several KGs (including Wikidata and CIDOC-CRM KGs like SAAM), since they use
identifiers in their URIs. Therefore, indexes should be constructed by using the labels of each URI.

• Direct Triples versus Large Paths. The Elas4RDF-QA pipeline can answer questions that are described in the direct
triples of an entity (i.e., direct neighbors). However, in event-based models usually larger paths (i.e., multi-hops) need to
be traversed for answering most of the questions. For instance, it is simple to find the birth date of Vincent Van Gogh
by using DBpedia, as the property "dbo:birthDate" is directly connected to that entity (see left part of Figure 3). On the
other hand, for finding the birth date by using CIDOC-CRM, it requires to follow a larger path, since it is modelled as
an event (see right part of Figure 3).
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Fig. 4. The proposed QA pipeline over any CIDOC-CRM KG for single entity factoid questions and a running example

The requirements for enabling QA over any CIDOC-CRM KG follow: a) offer Entity Recognition for any CIDOC-CRM
KG, by focusing on indexing the labels of the URIs and not only of their suffix, and b) support methods for constructing
the context from subgraphs even of a large radius, starting from an entity/event, i.e., since we desire to answer questions
requiring to follow paths of a large radius, such as those in Table 1.

4 THE PROPOSED QA PIPELINE

We describe a QA pipeline that can be used over any CIDOC-CRM based KG. The steps of the QA pipeline are illustrated
in Figure 4 through the use of a running example, i.e., for the question "Which is the birth place of the creator of The
Starry Night" (a painting of Vincent Van Gogh) that requires to traverse a subgraph of radius 4 to be answered.

4.1 Prerequisite Steps for any CIDOC-CRM KG

For any given CIDOC-CRM KG, we need to perform two prerequisite steps for creating the required components of the
QA pipeline (lower part of Figure 4).

Indexes for Enabling Entity Detection. The first step is to create an index from the desired KG(s) using the
Elas4RDF index service [15]. The objective is to load the index in an elastic search instance and use the Elas4RDF search
upon it, for enabling the retrieval of the top-𝐾 entities (and of their URI) for a given question 𝑞, i.e., for enabling entity
recognition and linking (or entity detection) for any CIDOC-CRM KG.

Using a triplestore for storing and querying the KGs. Apart from the indexes, the KGs should also be stored in
a triplestore, e.g., in GraphDB (https://www.ontotext.com/products/graphdb/), for enabling the execution of SPARQL
queries (i.e., for creating at real time the context from the subgraphs).

4.2 Step A. Entity Detection

The objective is to detect the main entity (or entities) of the question 𝑞, and to retrieve its URI in the KG. For instance,
see Step A in Figure 4, where we retrieved the main entity of the question.

Input. A question 𝑞 in natural language for a CIDOC-CRM KG which has been previously indexed (i.e., see §4.1).
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Output. The output of this stage is the top-𝐾 (𝐾 is configurable) entities in a ranked list, described by their URI. The
value of 𝐾 depends on the needs of each application, i.e., for questions containing a single entity/event (such as in our
evaluation benchmark, which is presented in Sect. 3.1), it is preferable to select 𝐾 = 1.

The Process. Since there are no Named Entity Recognition and Linking tools for CIDOC-CRM based KGs [33] (e.g.,
in comparison with other KGs such as DBpedia, Wikidata, etc.), we use the Keyword Search System of [15], which
returns the top-𝐾 entities (and their URI) according to the question 𝑞 . The URI will be used as the starting point for
creating one or more subgraphs that will be used as the context for a pretrained model.

4.3 Prerequisites for Step B - Creation of Radius Subgraphs

The objective for the recognized entity 𝑒 (or the top-𝐾 entities) is to create one or more subgraphs through path
expansion of CIDOC-CRM properties starting from the detected entity, and then to transform each path to text.

4.3.1 Step B1. Creation of subgraph(s). First, we define a CIDOC-CRM directed path of radius 𝑟 (or depth) for an entity
𝑒 , any path of the form: 𝑒

𝑝1−−→ 𝑢1
𝑝2−−→ ...

𝑝𝑟−−→ 𝑢𝑟 , where 𝑒 is starting entity (URI), 𝑝1, ..., 𝑝𝑟 are CIDOC-CRM forward
properties, 𝑢1, ..., 𝑢𝑟 are URIs, and 𝑟 is the radius (path length) between 𝑒 and and 𝑢𝑟 (directly connected through
CIDOC-CRM properties).

Radius Subgraph (R-Graph) of 𝑒 given a radius 𝑟 . We define as𝐺𝑟 (𝑒) the radius subgraph of 𝑒 , i.e., it includes all
the URI sequences starting from 𝑒 , that contains CIDOC-CRM paths exactly of radius 𝑟 .

Union of Radius-Subgraphs (U-Graph) of 𝑒 until a radius 𝑟 . The union of all radius subgraphs of 𝑒 until 𝑟 is
defined as: 𝐺≤𝑟 (𝑒) =

⋃𝑟
𝑖=1𝐺𝑖 (𝑒), i.e., the union of all the (CIDOC-CRM) paths having radius from 1 to 𝑟 .

4.3.2 Step B2. From URIs to text. Since we will use the subgraph(s) as a context, we need to transform them to text. In
particular, for any CIDOC-CRM path of the constructed subgraph(s), each URI is replaced by its string representation

(e.g., through rdfs:label, rdf:value, etc.) , i.e., 𝑙𝑎𝑏𝑒𝑙 (𝑒)
𝑙𝑎𝑏𝑒𝑙 (𝑝1 )−−−−−−−−→ 𝑙𝑎𝑏𝑒𝑙 (𝑢1)

𝑙𝑎𝑏𝑒𝑙 (𝑝2 )−−−−−−−−→ ...
𝑙𝑎𝑏𝑒𝑙 (𝑝𝑟 )−−−−−−−−→ 𝑙𝑎𝑏𝑒𝑙 (𝑢𝑟 ).

Running Example. Figure 5 shows all the radius subgraphs for the painting "The Starry Night". In particular, the
left part shows the subgraph of each radius, the middle part its textual version, and the right side indicative questions
that can be answered (from the subgraph of each radius). Certainly, the U-Graph of 𝑟 = 4 contains all the sentences
shown in the middle part, i.e., is the union of the radius subgraphs for each 𝑟 from 1 to 4. On the contrary, the radius
graph of a specific 𝑟 contains only the texts of that radius. The difference can be also seen in Figure 6, i.e., it compares
the R-graph and U-Graph of the running example for each radius (from 𝑟 = 1 to 𝑟 = 4).

The process for creating subgraphs from SPARQL queries. For creating either the R-Graph or the U-Graph for
a given entity 𝑒 and radius 𝑟 , we send a SPARQL query in a GraphDB triplestore, which enables the creation of paths
starting from 𝑒 . The query that we send can be found in https://github.com/NicolaiGoon/CIDOC-QA-BENCHMARK. As
regards the order of paths that are generated from the query, it depends on the triplestore that one is using for storing
and querying the KG. In our case, the SPARQL query, that is sent in GraphDB, first returns the paths (i.e., their textual
representation) of the selected radius 𝑟 (the largest paths), then of radius 𝑟 − 1 and finally of radius 1 (the smallest paths).

4.4 Steps B-C. Methods based on Radius Subgraphs for Answer Extraction

The objective is to provide an answer to the question 𝑞, by exploiting one or more subgraphs of 𝑒 and a textual QA
model, e.g., a BERT-based model. However, a key problem is which subgraph(s) to create, since a) different questions
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Fig. 5. The subgraph(s) for the painting The Starry Night of Vincent Van Gogh

Fig. 6. U-Graphs vs R-graphs for the running example (radius 1 to 4)

can require to follow paths of different radius to be answered, and b) large subgraphs can add redundant data that can
affect the effectiveness and efficiency (mainly for questions that can be answered by a subgraph of a smaller radius).

Here, we present four alternative methods that can support an R-Graph (i.e.,𝐺𝑟 (𝑒)) or a U-Graph (i.e.,𝐺≤𝑟 (𝑒)) given
a radius 𝑟 . First, we present a method where we suppose that we know a priori the required radius for answering each
question, and then three automatic methods, i.e., the required radius for answering each question is not given.

Method 1. Known-Radius (KR) - Knowing the Radius a priori: We suppose that we know a priori the required
radial 𝑟𝑞 of answering a question 𝑞. Thereby, we create a single subgraph𝐺 ′ (𝑒, 𝑟𝑞), and the final answer is the following:
𝐾𝑅(𝐺 ′ (𝑒, 𝑟𝑞)) = 𝑎𝑛𝑠 (𝐺 ′ (𝑒, 𝑟𝑞), 𝑞) having a confidence score of the following range: 0 ≤ 𝑠𝑐𝑜𝑟𝑒 (𝑎𝑛𝑠 (𝐺 ′ (𝑒, 𝑟𝑞), 𝑞)) ≤ 1. In
the R-Graph case, 𝐺 ′ (𝑒, 𝑟𝑞) equals 𝐺𝑟𝑞 (𝑒), whereas in the𝑈 -Graph case it equals 𝐺≤𝑟𝑞 (𝑒).

• Advantages and Drawbacks: The ideal case is to know a priori the radius of each question for avoiding to include
noisy information from other radius. However, this is not trivial since it requires to implement mechanisms for answer
radius (and type) prediction, which is one of our future directions.
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Method 2. Fixed Subgraph of Radius 𝑟 (FSR): The notion is similar to 𝐾𝑅 method, however, the radius of the
question (𝑟𝑞) is neither given nor predicted. Thereby, we use a fixed radius 𝑟 for any question 𝑞, i.e., it returns
𝐹𝑆𝑅(𝐺 ′ (𝑒, 𝑟 ), 𝑞) = 𝑎𝑛𝑠 (𝐺 ′ (𝑒, 𝑟 ), 𝑞) (𝑟 is probably different than 𝑟𝑞 ).

• Advantages and Drawbacks: Concerning the U-Graph, i.e., 𝐺≤𝑟 (𝑒), by creating the union of radius subgraphs of
a fixed radius 𝑟 , the answer will be included in the context, even for questions requiring a radius 𝑟𝑞 < 𝑟 . In Figure 5 the
question "Which is the type of The Starry Night?", can be answered from the𝐺≤4 (𝑒), however, a lot of redundant data are
included. Concerning the R-Graph, i.e.,𝐺𝑟 (𝑒), it can be more effective for questions of radius 𝑟 , but it would be infeasible
in most cases to answer questions of a radius < 𝑟 , e.g., by selecting 𝑟 = 2, we can answer the question "Who created the
Starry Night". However, we cannot answer the question about "the type of The Starry Night" (i.e., it is covered only in𝐺1).

Method 3. Best of subgraphs (𝐵𝑜𝑆). It creates all the subgraphs𝐺 ′ (𝑒, 𝑖) for each different radius, i.e., 𝑖 ∈ [1, 𝑟 ] (𝑟 should
be pre-configured). Afterwards, each 𝐺 ′ (𝑒, 𝑖) is used as context (its text version), and it provides a separate answer for
each radius, i.e., 𝑟 answers are provided (each one having a unique confidence score). Finally, it returns the answer that
maximizes the confidence score, i.e., 𝐵𝑜𝑆 (𝑒, 𝑟, 𝑞) = 𝑎𝑛𝑠 (𝐺 ′ (𝑒, 𝑖), 𝑞), s.t., 𝑎𝑟𝑔𝑖𝑚𝑎𝑥 𝑠𝑐𝑜𝑟𝑒 (𝑎𝑛𝑠 (𝐺 ′ (𝑒, 𝑖), 𝑞)), 𝑖 ∈ [1, 𝑟 ]. It is
applicable for both R-Graph and U-Graph,

• Advantages and Drawbacks: Concerning the 𝐵𝑜𝑆𝐺≤𝑟 (i.e., U-graph), we expect a positive impact for questions of
a small radius, however, again redundant data (from a smaller radius) are included. Regarding 𝐵𝑜𝑆𝐺𝑟

(i.e., R-graph),
we expect a positive impact for questions of any radius, mainly for questions of a large radius. Finally, for both cases
(mainly for 𝐵𝑜𝑆𝐺≤𝑟 ) the execution time will be increased (since the answer extraction step is performed 𝑟 times).

Method 4. Threshold based - Best of subgraphs (𝑡-BoS): For avoiding to perform the answer extraction step 𝑟 times,
we can create the subgraphs incrementally, by using a threshold 𝑡 . Starting from 𝑟 = 1, we check if 𝑠𝑐𝑜𝑟𝑒 (𝑎𝑛𝑠 (𝐺 ′ (𝑒, 1), 𝑞)) ≥
𝑡 . If it holds, we return the answer, otherwise we continue with the subgraph of the next radius (until finding a 𝑠𝑐𝑜𝑟𝑒 ≥ 𝑡 ).
In case of failing to reach the threshold, i.e., if ∀𝑖 ∈ [1, 𝑟 ], 𝑠𝑐𝑜𝑟𝑒 (𝑎𝑛𝑠 (𝐺 ′ (𝑒, 𝑖), 𝑞)) < 𝑡 , we select the answer with the
maximum score (i.e., 𝑎𝑟𝑔𝑖𝑚𝑎𝑥 𝑠𝑐𝑜𝑟𝑒 (𝑎𝑛𝑠 (𝐺 ′ (𝑒, 𝑖), 𝑞)). It is applicable for both R-graph and U-graph.

• Advantages and Drawbacks: The major advantage is that we can avoid to perform 𝑟 times the answer extraction
phase, however, by selecting a low threshold 𝑡 , it will possibly not return the answer with the highest score.

Models for Answer Extraction.We can use any BERT-based model that supports extractive QA [26], e.g., such
as those listed in https://rajpurkar.github.io/SQuAD-explorer/. In our evaluation, we have selected the RoBERTa [19]
model, which was fine-tuned on the SQuAD dataset [25]. We selected this model over BERT due to the increased
difficulty of the extractive QA task.

5 EXPERIMENTAL EVALUATION

This section presents the experimental results for the proposed methods of the QA pipeline by using the 5,000 single-
entity factoid questions (question templates Q1-Q10) of the evaluation benchmark of Section 3.1. All the experiments
have been conducted in a single machine with 16 GB RAM, 8 cores, GTX 1050 Ti GPU and 256 GB disk space.

5.1 Effectiveness Results - Single-Entity FactoidQuestions

We provide results for the single entity factoid questions of the benchmark for evaluating RQ1 and RQ2.
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Fig. 7. Average words per subgraph of each
radius

Fig. 8. F1score for the 𝐹𝑆𝑅 method for U-Graphs (grouped by
questions radius)

Fig. 9. F1score for the FSR method for R-Graphs (grouped by
questions radius)

Fig. 10. Comparison of Known Radius (KR) Methods for U-
graphs and R-graphs

Methods and Metrics used. We compare the methods of §4. Since our evaluation benchmark contains questions of
radius 𝑟 ∈ [1, 4], we use 𝑟 = 4 as the max radius for the best of methods. The baseline method is the one that uses the
subgraph of radius=1 (the direct neighbor of each entity). Concerning the metrics, for each question there is a single
golden answer. We define for a question 𝑞, as 𝑡𝑜𝑘𝑒𝑛𝑠𝑔𝑜𝑙𝑑 (𝑞) the set of tokens of the golden answer, and as 𝑡𝑜𝑘𝑒𝑛𝑠𝑝𝑟𝑒𝑑 (𝑞)
the tokens of the predicted answer. Afterwards, we compute the metrics below for each question:

• Precision: 𝑃𝑟𝑒𝑐 (𝑞) = |𝑡𝑜𝑘𝑒𝑛𝑠𝑔𝑜𝑙𝑑 (𝑞) ∩ 𝑡𝑜𝑘𝑒𝑛𝑠𝑝𝑟𝑒𝑑 (𝑞) |
|𝑡𝑜𝑘𝑒𝑛𝑠𝑝𝑟𝑒𝑑 (𝑞) | , with range [0,1].

• Recall: 𝑅𝑒𝑐𝑎𝑙𝑙 (𝑞) = |𝑡𝑜𝑘𝑒𝑛𝑠𝑔𝑜𝑙𝑑 (𝑞) ∩ 𝑡𝑜𝑘𝑒𝑛𝑠𝑝𝑟𝑒𝑑 (𝑞) |
|𝑡𝑜𝑘𝑒𝑛𝑠𝑔𝑜𝑙𝑑 (𝑞) | , with range [0,1].

• F1score: 𝐹1(𝑞) = |2∗𝑃𝑟𝑒𝑐 (𝑞)∗𝑅𝑒𝑐𝑎𝑙𝑙 (𝑞) |
|𝑃𝑟𝑒𝑐 (𝑞)+𝑅𝑒𝑐𝑎𝑙𝑙 (𝑞) | , with range [0,1].

Finally, we compute the average percentage (%) of these metrics for all the questions.
Effectiveness of Step A. Entity Detection. From the 5,000 questions, we recognized and linked correctly the entity

to its URI in 3,920 cases, i.e., 78.4%. Concerning the most errors, there were ambiguous entities (e.g., paintings having as
a title the name of an artist), and entities with popular words that occur in many artworks (e.g., landscape, money).

Effectiveness of Steps B and C. Comparison of methods. The target is to evaluate the effectiveness of the models
based on subgraphs. For this reason, we first provide results by ignoring the questions where we did not manage to
recognize and link correctly the entity. Afterwards, in Table 2 we also provide the results of the whole process.

R-Graph vs U-Graph. Figure 7 shows the average size of the words for U-graph (i.e.,𝐺≤𝑟 ) and the R-graph (i.e.,𝐺𝑟 )
for each different radius (for the entities of the evaluation collection). The size of 𝐺≤𝑟 increases exponentially, as the
radius grows, whereas the size of the 𝐺𝑟 is quite smaller.

Fixed Subgraph Radius (FSR) methods. Fig. 8 shows the F1score of the 𝐹𝑆𝑅(𝐺≤𝑟 ), for the questions grouped by
their radius 𝑟 . For each question group we achieved the highest score by using the (𝐺≤𝑟 ) of the same 𝑟 . An advantage
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Perfect Entity Detection Full QA Process
Automatic Methods Prec. (%) Recall (%) F1score (%) Prec. (%) Recall (%) F1score (%)
𝐹𝑆𝑅(𝐺≤1) (radius 1) (Baseline) 31.4 28.0 28.8 25.2 22.4 23.0
𝐹𝑆𝑅(𝐺≤4) (max radius 4) 63.6 57.7 59.2 52.2 47.7 48.8
𝐹𝑆𝑅(𝐺4) (only radius 4) 28.8 25.6 26.1 21.3 18.8 19.3
𝐵𝑜𝑆𝐺≤𝑟 (𝑟 ∈ [1, 4]) 66.4 59.7 61.7 54.2 49.0 50.5
𝐵𝑜𝑆𝐺𝑟

(𝑟 ∈ [1, 4]) 70.5 61.9 64.5 56.0 49.4 51.4
𝑡-𝐵𝑜𝑆𝐺≤𝑟 (𝑟 ∈ [1, 4], 𝑡 = 0.7) 66.5 59.8 61.8 54.2 49.0 50.5
𝑡-𝐵𝑜𝑆𝐺𝑟

(𝑟 ∈ [1, 4], 𝑡 = 0.7) 70.4 61.8 64.4 55.9 49.3 51.3
Known Radius Methods Prec. (%) Recall (%) F1score (%) Prec. (%) Recall (%) F1score (%)
𝐾𝑅 (𝐺≤𝑟 ) (𝑟 = 𝑟𝑞 for each question 𝑞) 79.2 71.1 73.3 64.4 58.0 59.7
𝐾𝑅 (𝐺𝑟 ),(𝑟 = 𝑟𝑞 for each question 𝑞) 88.9 79.1 81.9 76.7 68.6 70.9

Table 2. Effectiveness Results for (automatic and known) methods for both i) perfect entity Detection and ii) for the full QA process

of 𝐹𝑆𝑅(𝐺≤𝑟 ) is that it can answer questions requiring a smaller 𝑟 even by using subgraphs of a large 𝑟 . However, its F1
score is decreased as 𝑟 increases, whereas even for the questions of the same radius (mainly for large 𝑟 ) it can have a
negative impact due to the noisy data of the previous radius. Indeed, Fig. 9 shows that the 𝐹𝑆𝑅(𝐺𝑟 ) (R-graph) is more
effective for the questions of the same 𝑟 . However, it has low scores for questions of different 𝑟 (and for the overall case).

Known radius (RD) Methods. Figure 10 compares the known radius methods. By knowing the correct radius a
priori, the R-graphs are more effective (i.e., they contain less redundant data in the context), especially as 𝑟 increases,
e.g., for the questions of 𝑟 = 4 the 𝐾𝑅(𝐺4) has a difference of +17 compared to the 𝐾𝑅(𝐺≤4). Moreover, concerning the
overall case, by using the R-graphs we reached an F1score of 81.9 (i.e., +8.6 compared to the case of using the U-graphs).

Effectiveness of Best of Methods. Since we do not perform answer radius (and type) prediction, we would like
to evaluate the performance of the automatic methods (i.e., the required radius is not given a priori), and to compare
their effectiveness with the 𝐾𝑅 methods. Table 2 presents the results of all the methods, i.e., on the left side for the
questions that we recognized correctly the entity (perfect entity detection) and on the right side for the full QA process.
We denote as the baseline method, the one that includes only paths of radius 1, i.e., the direct neighbour of each entity,
as in [22]. Since most questions require larger paths (radius) to be answered, it has very low scores. Concerning the
best-of methods, they are more effective than the FSR ones, indeed, the 𝐵𝑜𝑆𝐺𝑟

achieved the highest F1score, i.e., 64.5.
Threshold-based Methods. By checking several values for the threshold (from 0.1 to 0.9), we decided to use 𝑡 = 0.7.

As we can see, they offer similar results to the best-of-methods and they are faster (on average), i.e., see Sect. 5.3.
Best-of vs Known Radius Methods. Although the best-of methods are the most effective automatic methods, they

are far from reaching the scores of the 𝐾𝑅 methods. This means that in many cases, although the correct answer is
provided in the 𝑟 possible answers, it does not have the highest confidence score.

Precision vs Recall. For all the methods of Table 2, the precision is higher compared to the recall, which means that
the predicted answer contains usually a part of the desired answer (but not the whole one), especially for the questions
whose answer has a high average word length (i.e., Q2, Q3, Q5, Q9).

5.2 Discussion & Possible Improvements

Here, we provide conclusions with respect to the research questions. Concerning the RQ1, the baseline method is not
effective, since it cannot answer effectively questions of radius 𝑟 > 1 (i.e., its F1score equals 23.0). Regarding the RQ2,
the extended pipeline can be effectively used for QA over CIDOC-CRM KGs. Concerning the most effective method, it
is the 𝐵𝑜𝑆𝐺𝑟

method with F1score=51.4 for the full QA process, and with F1score=64.5 for questions with perfect entity
11
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Fig. 11. Average Execution time (per question) for each model and each step

detection. However, the difference in the results of the 𝐾𝑅 methods reveals that there is space for improvements, since
in many cases the answer with the highest confidence score is not the correct one.

Since this is the first attempt for providing a generic QA pipeline for CIDOC-CRM KGs, there is a plenty of space for
improvements, as they follow: i) investigating methods for predicting the required radius, ii) proposing methods for
further minimizing the context, by trying to predict the exact path for answering a given question, iii) evaluating the
methods by using more BERT models except for RoBERTA, and by adding more KGs to the evaluation benchmark and
iv) by adding even more question types and templates (for increasing question diversity).

5.3 Efficiency

First, we needed 9 hours for constructing the index, which is used for the Entity Detection step. However the indexing
process needs to be done once for each KG. The KG size is 450 MB and the resulting index is 1.17 GB on disk. Concerning
the QA process, Fig. 11 shows the average execution time for answering a question for the automated models of Table 2.

Execution time of each step. For all the models, the most-time consuming step is the answer extraction, especially
for the best of methods. Indicatively, for the 𝐵𝑜𝑆𝐺𝑟

case, for the entity detection step we needed the 8.8% of the total
time, for the path expansion the 8%, and for the answer extraction the 83.2%.

Total Execution Time. The FSR models are quite fast, however, they are less effective compared to best-of methods
(see Table 2). Concerning the best-of methods, the fastest ones are those using the R-Graph, i.e., for the 𝐵𝑜𝑆𝐺𝑟

the
average time per question was 1.14 seconds, whereas for the 𝑡-𝐵𝑜𝑆𝐺𝑟

(using 𝑡 = 0.7) the average time was 0.96 seconds.
In the latter case we achieved a 1.18× speedup, by having similar precision, recall and F1score.

6 CONCLUDING REMARKS

In this paper, we proposed and evaluated a radius-based QA pipeline for answering single-entity factoid questions over
CIDOC-CRM (event-based) KGs, since there are not available such QA approaches for the mentioned standard (which
is highly used from cultural institutions). Since CIDOC-CRM KGs require traversing small or even large subgraphs to
answer questions, the pipeline uses methods based on a) elastic search, for recognizing the main entity of the question,
b) subgraph creation through path expansion, which transforms subgraphs (even for large radius) of the detected
entity to text, for being used as a context, and c) neural network models, for extracting the desired answer from the
context. Moreover, we created a benchmark for evaluating the approach having 10,000 questions from the SAAM KG
[30], where most of these questions require to traverse subgraphs of a large radius for being answered. Regarding the
results, we used the 5,000 single-entity factoid questions of the benchmark, and we achieved 78% accuracy for the Entity
Recognition step and an F1score of 51.4% (on average) for the whole process, which highly outperforms the baseline
(F1score for baseline was 23%). Finally we managed to answer each question approximately in 1 second (on average).

12



Evaluating a Pipeline for Question Answering over CIDOC-CRM KGs ACM Hypertext 2023, September, 2023, Rome, Italy

As a future work, we plan to a) extend the evaluation benchmark and provide techniques for answering more
question types, b) propose ways for predicting the exact radius of the given question, c) create a web application for
enabling the QA over any CIDOC-CRM KG as a service, d) evaluate other neural network models, including ChatGPT
[23], and e) exploit machine translation techniques, such as those in [21, 24], for enabling multilingual QA.

Acknowledgments. This work has received funding from the European Union’s Horizon 2020 coordination and
support action 4CH (Grant agreement No 101004468).
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