
The Vulnerability Dataset of a Large
Software Ecosystem

Dimitris Mitropoulos∗, Georgios Gousios†, Panagiotis Papadopoulos‡,
Vassilios Karakoidas∗, Panos Louridas∗, and Diomidis Spinellis∗

∗Department of Management Science and Technology
Athens University of Economics and Business

{dimitro, bkarak, louridas, dds}@aueb.gr

†Software Engineering Research Group
Delft University of Technology

G.Gousios@tudelft.nl

‡Institute of Computer Science
Foundation for Research and Technology, Hellas

panpap@ics.forth.gr

Abstract—Security bugs are critical programming errors that
can lead to serious vulnerabilities in software. Examining their
behaviour and characteristics within a software ecosystem can
provide the research community with data regarding their
evolution, persistence and others. We present a dataset that
we produced by applying static analysis to the Maven Central
Repository (approximately 265GB of data) in order to detect
potential security bugs. For our analysis we used FindBugs, a tool
that examines Java bytecode to detect numerous types of bugs.
The dataset contains the metrics’ results that FindBugs reports
for every project version (a JAR) included in the ecosystem.
For every version in our data repository, we also store specific
metadata, such as the JAR’s size, its dependencies and others.
Our dataset can be used to produce interesting research results
involving security bugs, as we show in specific examples.

Keywords—Security Bugs, Software Security, Static Analysis,
FindBugs, Software Ecosystem, Maven Repository, Software Evo-
lution.

I. INTRODUCTION

A security bug is a programming error that introduces a
potentially exploitable weakness into a computer system [1].
Compared to other bug categories, failures due to security bugs
have two distinct features: they can severely affect an organiza-
tion’s infrastructure [2], and they can cause significant financial
damage to an organization [3], [4]. Specifically, whereas a
software bug can cause a software artifact to fail, a security bug
can allow a malicious user to alter the execution of the entire
application for his or her own gain. Such bugs could give rise
to a wide range of security and privacy issues, like the access
of sensitive information, the destruction or modification of
data, and denial of service. Moreover, security bug disclosures
lead to a negative and significant change in market value for
a software vendor [5]. One of the most common approaches
to identify security bugs is static analysis [6]. This kind of
analysis involves the inspection of the program’s source or
object code without executing it.

A software ecosystem can be seen as a collection of
software projects, which are developed and co-evolved in the
same environment [7]. Components can be interdependent and
have multiple versions. Examples of such ecosystems include

TABLE I. BUG CATEGORIZATION ACCORDING TO FINDBUGS.

Category Description
Bad Practice Violations of recommended and essen-

tial coding practice.
Correctness Involves coding misting a way that is

particularly different from the other bug
sakes resulting in code that was proba-
bly not what the developer intended.

Experimental Includes unsatisfied obligations. For in-
stance, forgetting to close a file.

Internationalization (i18n) Indicates the use of non-localized meth-
ods.

Multi-Threaded (MT) Correctness Thread synchronization issues.
Performance Involves inefficient memory usage allo-

cation, usage of non-static classes.
Style Code that is confusing, or written in a

way that leads to errors.
Malicious Code Involves variables or fields exposed to

classes that should not be using them.
Security Involves input validation issues, unau-

thorized database connections and oth-
ers.

Python’s PyPI1 (Python Package Index), Perl’s CPAN2 (Com-
prehensive Perl Archive Network), Ruby’s RubyGems3 and the
Maven Central Repository.4 Maven is a build automation tool
used primarily for Java projects hosted by the Apache Software
Foundation. It uses XML to describe the software project being
built, its dependencies on other external modules, the build
order, and required plug-ins. To build a software component,
it dynamically downloads Java libraries and Maven plug-ins
from the Maven Central Repository, and stores them in a local
cache. The repository can be updated with new projects and
also with new versions of existing projects that can depend on
other versions.5

To analyze the Maven repository we used FindBugs,6 a
static analysis tool that was also used for research purposes
in [8] and [9]. FindBugs’ role is to examine Java bytecode to
detect software bugs and separate them into nine categories.
Two of them involve security issues (see Table I). In this paper
we present: a) the construction process to obtain the collection

1https://pypi.python.org/pypi
2http://www.cpan.org/
3http://rubygems.org/
4http://mvnrepository.com/
5Note that in the Maven repository, versions are actual releases.
6http://findbugs.sourceforge.net/

2014 Third International Workshop on Building Analysis Datasets and Gathering Experience Returns for Security

978-1-4799-8309-4/15 $31.00 © 2015 IEEE

DOI 10.1109/BADGERS.2014.8

69

TABLE II. DESCRIPTIVE STATISTICS MEASUREMENTS FOR THE
MAVEN REPOSITORY.

Measurement Value
Projects 17,505
Versions (total) 115,214
Min (versions per project) 1
Max (versions per project) 338
Mean (versions per project) 6.58
Median (versions per project) 3
Range (over versions) 337
1st Quartile (over versions) 1
3rd Quartile (over versions) 8

Maven Repository

artf
URL

Project Events
Queue

Worker Worker Worker

Queue
 Loader

RabbitMQ

artf
URL

Fig. 1. The data processing architecture.

of the metrics results that the FindBugs tool produces for
every project version of the repository (115,214 JARs), b) our
dataset and c) how researchers can use the dataset and produce
meaningful results concerning security bugs.

II. CONSTRUCTION PROCESS

Initially, we obtained a snapshot of the Maven repository
and handled it locally to retrieve a list of all the names
of the project versions that existed in it. Then, we filtered
out projects written in programming languages other than
Java because FindBugs analyzes only Java bytecode. The
statistic measurements concerning the repository can be seen
in Table II.

Due to the large volume of our dataset, we designed
our data processing step in a distributed way. A schematic
representation of our data processing architecture can be seen
in Figure 1. In particular, we created a series of processing
tasks based on the JAR list we have obtained and added them to
a task queue mechanism (a RabbitMQ7 message broker). Then,
we executed twenty five workers (custom Python scripts) that
checked out tasks from the queue, processed each project ver-
sion and stored the results to the data repository (a MongoDB8

database system).

A typical processing cycle of a worker included the follow-
ing steps: as soon as the worker was spawned, it requested a
task from the queue. This task contained the JAR name, which
was typically a project version that was downloaded locally.
First, specific JAR metadata were calculated and stored (see
Section III). Then, FindBugs was invoked by the worker and its

7http://www.rabbitmq.com/
8http://www.mongodb.org/

TABLE III. BUG DESCRIPTION.

type EI EXPOSE REP2
category MALICIOUS CODE
source File ANTLRHashString.java
class antlr.ANTLRHashString
method setBuffer
sourceline start 97
sourceline end 98

results were also stored in the data repository. Note that before
invoking FindBugs, the worker checked if the JAR is valid
in terms of implementation. For instance, for every JAR the
worker checked if there were any .class files before invoking
FindBugs.

When the data collection was completed, we ran some tests
to check the validity of the results. A common issue that we
discovered was the out-of-memory crashes of FindBugs, which
demanded the repetition of the process for the corresponding
JARs, with the appropriate settings in the Java Runtime Envi-
ronment (JRE).

III. DATASET ENTRIES

FindBugs reports bug collections that include all the bugs
discovered in a JAR file. For every registered bug, there are
numerous accompanying features like the class, the method
and the line that the bug was found (see Table III). FindBugs’
results also include additional information like the number of
classes included in the examined JAR and others.

As we mentioned earlier, our data were stored in a
MongoDB database that stores its records in JSON-like doc-
uments. However, FindBugs outputs its results in XML format.
Hence, all the data were converted to the JSON format by
mapping all XML elements to JSON objects.

As we discussed in Section II, our workers calculated
and stored specific metadata together with the FindBugs’
results. Such metadata included the JAR’s size (in terms of
bytecode), its dependencies, and the ordinal version number
of the version. This number was derived from an XML file
that accompanies every project in the Maven repository called
maven-metadata.xml. The following listing shows the format
of the metadata each worker collected. Note that the results of
FindBugs are too large to fit, thus in order to see a complete
instance please visit our GitHub repository (see Section VII):

{"JarMetadata": {
"version": "1.0.0",
"version_order": "1",
"jar_size": "34768",
"dependencies": [

{
"version" : "2.0",
"groupId" : "org.apache.maven",
"artifactId" : "maven-project"

},
{ /* other dependencies */ }

],
"group_id": "org.apache.myfaces.buildtools",
"jar_filename": "myfaces-jdev-plugin-1.0.0.jar",
"artifact_id": "myfaces-jdev-plugin",
},

"BugCollection": { /* FindBugs data */ }
}

70

25

0

2

4

6

8

10

12

14

16

18

20

22

Bug Categories

%

Correctness

 Bad
Practice

MT_Correctness

Performance

Experimental

Style

i18n

Malicious
 Code

Security

Fig. 2. Bug percentage in Maven repository.

−150 −100 −50 0

−1
00

−5
0

0

CLUSPLOT(data)

Component 1

C
om

po
ne

nt
 2

These two components explain 62.29 % of the point variability.

●
●

●●
●

●

●
●

●

●● ●

●
●

●
●
●
●● ●
●●

●

●

●

●
●●

●

●

●

●
●

●●●
●

●●
●

●●

●

●●●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●●

●

●●
●
●

●
●
●

●● ●

●

●
●

●●

●●

●

●●
●
●
● ●

●

●

●

●

●

●

●

● ●
●

●
●●

●

●

●

● ●

●

●●●
●

●

●
●
●●

●
●

●

Fig. 3. Basic k-means clusters of all the versions that exist in the ecosystem.

IV. GATHERING EXPERIENCE RETURNS FOR SECURITY
BASED ON OUR DATASET

Since MongoDB provides a rich query interface, it was
easy to find out how software bugs are distributed among
the repository (see Figure 2) or identify the main clusters
that are formed based on the number of the bugs of every
version (see Figure 3). An interesting observation is that the
Malicious Code bugs, together with the Bad Practice bugs are
the most popular in the repository. Also, a simple query like the
following, will reveal that from the total number of versions,
45,559 of them contained at least one bug coming from the
Malicious Code category:

db.findbugs.find({
’BugCollection.BugInstance.category’ :
’MALICIOUS_CODE’}).count()

TABLE IV. CORRELATIONS BETWEEN VERSION AND SOFTWARE BUGS
COUNT.

Category Spearman Correlation p-value
Security 0.04 < 0.05
Malicious Code 0.03 � 0.05
Style 0.03 � 0.05
Correctness 0.04 � 0.05
Bad Practice 0.03 � 0.05
MT Correctness 0.09 � 0.05
i18n 0.06 � 0.05
Performance (0.01) 0.07
Experimental 0.09 � 0.05

Another observation involves specific bugs thath we could
consider as critical and they are a subset of the Security
category. Such bugs are related to vulnerabilities that appear
due to the lack of user-input validation and can lead to dam-
aging attacks like SQL injection and Cross-Site Scripting [10].
Also, as FindBugs’ bug descriptions indicate,9 if an application
has bugs coming from this category, it might have more
vulnerabilities that FindBugs doesn’t report. Table V presents
the number of versions where at least one of these bugs exists.
In essence, 5,341 project versions, contained at least one bug
related to user-input validation issues. Given the fact that other
projects include these versions as their dependencies, they
are automatically rendered vulnerable if they use the code
fragments that include the security bugs.

Furthermore, we have created a series of scripts to exhibit
how the dataset can be used to capture correlations regarding
the evolution of security bugs. First, based on the dataset we
produced some metadata that contained the number of bugs per
category in each project version. Based on these metadata we
estimated the relation between bugs and time (see Table IV).
Specifically, we calculated the Spearman correlations between
the defects count and the ordinal version number across all
projects. The zero tendency that can be seen on Table IV
applies to all versions of all projects together.

The situation was different in individual projects where we
performed Spearman correlations between security bug counts
and version ordinals in all projects we examined. These paint
a different picture from the above table, shown in Figure 4.
The spike in point zero is explained by the large number
of projects for which no correlation could be established—
note that the scale is logarithmic. Still, we can see that there
were projects where a correlation could be established, either
positive or negative. Such results indicate that we cannot say
if vulnerabilities decrease or increase as projects mature.

In addition, we explored the relation between security bugs
with the size of a project version, measured by the size of
its JAR file by carrying out correlation tests between the size
and the security bug counts for each project and version. The
results can be seen in Table VI. An interesting observation is
that the Security category stands out by having a remarkably
lower effect than the other categories. As we mentioned earlier,
many bugs that belong to this category are related to user-input
validation issues. Hence, it seems that even if a programmer
adds code to a new version, if this code does not require user
input, the possibility of such bug is minimal.

9http://findbugs.sourceforge.net/bugDescriptions.html

71

TABLE V. NUMBER OF PROJECT VERSIONS THAT CONTAIN AT LEAST ONE SECURITY BUG RELATED TO USER-INPUT VALIDATION ISSUES.

Bug Description Number of Project Versions
HRS: HTTP cookie formed from untrusted input 151
HRS: HTTP response splitting vulnerability 1,579
SQL: non-constant string passed to execute method on an SQL statement 1,875
SQL: a prepared statement is generated from a non-constant String 1,486
XSS: JSP reflected cross site scripting vulnerability 18
XSS: Servlet reflected cross site scripting vulnerability in error page 90
XSS: Servlet reflected cross site scripting vulnerability 142

(a) (b)

Fig. 4. Correlations between version and software bugs count.

TABLE VI. CORRELATIONS BETWEEN JAR SIZE AND SOFTWARE BUGS
COUNT.

Category Spearman Correlation p-value
Security 0.19 � 0.05
Malicious Code 0.65 � 0.05
Style 0.68 � 0.05
Correctness 0.51 � 0.05
Bad Practice 0.67 � 0.05
MT Correctness 0.51 � 0.05
i18n 0.53 � 0.05
Performance 0.63 � 0.05
Experimental 0.36 � 0.05

Figure 5 presents the pairwise correlations between all bug
categories. To establish these correlations, we calculated the
correlations between the number of distinct bugs that appeared
in a project throughout its lifetime. Our results show that bugs
coming from the Security category are not correlated with the
bugs coming from other categories. This indicates that security
bugs of this kind do not appear together with the other bugs.10

V. THREATS TO VALIDITY

During our dataset analysis we faced some limitations that
concerned the non-availability of some JARs. Specifically, there
were some JARs included in the initial JAR list, that were
not available online, when the FindBugs result collection was
performed.

A threat to the internal validity of our dataset construction
process could be the false alarms of the FindBugs tool [8], [12],
[13]. Specifically, reported security bugs may not be applicable
to an application’s typical use context. For instance, FindBugs
could report an SQL injection vulnerability in an application

10Further research concerning the examination of security bugs based on
this dataset can be found in our previous paper [11].

Secu
rit

y

Malic
ious C

ode

Sty
le

Bad Pra
cti

ce

Corre
ctn

ess

MT C
orre

ctn
ess

Perfo
rm

ance

i18n
Experim

enta
l

Security

Malicious Code

Style

Bad Practice

Correctness

MT Correctness

Performance

i18n

Experimental

Fig. 5. Correlation matrix plot for bug categories. Blue color indicates positive
correlation. The darker the color (and the more acute the ellipsis slant), the
stronger the correlation.

that receives no external input. In this particular context, this
would be a false positive alarm. False alarms of static analysis
tools and how they can be reduced are issues that have already
been discussed in literature [9], [14] and they are beyond the
scope of this paper.

VI. RELATED WORK

Our work is related to the creation of datasets to facilitate
research and the examination of software vulnerabilities.

The Maven ecosystem has been previously analyzed by
Raemaekers et al. [15] to produce the Maven dependency

72

dataset. Apart from basic information like individual methods,
classes, packages and lines of code for every JAR, this dataset
also includes a database with all the connections between the
aforementioned elements. Our work differs from this research
because it reports all bugs coming from the output of a static
analysis tool, for each JAR contained in the Maven repository.

Identyfying software bugs in multiple projects is not a new
idea [16]. On the security front, Ozment and Schechter [17]
examined the code base of the OpenBSD operating system
to determine whether its security is increasing over time.
Massacci et al. [18] observed the evolution of software defects
by examining six major versions of Firefox. In addition,
Shahzad et al. [1] analysed large sets of vulnerability data-
sets to observe various features of the vulnerabilities that they
considered critical, while Edwards et al. [19] have examined
the evolution of security bugs by examining different versions
of four projects.

VII. CONCLUSIONS

In this paper, we have presented a dataset that includes
all the software bugs that each JAR of the Maven central
repository contains along with some other metadata mentioned
in Section IV. We have also shown how our data can be used
to extract results concerning the evolution and the behaviour
of security bugs.

Initially, we made some observations concerning the se-
curity bugs of the Maven repository as a whole. Then, based
on our dataset, we found that we cannot say with confidence
if security bugs increase or decrease as projects mature. We
also showed that there were many projects where security
bug counts do not change as projects evolve. Concerning the
relation between severe security bugs and a project’s size
we showed that they are not proportionally related. Given
that, we could say that it is productive to search for and fix
security bugs even if a project grows bigger. In addition, the
pairwise correlations between all categories indicates that even
though all the other categories are related, severe bugs do not
appear together with the other bugs. Such findings indicate
that projects have their own idiosyncrasies regarding security
bugs and could help us answer questions like: what are the
common characteristics of the projects where security bugs
increase over time? Finally, the analysis of a vulnerability
management dataset like the NVD11 (National Vulnerability
Database), to identify disclosed vulnerabilities and check if
there is a correlation between them and our dataset, could
provide interesting results.

By selecting a large ecosystem that includes applications
written only in Java, we excluded by default measurements
that involve vulnerabilities like the infamous buffer overflow
vulnerabilities [20]. Still, by examining software artifacts with
similar characteristics facilitates the formation of an experi-
ment. Thus, future work on our approach could also involve
the observation of other ecosystems like the ones mentioned in
Section I and projects in different languages like Ruby, Python
etc. Concluding, the complete set of our data and source code
will become available upon publication.

11http://nvd.nist.gov/

VIII. ACKNOWLEDGMENTS

The present research is under the Action 2 of AUEB’s12

Research Funding Program for Excellence and Extrovesion of
the academic year 2014/2015. It is financed by the University’s
Research Center.

The project is being co-financed by the European Regional
Development Fund (ERDF) and national funds and is a part of
the Operational Programme “Competitiveness & Entrepreneur-
ship” (OPCE II), Measure “COOPERATION” (Action I).

REFERENCES

[1] M. Shahzad, M. Z. Shafiq, and A. X. Liu, “A large scale exploratory
analysis of software vulnerability life cycles,” in Proceedings of the
2012 International Conference on Software Engineering, ser. ICSE
2012. Piscataway, NJ, USA: IEEE Press, 2012, pp. 771–781.

[2] H. Shahriar and M. Zulkernine, “Mitigating program security vulnera-
bilities: Approaches and challenges,” ACM Comput. Surv., vol. 44, no. 3,
pp. 11:1–11:46, Jun. 2012.

[3] J.-E. J. Tevis and J. A. Hamilton, “Methods for the prevention, detection
and removal of software security vulnerabilities,” in Proceedings of
the 42nd annual Southeast regional conference, ser. ACM-SE 42.
New York, NY, USA: ACM, 2004, pp. 197–202. [Online]. Available:
http://doi.acm.org/10.1145/986537.986583

[4] D. Baca, B. Carlsson, and L. Lundberg, “Evaluating the cost reduction
of static code analysis for software security,” in Proceedings of the third
ACM SIGPLAN workshop on Programming languages and analysis for
security, ser. PLAS ’08. New York, NY, USA: ACM, 2008, pp. 79–88.

[5] R. Telang and S. Wattal, “Impact of software vulnerability announce-
ments on the market value of software vendors - an empirical investi-
gation,” in Workshop on the Economics of Information Security, 2007,
p. 677427.

[6] B. Chess and J. West, Secure programming with static analysis, 1st ed.
Addison-Wesley Professional, 2007.

[7] M. Lungu and M. Lanza, “The small project observatory: A tool for
reverse engineering software ecosystems,” in Proceedings of the 32Nd
ACM/IEEE International Conference on Software Engineering - Volume
2, ser. ICSE ’10. New York, NY, USA: ACM, 2010, pp. 289–292.
[Online]. Available: http://doi.acm.org/10.1145/1810295.1810356

[8] N. Ayewah and W. Pugh, “The google FindBugs fixit,” in Proceedings
of the 19th international symposium on Software testing and analysis,
ser. ISSTA ’10. New York, NY, USA: ACM, 2010, pp. 241–252.

[9] J. Spacco, D. Hovemeyer, and W. Pugh, “Tracking defect warnings
across versions,” in Proceedings of the 2006 international workshop on
Mining software repositories, ser. MSR ’06. New York, NY, USA:
ACM, 2006, pp. 133–136.

[10] D. Ray and J. Ligatti, “Defining code-injection attacks,” in
Proceedings of the 39th annual ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, ser. POPL ’12. New
York, NY, USA: ACM, 2012, pp. 179–190. [Online]. Available:
http://doi.acm.org/10.1145/2103656.2103678

[11] D. Mitropoulos, V. Karakoidas, P. Louridas, G. Gousios, and
D. Spinellis, “Dismal code: Studying the evolution of security
bugs,” in Proceedings of the LASER Workshop 2013, Learning from
Authoritative Security Experiment Results. Usenix Association, Oct.
2013, pp. 37–48. [Online]. Available: http://www.dmst.aueb.gr/dds/
pubs/conf/2013-LASER-BugEvol/docs/html/evol.html

[12] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” SIGPLAN Not.,
vol. 39, no. 12, pp. 92–106, Dec. 2004.

[13] “An evaluation of findbugs,” http://www.cs.cmu.edu/∼aldrich/courses/
654-sp07/tools/Sandcastle-FindBugs-2009.pdf, accessed: 2014-08-08.

[14] S. Heckman and L. Williams, “A model building process for identifying
actionable static analysis alerts,” in Proceedings of the 2009 Interna-
tional Conference on Software Testing Verification and Validation, ser.
ICST ’09. Washington, DC, USA: IEEE Computer Society, 2009, pp.
161–170.

12Athens University of Economics and Business.

73

[15] S. Raemaekers, A. v. Deursen, and J. Visser, “The maven repository
dataset of metrics, changes, and dependencies,” in Proceedings of the
10th Working Conference on Mining Software Repositories, ser. MSR
’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 221–224. [Online].
Available: http://dl.acm.org/citation.cfm?id=2487085.2487129

[16] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, and D. Engler, “A few billion lines
of code later: using static analysis to find bugs in the real world,”
Communications of the ACM, vol. 53, no. 2, pp. 66–75, 2010.

[17] A. Ozment and S. E. Schechter, “Milk or wine: does software security
improve with age?” in Proceedings of the 15th conference on USENIX
Security Symposium - Volume 15, ser. USENIX-SS’06. Berkeley, CA,
USA: USENIX Association, 2006.

[18] F. Massacci, S. Neuhaus, and V. H. Nguyen, “After-life vulnerabilities: a
study on firefox evolution, its vulnerabilities, and fixes,” in Proceedings
of the Third international conference on Engineering secure software
and systems, ser. ESSoS’11. Berlin, Heidelberg: Springer-Verlag, 2011,
pp. 195–208.

[19] N. Edwards and L. Chen, “An historical examination of open source
releases and their vulnerabilities,” in Proceedings of the 2012 ACM
conference on Computer and communications security, ser. CCS ’12.
New York, NY, USA: ACM, 2012, pp. 183–194. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382218

[20] A. D. Keromytis, “Buffer overflow attacks,” in Encyclopedia of Cryp-
tography and Security (2nd Ed.), 2011, pp. 174–177.

74

