
No Sugar but all the Taste!
Memory Encryption without Architectural Support

Panagiotis Papadopoulos, Giorgos Vasiliadis, Giorgos Christou,
Evangelos Markatos, Sotiris Ioannidis

FORTH-ICS, Greece
{panpap, gvasil, gchri, markatos, sotiris}@ics.forth.gr

Abstract. The protection of in situ data, typically require solutions
that involve different kinds of encryption schemes. Even though the ma-
jority of these solutions prioritize the protection of cold data stored on
secondary devices, it has been shown that sensitive information like pass-
words, secrets, and private data can be easily exfiltrated from main mem-
ory as well, by adversaries with physical access. As such, the protection
of hot data that reside on main memory is equally important.
In this paper, we aim to investigate whether it is possible to achieve
memory encryption without any architectural support at a reasonable
performance cost. In particular, we propose the first of its kind software-
based memory encryption approach, which ensures that sensitive data
will remain encrypted in main memory at all times. Our approach is
based on commodity off-the-shelf hardware, and is totally transparent
to legacy applications. To accommodate different applications needs, we
have built two versions of main memory encryption: Full and Selective
Memory Encryption. Additionally, we provide a new memory allocation
library that allows programmers to manage granular sensitive memory
regions according to the specific requirements of each application. We
conduct an extensive quantitative evaluation and characterization of the
overheads of our software-based memory encryption, using both micro-
benchmarks and real-world application workloads. Our results show that
the performance overheads due to memory encryption are tolerable in
real-world network scenarios, below 17% for HTTP and 27% for HTTPS.

1 Introduction

The theft of sensitive data is an escalating problem. According to a recent
study [17], it is estimated that data breaches can cost between $90 and $305
per record exposed, leading to an average cost of around $4.8 million per com-
pany per incident. To protect data stored on secondary storage devices, many
approaches that provide full disk encryption have been proposed [20, 26]. The
majority of these approaches encrypt all data stored on the disk using a secret
key that is provided, usually, at boot time. As a result, in case of IT hard-
ware equipment theft, physical attack, or industrial espionage, all corporate and
sensitive data stored on the hard disk will be protected.

Besides the protection of (cold) data stored on secondary storage devices,
sensitive data can also reside on main memory (hot data), where they are typ-
ically in clear-text. This permits the launching of memory attacks, and allows

the exploitation of main memory and the exfiltration of data used during execu-
tion. More importantly, it is not only servers or desktops that are under threat.
According to [17], more than 40% of business users leave their laptops in sleep or
hibernation mode when traveling, leaving their private or corporate data, keys
or passwords residing in memory unprotected. As a consequence, an adversary is
able to retrieve all data from the main memory, along with any stored sensitive
data, e.g., session keys, passwords, HTTP cookies, SSL key pairs, gaining this
way access to online services, bank accounts or local encrypted hard disks. Some
of the typical methods adversaries utilize to steal data from main memory are
cold boot attacks [11,12,29] and DMA attacks [6, 28].

To overcome these problems, many approaches for memory encryption have
been proposed [7, 21]. These approaches integrate several architectural mecha-
nisms to provide encryption and secure context management of data that re-
side in off-chip memory regions. Although these systems provide strong security
guarantees with acceptable performance, their use in practice is limited, as they
require hardware support and cannot be directly applied to commodity systems.

In this paper, we design the first to our knowledge software-based memory
encryption approach for commodity, off-the-shelf, systems. With our approach,
application data are always encrypted in main memory, using a 128-bit AES
key, which is randomly generated every time the application is launched to make
it resistant against key guessing attacks [18]. To cope with the computational
overhead of memory encryption, we leverage the Advanced Encryption Standard
Instruction Set for cryptographic operations, which is currently available in the
majority of modern microprocessors. Finally, we experimentally quantify the
cost of keeping sensitive data secure in practical, real-world scenarios.

To summarize, the main contributions of this work are the following:

1. We present, to the best of our knowledge, the first of its kind, design and
implementation for entirely software-based main memory encryption. Our
solution can work transparently without any need to modify the application.

2. We provide a library to allow the users perform partial memory encryp-
tion enabling them this way to create, at runtime, fine-grained encrypted
segments depending on the application requirements.

3. We conduct an extensive quantitative evaluation of software-based main
memory encryption for both static and dynamic instrumentation strategies,
using both micro-benchmarks and real-world applications.

2 Our approach

The goal of our approach is to secure hot data of running processes by deploying
main memory encryption without any architectural support. To do so, we use
code instrumentation to ensure that any process’ data will be stored in main
memory, encrypted at all time. This way, sensitive data residing in main memory
or moving among the different components of an untrusted domain, will always
be protected against prying eyes.

Crypto
EngineCaches

Processor Core

Crypto
EngineCaches

Processor 1 Processor N

Trusted
Domain

Untrusted
Domain

Chipset

DMA Engine

Northbridge
(memory controller hub)

Memory
Bus PCI

Express
RAM

Southbridge
(I/O controller hub)

Keyboard
MouseEthernet

Disk

Processor Core

Fig. 1: Data are always encrypted when residing in main memory or moving between
the different components of the untrusted domain.

2.1 Threat model

In this section, we describe the classes of physical hardware attacks within our
threat model, and additional threats that fall outside the scope of our paper.
In-Scope Threats. We are concerned of adversaries that have physical ac-
cess to the victim’s system where sensitive information is stored, and that the
machine can be exposed to physical hardware attacks: or DMA attacks.
Cold Boot Attacks. In a cold boot attack [11,12,29], the data remanence effect of
RAM is exploited by the adversary to extract the data from the memory. There
are two ways of achieving this: (i) an attacker can freeze the RAM modules
using a refrigerant [22] which then physically remove from the victim’s device
and inserts them into a device that is capable to read the contents of the RAM;
(ii) an attacker can perform a warm boot by running specific attack tools, and
retrieve the contents of the residual memory [8]. In this type of side channel
attack, the attacker is able to retrieve encryption keys and sensitive data from
a running operating system even when the user session is locked. As has been
shown in [27], modern SRAM chips can retain about 80% of their data for up
to a minute at temperatures above -20◦C.
DMA Attacks. This type of attacks leverage the ability of a DMA interface to
allow a peripheral to directly access arbitrary memory regions, and read memory
contents without any supervision from the processor or the OS. More specifically,
an attacker can program a DMA-capable peripheral to manipulate the DMA
controller and read sensitive data stored in memory [24,28]. This type of attack
can be carried out over different IO buses, such as the Firewire, PCI, PCI Express
or Thunderbolt.
Out-of-Scope Threats. Apart from the above attacks, obviously there are
many more threats for the data residing in memory, that fall outside the scope
of this paper.
Memory disclosure attacks. This type of attacks aim to compromise the software,
accessing this way possible secrets and passwords. Such attacks exploit a software
vulnerability to install malicious code. Although this type of attacks are quite
common and important to consider, this paper focuses on attacks that do not
rely on running compromised software.

Yes

No

Store word
<W_i> to mem

64bit temp register
128bit register 128bit register

Store to
memory

Trusted
Domain

Untrusted
Domain

encrypt

is (prev==NULL?)

prev <W_i>prev=W_i

Fig. 2: Subsequent store instructions have
words encrypted as a bundle in the same
block and are then stored on main memory.

Trusted
Domain

Untrusted
Domain

Yes

No

Load to
register

128bit register

128bit register

addr_reg

Pair of 64bit registers

data_reg
Word

2

Word
1

Choose 1
else choose 0

0
1

Load word with
address <addr_i>

Word
1

Word
2

is (addr_reg==addr_i?)

decrypt

Fig. 3: For sequential memory accesses,
the block is decrypted once and the 2nd
word is retrieved directly from the register
instead of re-decrypting the same block.

Side-channel Attacks. Such type of attacks aim to extract sensitive information
by exploiting physical properties (like timing information or power consump-
tion) of the cryptographic implementation. These attacks usually have a limited
accuracy and require a relatively high level of sophistication, especially when the
attacker cannot run arbitrary code on the device, therefore they fall beyond the
threat model of this paper.
Sophisticated Physical Attacks. It is hard to defend against every type of physi-
cal attacks. Indeed, there are several Advanced Persistent Threats (APTs), usu-
ally deployed for corporate espionage, intelligence stealing from governmental
or military infrastructures etc., which under specific circumstances, can achieve
severe data breaches. However, such attacks require specialized equipment and
can often take several months even when carried out by a skilled attacker.

2.2 Main assumptions

Our main assumptions, which are in line with the related literature [13], are
that the processor provides a secure region, within which sensitive information
can reside. As we see in Figure 1, all components outside of the processor are
assumed to be vulnerable, including RAM and its interconnections, like the data
and memory bus, I/O devices, etc. Additionally, we assume a trusted kernel in
the target system. This is a reasonable assumption, keeping in mind that an
adversary capable of controlling the kernel can cause more significant damage
than just eavesdropping sensitive data. The core idea of main memory encryption
related techniques is to avoid potential data breaches, and make any adversary
with the above properties unable of observing, deleting, replacing or modifying
any piece of data existing in a victim system.

3 Main Memory Encryption

In this section, we present our technique for main memory encryption, in order to
secure the data of running applications. Specifically, we show how we instrument
the load and store operations with encryption and decryption instructions.

The instrumentation of load and store instructions can be implemented in
two ways, either (i) statically : by instrumenting the specific memory access in-
structions, or (ii) dynamically : by running the corresponding binary executable
on top of a dynamic instrumentation tool.

The static instrumentation of the binary executable offers better perfor-
mance, however requires the static instrumentation of all linked shared libraries
as well. On the other hand, dynamic instrumentation is able to handle complex
run-time code manipulation cases, such as dynamically generated (JIT), obfus-
cated or self-modifying code. As such, even though dynamic instrumentation
has an extra performance overhead (as we will see in Section 4), it is considered
more flexible and supports both shared libraries and run-time generated code.

3.1 Full memory encryption (FME)

An important design decision, when applying memory encryption, is how to
encrypt the memory data. In 64-bit architectures memory operations operate
up to 64-bit words. However, the AES algorithm operates in block units, where
each block is a minimum of 128 bits. Hence, during each memory operation we
need to collect nearby 128-bit aligned data. This is accomplished by making use
of two xmm registers, one as a load buffer and one as a store buffer. In case of
multiple encryptions, this register helps us temporarily keep data until the next
store instruction targeting near data is issued. The sequential store instructions,
as can be seen in Figure 2, will get a couple of words encrypted in the same
block and then the block will proceed to be stored in the main memory. In case
of decryption, this register allows us to pre-fetch data during sequential memory
accesses. This way, as seen in Figure 3, when a process loads a word and then
loads its very next one, it will retrieve it directly from the register instead of
decrypting again the same block. This solution has the additional benefit of
hiding decryption latency when consecutive words are accessed.

We note that it could be possible to use even larger blocks (> 128 bits).
Such approaches may benefit from less number of performed encryptions and
decryptions, which would improve the performance of programs that exhibit
cache locality and reduce their overall execution time. However, it would also
require quite extensive buffering, which would result to massive utilization of
registers. The reason behind this is that the data will need to be in the registers
for an unknown period of time, until they reach the proper size of the block.
More importantly, applications will have performance gains solely in the case of
sequential data accesses, while in the case of random memory accesses, a large
part of the decrypted data will remain underused and be quickly evicted from
the registers. Using the above encryption scheme, all data placed in the memory
is encrypted, however they are still not well-protected. Given that each block is
encrypted separately, an attacker is able to identify identical ciphertext blocks
that yield identical plaintext blocks, after scanning the entire memory. These
unprotected data patterns allow trivial attacks available in the adversary’s tool-
chest even in the single-snapshot scenario of the cold boot attack. To remedy
this issue, we use a stream cipher encryption mode of operation instead of block

cipher. The challenge of such an approach, in our case, is that applications may
need to randomly access non-sequential single blocks that need to be decrypted
separately. To obtain this random access property during decryption, we employ
the CTR mode of operation by using a per-session random nonce and a per-block
counter. This way, we turn the block ciphers into a stream cipher, eliminating
the potential appearance of patterns.

Handling system calls. It is quite often for applications to perform specific op-
erations that only the kernel has the privilege to execute. For instance, hardware-
related operations (e.g. accessing a hard disk drive), or communication with in-
tegral kernel services, such as process scheduling. The request of such privileged
applications (i.e. system call) usually is followed by application user data and pa-
rameters that need to be passed to the kernel. In our case, all of the data passed
from user to kernel space are encrypted. As a consequence, after extracting the
calling process pid, the kernel obtains the proper process key (see Section 3.4 be-
low), and decrypts the parameters before and respectively, encrypts any results
after executing the system call. There are system calls that are so frequently
used from user-space applications, that can dominate the overall performance.
To avoid the expensive performance penalty of system calls and context-switches,
the kernel uses a virtual dynamic shared object (vDSO) mechanism. In particu-
lar, selected kernel space routines (e.g. gettimeofday(2)) are mapped into the
address space of user-space applications by the kernel, enhancing thus the per-
formance of these applications. Given that there is no switch to the kernel space,
in our case, vDSO is treated like any other shared library object: by having its
store and load instructions cryptographically instrumented.

Signals and non-local jumps. Another case we need to take into account
is signals. When a signal arrives at an application, the used registers and the
processor’s state must be stored for the execution to smoothly continue after-
wards from the current state. That said, in our case, the specific registers may
contain sensitive data that we cannot risk to be spilled in memory in plaintext.
To overcome this, we modified the kernel by using the proper process key, to
encrypt their contents before saving them to sigcontext structure. When the
specific execution continues, the loaded values are decrypted before restored
back to the registers. In a similar way, we deal with the case of non-local jumps
(i.e. setjmp/longjmp). Specifically, in case of setjmp, the data from the utilized
general purpose registers are being encrypted before stored in a jump buffer in
memory. On the other hand, in case of longjmp the data are decrypted after
restored from the jump buffer to the registers right before the application jumps
to the return address set by the setjmp.

Handling context switches. Typically the CPU loads data at run-time in its
registers in order to perform its computations. When context switch evictions
take place, all the previously used data from the registers are moved onto the
stack, which resides in main memory. Considering that there are cases where this
data may be sensitive, sensitive information may find its way unencrypted on
main memory, if these evictions are left unhandled. In our case, these evictions
may swap out to sensitive states of AES stored in XMM registers, even though

they were implemented to run solely on CPU. To remedy this, we modified the
kernel’s typical context switch procedure to encrypt the content of XMM registers
before they get evicted and decrypt them after the process is switched back.
We achieve this by encrypting and decrypting the contents, right before and
right after FXSAVE (i.e. store to register) and FXRSTOR(i.e. restore from register)
instructions respectively.

3.2 Selective memory encryption (SME)
Having all memory encrypted provides the best protection for all applications.
However, our experiments in Section 4 show that the overhead, in terms of per-
formance, can increase significantly. To lower the performance overhead of FME,
it is feasible to encrypt only the memory regions that contain secret or sensitive
data. Indeed, such approach could result in much lower overheads during execu-
tion, proportional to the size of the data that need to be protected from memory
attacks. Unfortunately, though, the exact location of sensitive data in memory
is very difficult to be known in advance. Instead, it will require the developer to
define the exact memory regions, the sensitive data will later reside in. One solu-
tion would be to use #pragma directives to provide additional information about
which variables will be encrypted at compile time. However, this would restrict
memory encryption to static variables only and do not offer much flexibility to
the developer. To address this issue, we implement a secure memory allocator,
namely s malloc to dynamically allocate arbitrary size of memory from the heap.
In order to have an integral number of blocks, the memory is allocated in multi-
ples of 128 bits. Any data written in this portion of memory allocated with this
allocator will always be encrypted. To achieve this, s malloc taints the memory
regions it allocates to ensure that the corresponding memory addresses have to
be encrypted or decrypted when accessed accordingly. For instance, during load
operations we can determine if the loaded data originate from s malloc and need
to be first decrypted before being read. s malloc keeps a structure for each allo-
cation to note the starting memory address that the segment begins along with
its allocated size to denote the total length of the tainted area.
De-allocated memory pages Memory pages that have been de-allocated after
being allocated by an application handling sensitive data may produce left-overs.
These may be readable by attackers, enabling them to retrieve parts or even the
entirety of the sensitive information. Even though Linux has a kernel thread
responsible for zeroing-out the freed pages, due to internal performance opti-
mizations, there is no guarantee when this will occur. In traditional systems this
could pose privacy risks as one may get to read a region of memory that contains
sensitive data. In our case, this is not a problem; the reason is that after memory
allocation, all sensitive data get always encrypted before being placed in heap.
Therefore, sensitive memory disclosure is not possible, as an adversary will read
random bits of the ciphertext.

3.3 Protecting memory from illegal access

After ensuring the confidentiality of written-through data, a problem that may
arise is in case of DMA attacks, where it is possible not only to read data from

memory, but also to write. As a consequence, an attacker could inject the OS
with malicious code. To mitigate this issue, we use the commodity Input-Output
Memory Management Unit (IOMMU)1 [16] to prevent malicious memory ac-
cess through DMA. The IOMMU is an IO mapping mechanism, which translates
device-visible virtual addresses to physical addresses using, OS-provided map-
pings. Besides, it also provides memory protection, where memory is protected
either from malicious devices that attempt to perform DMA attacks or from
faulty devices that initiate errant memory transfers. This protection is achieved
by enabling the OS to restrict who can access what memory region. As a result, a
device cannot read or write to memory that has not been explicitly allocated or
mapped to it. In our case, IOMMU is properly configured in order to forbid any
access to in-memory kernel or application data.

3.4 Key Management

In this section we describe how we protect the AES secret keys that are used
for encryption and decryption, against all attacks within our threat-model (de-
scribed in Section 2.1). Previous works have shown that it is sufficient to prevent
sensitive data and algorithmic state from leaking to RAM by implementing the
cryptographic operations using on-chip memory only [9, 20].

In our approach, each process is assigned with a different key, that is stored
in the Process Control Block (PCB) data structure. The PCB contains all the in-
formation needed to manage a particular process, and is placed at the beginning
of the kernel stack of the process. Still, since the kernel memory is vulnerable to
cold boot attacks, each process key is encrypted before it is stored in the PCB.
The process keys are encrypted using a master key which is stored, similar to
Tresor [20], inside a pair of debug registers2. By doing so, we avoid storing any
key in main memory. The reason we utilize debug registers is that, by default,
they can be accessed only from ring 0 privileged level. As a consequence, they
cannot be reached by malicious user-level applications and more importantly,
they do not used in procedures like context setjmp/longjmp or signal handling:
cases that otherwise one would have to take specific care to prevent them from
being spilled into memory. Additionally, we have modified the ptrace system call
to respond with EBUSY error to any application that may request the particular
registers, preventing them thus from being accessed from user level3. We need to
note at this point, that there are studies questioning such use of debug registers
to store secrets [5]. According to these, an attacker is able to inject and execute
code in ring 0 privilege level by deploying a DMA attack, and consequently,
disclose the secrets stored in the debug registers. In our case, with the use of

1 IOMMU can be considered commodity since both leading x86 vendors (i.e. AMD and
Intel) ship their CPUs with this feature supported (see VT-d [1] and AMD-V [2]).

2 Chosen from the dr0 - dr3 range group. On 64-bit systems, only 2 are needed to
store 2 64-bit words. On 32-bit systems we need 4 for the same amount of data.

3 Debug registers are used by software debuggers (e.g. GDB) to store breakpoint
addresses. However, even without them, debuggers can still operate seamlessly using
the rest of the debug register as well as software breakpoints.

0%

20%

40%

60%

80%

100%

401.bzip

403.gcc

429.mcf

456.hmmer

458.sjeng

462.libquantum

464.h264ref

P
o

rt
io

n
 (

%
)

encryptions decryptions

Fig. 4: Portion of crypto-
graphic operations in each
SPEC benchmark.

10
-1

x

10
0
x

10
1
x

10
2
x

10
3
x

401.bzip2

403.gcc

429.m
cf

456.hm
m

er

458.sjeng

462.libquantum

464.h264ref

O
v
e
rh

e
a
d

PIN
PIN+Encryption

Fig. 5: Runtime overhead
of dynamic instrumentation
using the SPEC suite.

10
0

10
1

10
2

401.bzip2

403.gcc

429.mcf

456.hmmer

458.sjeng

462.libquantum

464.h264ref

In
s
tr

u
c
ti
o

n
s
 p

e
r

m
e
m

o
ry

 a
c
c
e
s
s vanilla

with encryption

Fig. 6: Number of instruc-
tions per memory access
with and without memory
encryption (vanilla).

IOMMU, we forbid such illegal memory injections and as a result, we eliminate
the possibility of such attacks.
Bootstrapping. The master key that encrypts the process keys inside PCB is
randomly generated at boot time, ensuring this way, forward secrecy. To achieve
that, we modified the kernel to use RDRAND instruction to perform on-chip hard-
ware random number generation and create the next master key. Apparently,
the new master key must be present to every core of the processor. The core
responsible for the master key generation (core with ID 0), is responsible to dis-
tribute it across the rest of the cores. Therefore, the newly generated key will
be stored not only in the local debug registers, but also in the Memory Type
Range Registers (MTRR), which are visible to all cores. The rest of the cores will
spin on a shared variable till core 0 sets the value to true denoting that the new
key has been generated and placed in the MTRR. After that, each core can obtain
the key, store it in its local debug registers, and finally increment atomically a
shared counter. By monitoring this shared counter, core 0 knows how many of
the cores have obtain the new key. When they all get informed, it immediately
cleans the key from the MTRR registers and the boot process continues normally.
Obviously, there are cases where data from the memory need to be swapped-
out from memory and stored in the disk. Such data, would not be able to get
decrypted after boot if it gets stored encrypted with the current master key. In
such cases though, we assume that the users have deployed not only memory
encryption but also full disk encryption (FDE). This means that the data will
get encrypted with the FDE’s key, before swapped out to disk.

4 Performance Evaluation

For the performance measurements we used a server that is equipped with two
six-core Intel Xeon E5-2620 operating at 2.00GHz, with 15MB L2 cache each.
The server contains 8GB RAM and an Intel 82567 1GbE network interface.

4.1 Full Memory Encryption

At first, we measure the overhead imposed for encrypting all data stored in main
memory. This way, we determine the cost of the most intensive but secure strat-
egy, where every single byte written to memory is encrypted and respectively

decrypted before it is read.

Dynamic Instrumentation
One way to keep all data residing in memory encrypted is to instrument dy-
namically every single memory accessing operation at runtime. By leveraging
this technique, we instrumented the memory accessing operations and enhanced
them with the appropriate AES-NI instructions. To achieve this, we used the ex-
ecution environment of the Intel’s dynamic binary instrumentation tool PIN [4].

We chose this tool due to its high-versatility and support for multiple archi-
tectures (x86, x64, ARM, and more). Additionally, PIN enables the developer
to inspect and tamper with an application’s original instructions, when at the
same time, it operates entirely in user space. It just-in-time compiles (JIT) the
application’s original instructions along with the instrumentation the developer
may have added. This results in producing new code which is placed into a code
cache awaiting execution. Dynamic instrumentation with PIN guarantees that
any memory access will be intercepted either if it belongs to a dynamic library
or self-modifying code etc.

Regarding our memory encryption approach, we insert a callback function
to PIN4, thus intercepting each of the original instructions and we instrument
the ones that either load or store data from or to the main memory respectively.
We then extract the data from the utilized register and we apply encryption
or decryption depending on the instrumented instruction. Both encryption and
decryption are performed using the AES-NI instructions. The output of these
cryptographic operations replaces the original register’s value and the program
continue its execution to the next instruction.

To evaluate the performance of our approach along with the overhead im-
posed by the binary instrumentation, we measure the performance of (i) a vanilla
application (listed as Native), (ii) a dynamic instrumentation of the applica-
tion’s store and load instructions using PIN (listed as PIN), and finally (iii)

our approach: encryption with AES using dynamic instrumentation (listed as
PIN+Encryption). To measure the plain instrumentation overhead produced by
PIN (case (ii)), we perform memory instruction instrumentation with empty
function calls, instead of any cryptographic operation.

Benchmarks: In the first experiment, we measure the performance of FME
using several representative benchmarks, extracted from the SPEC CPU2006
suite (CINT2006). These benchmarks are comprised of several computational
and memory intensive applications aiming to stress both CPU and main mem-
ory usage. In Figure 4, we see the portion of cryptographic operations in each
benchmark and in Figure 5, the slowdown of a simple dynamic instrumenta-
tion of the application’s load and store instructions (PIN). This number gives
us a baseline for the overhead introduced by the PIN tool. In the same figure,
we present the results of the instrumentation with the appropriate AES-NI in-
structions to encrypt or decrypt every chunk of memory that is stored in or

4 The confidentiality of Pintool’s code falls beyond the scope of this study, in this
paper we only care about the sensitive data of an application.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

100050025012510080604020105

T
h

ro
u

g
h

p
u

t
(r

o
w

s
/s

e
c
)

Table Insertions (x1000)

PIN+Encryption
PIN

Native

Fig. 7: Achieved through-
put when inserting 1M rows
into the database.

10
-1

x

10
0
x

10
1
x

10
2
x

10
3
x

100050025012510080604020105

O
v
e
rh

e
a
d

Table Insertions (x1000)

PIN+Encryption
PIN

Fig. 8: Slowdown when in-
serting 1M rows into the
database.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10 100 1000

R
e
q
u
e
s
ts

 p
e
r

s
e
c
 (

#
/s

e
c
)

Rate (Mbit/sec)

Native
PIN

PIN+Encryption

Fig. 9: Req/sec when down-
loading a file of 1522 bytes
using different transfer rates.

loaded from the main memory (PIN+Encryption). As we can see, the run-time
overhead of simply instrumenting the application’s load and store instructions
reaches up to 6 times slowdown for h264ref benchmark, while the additional
overhead when adding encryption reaches up to 10 times slowdown. The major
slowdown in performance arises from the fact that the data are encrypted and
decrypted even when residing in the cache. As the caches in x86 architecture
are not addressable, data can reside there in clear-text, without the concern of
being leaked. Unfortunately, as it is not possible to check if specific data are
cached or not, we cannot benefit from memory locality. In Figure 6, we measure
the instructions per memory access with and without our memory encryption
approach. As we see, the average encryption cost is an additional 14-18 instruc-
tions. This number is not constant; it depends on the benchmark’s synthesis
of memory accesses and how sequentially the data are being accessed. Due to
our pre-fetching mechanism (described in Figures 2 and 3): (i) in case of store,
encryption takes place only every 2 words (load from register previous word and
encrypt the pair - 28 instr.), when (ii) in case of load, the word can be fetched
directly from register (8 instr.) or retrieved after decrypting a block (then the
unneeded second word has to be stored in the register - 26 instr.).
Real-world applications: Additionally, we evaluate our approach in a real
scenario using two real-world applications. The first, is the SQLite3 relational
database management system. We used the C/C++ SQLite interface to im-
plement a simple benchmark that reads a large, 60 MBytes, tab-separated file
including 1,000,000 rows of data and updates a table’s entries with the respec-
tive values. Figure 7 shows the achieved throughput, while Figure 8 shows the
slowdown when inserting data into the database as a function of the number of
insertions. As expected, the more rows the benchmark updates, the higher the
imposed overhead becomes, since the number of memory encryptions increases.
In contrast to that, the cost of the instruction instrumentation (PIN) is always
proportional to the number of the table insert instructions, resulting to almost
linear overhead to the application.

As a second real-world application, we ran the Lighttpd web server both as a
vanilla system and with the two versions of dynamic instrumentation In the first
experiment, we used a separate machine located on the same local network to
repeatedly download a file of 1522 bytes. We synthetically limit the rate of the
client’s network line to three different network transfer rates: 10, 100 and 1000

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

1 2 4 8 16 32 64 128256

L
a
te

n
c
y
 (

s
e
c
)

File size (KB)

Native
PIN

PIN+Encryption

(a) Client is over a 10 Mbps
network.

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

1 2 4 8 16 32 64 128256

L
a
te

n
c
y
 (

s
e
c
)

File size (KB)

Native
PIN

PIN+Encryption

(b) Client is over a 100
Mbps network.

10
-2

10
-1

10
0

10
1

10
2

1 2 4 8 16 32 64 128256

L
a
te

n
c
y
 (

s
e
c
)

File size (KB)

Native
PIN

PIN+Encryption

(c) Client is over a 1000
Mbps network.

Fig. 10: Average latency per request when downloading different files from a Lighttpd
web server as a function of the requested file’s size.

Mbit/sec. As can be seen in Figure 9, when the bandwidth for the client is 10
Mbit/sec, the memory encryption overhead is almost hidden by the the network
latency. As a result, the user faces a negligible slowdown of 0.17% for having
FME enabled when the cost for the instrumentation is an additional 0.4%. On
the other hand, the corresponding overhead for encryption at the higher rate
of 1000 Mbit/sec reaches up to 43.7%. Our results indicate that in real-world
applications over the Internet the cost for keeping a web server’s memory fully
encrypted is practically tolerated.

We conduct follow up experiments modifying the usage scenario in the follow-
ing way. We use the same machine and the same three different network transfer
rates to repeatedly download 9 files of different sizes, ranging from 1 KB to 256
MB. We then measure the average requests per second performed for each file.
To make this experiment as realistic as possible, we use the most representative
workloads found in production web servers. Such workloads include queries for
short snippets of HTML (about 1 KB), e.g. user updates in micro-blogging ser-
vices like Twitter or Tumblr, or portions of articles found in wikis (2.8 KB on
average). Other workloads include photo objects of 25 KB size on average, used
in photo-sharing sites that serve thumbnails. In general, as reported in [10], the
most common file size is between 2-4 KB and regard HTML files, while 95% of
all files are less than 64 KB in size. In Figures 10(a), 10(b) and 10(c) we present
our results for the same experiment in the network transfer rates used above:
10 Mbps, 100 Mbps and 1000 Mbps. We immediately notice that in the case of
10 Mbps, the slowdown introduced from the memory encryption is close to zero,
regardless the size of the downloaded file. In case of higher rates (i.e. 100 and
1000 Mbps) we observe that bigger files produce higher latency and as a con-
sequence, hide the memory encryption cost. The average performance overhead
imposed by encryption as calculated from the results in Figure 10 is 17%.

Static Instrumentation
The alternative of dynamic instrumentation is to statically parse the executable
and instrument the load and store instructions. Although this approach requires
the instrumentation of all linked shared libraries as well, however it is able to
provide significantly better performance. In the following experiment, we mea-
sure this performance, and more specifically, compare the execution time of the

Type
Execution

Time (sec)
Overhead

Energy Efficiency

(Joules/mbit)
Overhead

Dynamic
PIN 2.064999 - 0.03983 -

PIN+Encryption 19.73596 9.56x 0.52276 13.12339x

Static
Native 0.406917 - 0.00849 -

Native+Encryption 1.745001 4.29x 0.03072 3.61776x

Table 1: Encryption cost in the two implementations, in terms of execution time and
power consumption.

two different approaches. We use a very simple application which copies an array
of 512 MB size, along with two secure versions of it: The first version, encrypts
the array contents before storing them on main memory by dynamically instru-
menting the store and load instructions using PIN. The second one statically
encrypts the array’s cells by utilizing in-line AES-NI assembly instructions. In
the first two columns of Table 1 we can see the execution time of each approach
as well as the imposed latency overhead compared to the unsecured native ap-
plication and its binary instrumented version respectively. As we can see, the
application with the dynamically instrumented encrypt/decrypt operations on
the load and store instructions is 9.56 times slower than the plain instrumen-
tation. Additionally, the static memory encryption makes the application 4.29
times slower compared to the insecure version.

Next, we statically instrument the same benchmarks of SPEC suite as pre-
viously and we perform main memory encryption measuring again the run-time
overhead. In figure 11, we compare the overhead imposed by static and dynamic
instrumentation and also the performance improvement of the use of pre-fetching
in both cases. As expected static instrumentation performs better (almost 1.7x)
than dynamic. In addition, we see that our pre-fetching mechanism, by reducing
the number of cryptographic operations in sequential memory accesses, signifi-
cantly reduces also the performance of our approach (4.9x on average).

Energy efficiency
To accurately measure the energy efficiency of our approach we used 3 Phid-
gets high-precision current sensors [23] to constantly monitor the 3 ATX power-
supply lines (+12.0a, +12.0b +5.0, +3.3 Volts), similar to [15]. The 12.0 Va
line powers the processor, the 5.0V line powers the memory, and the 3.3V line
powers the rest of the peripherals on the motherboard. For workload, we use
the same array copy application from the prior experiment. We measure both
versions in our power measurement above and the results are presented in the
last two columns of Table 1. We can compare the energy efficiency of the four
different approaches: (i) unprotected native application, (ii) the secure native
application that statically encrypts array cells before storing them to memory,
(iii) the unprotected native application over PIN instrumenting the plain load/-
store instructions, and (iv) the native application over PIN when instrumenting
each load and store instruction with the appropriate AES-NI instructions. From
the last column, we observe that the additional overhead is 3.6 times higher in
case of the static memory encryption compared to native. When we used pin the
cost of encryption/decryption is 13.12 times higher compared to the baseline
PIN case.

10
-1

x

10
0
x

10
1
x

10
2
x

10
3
x

10
4
x

401.bzip2

403.gcc

429.m
cf

456.hm
m

er

458.sjeng

462.libquantum

464.h264ref

O
v
e

rh
e

a
d

Static (w/o Prefetch)
Static (Prefetch)

Dynamic (w/o Prefetch)
Dynamic (Prefetch)

Fig. 11: Overheads of static
and dynamic instrumentation
with and without pre-fetching
for the different benchmarks.

10
-2

10
0

10
2

10
4

10
6

 0 20 40 60 80 100

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

Portion of of s-malloc (%)

PIN+Encryption
PIN

Native

(a) Execution time as a
function of the portion of
sensitive data.

10
0
x

10
1
x

10
2
x

10
3
x

10
4
x

10
5
x

10
6
x

 0 20 40 60 80 100

O
v
e
rh

e
a
d

Percentage of s-malloc (%)

PIN+Encryption
PIN

(b) Overhead over native
as a function of the portion
of sensitive data.

Fig. 12: Storing different portion of an array’s data to
the heap. Data considered as sensitive gets encrypted
before sent to main memory.

4.2 Selective Memory Encryption

As described in Section 3, contrary to Full Memory Encryption one may prefer
to follow a more Selective Memory Encryption (SME) strategy to reduce the
imposed overhead. To evaluate this strategy, we implemented a s malloc proto-
type, to explicitly mark some data as sensitive and only encrypt this data before
storing them to memory. Additionally we created a custom benchmark which
copies different sized chunks of data from a large array to the heap. Figure 12(a)
shows the results for execution time as a function of the portion of data con-
sidered as sensitive. As expected, the native application using s malloc without
instrumentation increases with the percentage of sensitive data. On the other
hand, the cost of instrumentation is also increasing but not as rapidly since it
does not depend on the data being stored in memory. Hence, as can be seen
in Figure 12(b) the instrumentation overhead over native is actually decreasing
as the percentage of data increases. Furthermore, the overhead caused by the
memory encryption follows a logarithmic growth with the increasing percentage
of data being encrypted. Thus, in case of a chunk of data including 10% of sensi-
tive information, the cost to guarantee its confidentiality is latency 24.90 times
higher than the unencrypted case.

In our macro-benchmarks, we used the Lighthttpd web server as a real world
application example and the popular Apache HTTP server benchmarking tool
of ApacheBench (ab). Web services are a good case of a single physical machine
serving multiple users who need to be assured that sessions will be secure during
their online transactions. As a result, we can state that the keys used from the
web service during the HTTPS protocol are highly sensitive, and in need of
protection against unauthorized access.

In our following experiment, we use Lighttpd web server in conjunction with
WolfSSL Embedded SSL Library. Inside the latter we integrated s malloc right
at the point that the private key gets stored in memory. This way, while using
dynamic instrumentation we are able to selectively encrypt only the particular
sensitive information of the key. Figure 13 presents the average latency of the SSL
handshake while using SME and considering the server’s private key as sensitive.
As we can see, this latency has been measured when the client over different

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

2561286432168421

L
a
te

n
c
y
 (

s
e
c
)

File size (KB)

PIN+Encryption
PIN

Native

(a) Client is over a 10 Mbps
network.

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

2561286432168421

L
a
te

n
c
y
 (

s
e
c
)

File size (KB)

PIN+Encryption
PIN

Native

(b) Client is over a 100 Mbps
network.

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

2561286432168421

L
a
te

n
c
y
 (

s
e
c
)

File size (KB)

PIN+Encryption
PIN

Native

(c) Client is over a 1000
Mbps network.

Fig. 13: Average latency for performing an SSL handshake during a client’s connection
to a web server where the latter’s private key is considered as sensitive.

network rates (i.e. 10 Mbps, 100 Mbps and 1000 Mbps) downloads different
file sizes over the secure channel. It is apparent that since the SSL handshake
happens when initializing the connection it is independent from the file size. Still,
SSL uses sessions in order to restrict the number of SSL handshakes. As such, for
each SSL handshake tens of KBs are typically exchanged over the same session,
converging the network latency in both secure and non-secure cases when using
a commodity network transfer rate. Consequently, the additional latency caused
by SME is concealed by the network latency. The average performance overhead
imposed by encryption as calculated from the results in Figure 13 is below 27%.

5 Limitations

A major limitation of memory encryption approaches arises in cases where shared
memory is deployed across different processes. To communicate correctly, pro-
cesses have to maintain the same secret key, or use a different secret key which
will use separately for encrypting and decrypting the contents of the shared mem-
ory. To deal with such cases, the OS kernel should be responsible for creating
different secret keys for each memory segment that is instantiated, and attached
it to each participant process. Similar inconveniences also arise for devices that
allow data transfers via DMA. The exchanged data have to be unencrypted, since
the connected devices are not aware of the encryption scheme. As it is easy to
overcome these scenarios in hardware-based implementations (e.g. by performing
the corresponding cipher operations at the I/O bus), it is not straightforward to
provide a solution in software-only approaches. In some cases, where the device
already provides a programmable interface (e.g. Endage DAG network cards,
general-purpose graphics cards, etc.), it would be possible to implement the en-
cryption and decryption operations on the device and pre-share the secret key
with them.

6 Related Work

There are various approaches proposed, implemented either in software or hard-
ware, aiming to defend against cold-boot attacks in both academia and industry.
Software-based mechanisms. Halderman et al. described cold boot attacks [12],
and also discussed some forms of mitigation. Mitigations included deleting sensi-

tive data and keys from memory when an encrypted drive is unmounted, obfusca-
tion techniques, and hardware modifications such as intrusion-detection sensors
or encased RAM. However, the authors, eventually admit that these solutions
do not constitute complete countermeasures, applicable to general-purpose hard-
ware. In [30], the authors assume a powerful attacker with physical access to the
machine and able to launch DMA attacks, bus snooping attacks and cold boot
attacks in order to disclosure sensitive data residing in the main memory. Their
approach focuses on encrypting sensitive data and code residing in the main
memory and decrypting and locking them when moved in the cache. Contrary
to our approach, their work is tightly woven with the ARM System-on-Chip
(SoC) specific features, cache locking and TrustZone. Towards the same direc-
tion, Sentry [9], uses ARM-specific mechanisms in smarphones and tablets to
keep sensitive application code and data on the SoC rather than on DRAM.
They observe that sensitive state data only need to be encrypted when the de-
vice is screen-locked. Consequently, Sentry decrypts and encrypts the memory
pages of sensitive applications as they are paged in and out, thus avoiding leakage
of sensitive information to DRAM when the device is screen-locked. AESSE [19]
was designed to provide Full Disk Encryption (FDE) and protect the required
keys by storing the encryption key in the Streaming SIMD Extension (SSE) reg-
isters of the CPU, while access to these registers is disabled for user-level code.
The authors however, admit that many common applications (like multimedia
applications e.g. OpenGL) really need SSE registers and therefore there is a sig-
nificant collision with AESSE. TRESOR [20] is a kernel module and successor of
AESSE. Instead of the SSE registers it utilizes the debug registers to store the
encryption key. In addition, similar to our approach, it leverages AES-NI instruc-
tion set to eliminate cold boot attacks achieving this way far better performance
than the AESSE. PrivateCore’s commercial product, namely vCage [25], relies
on a trusted hypervisor to implement FME for commodity hardware by exe-
cuting guest VMs entirely in-cache and encrypting their data before they get
evicted to main memory. Although it is more cloud-oriented, vCage shares with
our approach similar resistance to the same type of physical attacks.

Hardware-based mechanisms. Trustwave’s BitArmor [17], is a commercial
solution that claims to be resistant against cold boot attacks. BitArmor tries to
shield the system as soon as abnormal environment conditions are detected. More
specifically, it uses temperature sensors and in case a sudden temperature drop
is detected it initializes a memory wiping process. As demonstrated in a recent
study [11], this approach raises the bar, but it cannot prevent the attack. Finally,
Intel provides processors with Software Guard Extensions (SGX) [14]. These
extensions aim to enable applications to encrypt specific data by placing them
inside secure memory regions, called enclaves. The data that reside in enclaves
are protected even in the presence of privileged malware. However, SGX does
not allow dynamic creation of enclave pages at runtime, it can currently be used
only to encrypt static data, typically secret or private keys [3]. As such, SGX
is a complementary technology to our approach, that can be used to provide us
with a protected area of storing the secret keys that are used to encrypt the full

application’s data, that are stored in either statically or dynamically allocated
memory areas.

7 Conclusions

In this paper we design the first to our knowledge software-only main memory
encryption of a running process and we set out to explore the imposed over-
head when following different strategies (full Vs. selective memory encryption -
dynamic instrumentation Vs. static patching). Contrary to hardware-based ap-
proaches, our work can be directly applied to commodity systems without any
architectural support. Our solution leverages AES-NI instructions when our per-
formance analysis uses both benchmarks and real world applications. Results of
our work show that the average overhead of the encryption cost in real-world
applications was 17% and 27% for HTTP and HTTPS respectively.

Acknowledgements
The research leading to these results has received funding from the European Unions
Horizon 2020 Research and Innovation Programme, under Grant Agreement no 700378
and project H2020 ICT-32-2014 “SHARCS” under Grant Agreement No. 644571.

References

1. D. Abramson, J. Jackson, S. Muthrasanallur, G. Neiger, G. Regnier, R. Sankaran,
I. Schoinas, R. Uhlig, B. Vembu, and J. Wiegert. Intel virtualization technology
for directed i/o. Intel technology journal, 10(3).

2. Advanced Micro Devices Inc. AMD I/O Virtualization Technology (IOMMU).
http://support.amd.com/TechDocs/48882_IOMMU.pdf.

3. A. Baumann, M. Peinado, and G. Hunt. Shielding applications from an untrusted
cloud with haven. TCS, 33(3), Aug. 2015.

4. S. Berkowits. Pin - a dynamic binary instrumentation tool. https://software.

intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool,
2012.

5. E.-O. Blass and W. Robertson. Tresor-hunt: Attacking cpu-bound encryption.
In Proceedings of the 28th Annual Computer Security Applications Conference,
ACSAC ’12.

6. A. Boileau. Hit by a bus: Physical access attacks with firewire. Presentation,
Ruxcon.

7. D. Champagne and R. B. Lee. Scalable architectural support for trusted software.
In HPCA - 16 2010 The Sixteenth International Symposium on High-Performance
Computer Architecture, HPCA’10.

8. E. M. Chan, J. C. Carlyle, F. M. David, R. Farivar, and R. H. Campbell. Boot-
jacker: compromising computers using forced restarts. In Proceedings of the 15th
ACM conference on Computer and Communications Security, CCS ’08.

9. P. Colp, J. Zhang, J. Gleeson, S. Suneja, E. de Lara, H. Raj, S. Saroiu, and A. Wol-
man. Protecting data on smartphones and tablets from memory attacks. In Pro-
ceedings of the Twentieth International Conference on ASPLOS ’15.

10. J. A. Dilley. Web server workload characterization. Hewlett-Packard Laboratories,
Technical Publications Department.

11. M. Gruhn and T. Müller. On the practicability of cold boot attacks. In Proceedings
of the 2013 International Conference on ARES ’13.

http://support.amd.com/TechDocs/48882_IOMMU.pdf
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

12. J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Ca-
landrino, A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest we remember:
Cold-boot attacks on encryption keys. Commun. ACM, 52(5), May 2009.

13. M. Henson and S. Taylor. Memory encryption: A survey of existing techniques.
ACM Comput. Surv., 46(4), Mar.

14. Intel Corporation. Software guard extensions programming reference. https:

//software.intel.com/sites/default/files/managed/48/88/329298-002.pdf.
15. L. Koromilas, G. Vasiliadis, I. Manousakis, and S. Ioannidis. Efficient software

packet processing on heterogeneous and asymmetric hardware architectures. In
Proceedings of the Tenth ACM/IEEE Symposium on Architectures for Networking
and Communications Systems, ANCS ’14.

16. A. Markuze, A. Morrison, and D. Tsafrir. True iommu protection from dma at-
tacks: When copy is faster than zero copy. In Proceedings of the Twenty-First In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’16.

17. P. McGregor, T. Hollebeek, A. Volynkin, and M. White. Braving the cold: New
methods for preventing cold boot attacks on encryption keys. In Black Hat Security
Conference 2008.

18. R. Morris and K. Thompson. Password security: A case history. Commun. ACM.
19. T. Müller, A. Dewald, and F. C. Freiling. Aesse: A cold-boot resistant implemen-

tation of aes. In Proceedings of the Third European Workshop on System Security,
EUROSEC ’10.

20. T. Müller, F. C. Freiling, and A. Dewald. Tresor runs encryption securely outside
ram. In Proceedings of the 20th USENIX Conference on Security, SEC’11. USENIX
Association, 2011.

21. V. Nagarajan, R. Gupta, and A. Krishnaswamy. Compiler-assisted memory encryp-
tion for embedded processors. In Proceedings of the 2nd International Conference
on HiPEAC’07. Springer-Verlag.

22. G. Ou. Cryogenically frozen ram bypasses all disk encryption meth-
ods. http://www.zdnet.com/article/cryogenically-frozen-ram-bypasses-all-disk-
encryption-methods/.

23. Phidgets, Inc. 1122 0 − 30 Amp Current Sensor AC/DC. http://www.phidgets.
com/products.php?category=8&product_id=1122_0.

24. D. R. Piegdon. Hacking in physically addressable memory: a proof
of concept. http://eh2008.koeln.ccc.de/fahrplan/attachments/1067_

SEAT1394-svn-r432-paper.pdf.
25. PrivateCore. Trustworthy computing for OpenStack with vCage. http://

privatecore.com/vcage/.
26. P. Simmons. Security through amnesia: A software-based solution to the cold boot

attack on disk encryption. In Proceedings of the 27th Annual Computer Security
Applications Conference, ACSAC ’11.

27. S. Skorobogatov. Low temperature data remanence in static ram. 2002.
28. P. Stewin and I. Bystrov. Understanding dma malware. In Proceedings of the 9th

International Conference on Detection of Intrusions and Malware, and Vulnerabil-
ity Assessment, DIMVA’12.

29. J. Wetzels. Hidden in snow, revealed in thaw: Cold boot attacks revisited. CoRR,
abs/1408.0725.

30. N. Zhang, K. Sun, W. Lou, and Y. T. Hou. Case: Cache-assisted secure execution
on arm processors. In Security and Privacy (SP), 2016 IEEE Symposium on, S&P
’16.

https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
http://www.phidgets.com/products.php?category=8&product_id=1122_0
http://www.phidgets.com/products.php?category=8&product_id=1122_0
http://eh2008.koeln.ccc.de/fahrplan/attachments/1067_SEAT1394-svn-r432-paper.pdf
http://eh2008.koeln.ccc.de/fahrplan/attachments/1067_SEAT1394-svn-r432-paper.pdf
http://privatecore.com/vcage/
http://privatecore.com/vcage/

	No Sugar but all the Taste! Memory Encryption without Architectural Support -.3cm

