
UNIVERSITY OF CRETE
DEPARTMENT OF COMPUTER SCIENCE

SCHOOL OF SCIENCES AND ENGINEERING

Efficient adaptation mechanisms for

improving performance during internal or

external changes in distributed data stores

Antonios Papaioannou

PhD Dissertation

Submitted

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

Heraklion, November 2021

UNIVERSITY OF CRETE

DEPARTMENT OF COMPUTER SCIENCE

Efficient adaptation mechanisms for improving performance during internal or

external changes in distributed data stores

PhD Dissertation Presented

by Antonios Papaioannou

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

APPROVED BY :

Author: Antonios Papaioannou

Supervisor: Kostas Magoutis, Associate Professor, University of Crete

Committee Member: Dimitris Plexousakis, Professor, University of Crete

Committee Member: Evangelos Markatos, Professor, University of Crete

Committee Member: Angelos Bilas, Professor, University of Crete

Committee Member: Polyvios Pratikakis, Assistant Professor, University of Crete

Committee Member: Nikos Parlavantzas, Associate Professor, Institut National des Sciences Appliquées de Rennes

Committee Member: Evangelia Kalyvianaki, Senior Lecturer, University of Cambridge

Department Chairman: Antonis Argyros, Professor, University of Crete

Heraklion, November 2021

Abstract

The evolution of distributed data management systems, especially a class of systems de-

veloped during the last 15-20 years commonly known as NoSQL data stores, has led to

a multitude of designs optimised for different application types, data formats, and work-

load characteristics. Given the complexity of the environments they operate in as parts of

multi-tier software stacks driven by Internet workloads, data stores are facing significant

challenges during their operation. An important objective for service operators is to en-

sure that data store performance levels and guarantees are maintained despite internal or

external changes that they face. Such an objective can be reached via automated adapta-

tion mechanisms by which data stores adapt to changes automatically and transparently

while maintaining efficiency and performance goals as the data store transitions to new

configurations.

In this dissertation we explore adaptation mechanisms in distributed data stores facing

internally or externally-induced changes, with a focus on workload variations, occasional

background activities, or the evolution of an external middleware component that inter-

operates with a distributed data store. We propose novel adaptation mechanisms and im-

provements to existing mechanisms in three different contexts (data store elasticity, mask-

ing background activities, and alignment with external distributed middleware), aiming

to improve the overall performance during the aforementioned contexts in the lifecycle of

scalable data stores, aiming at challenges that had not been addressed so far.

First, this dissertation focuses on the expansion phase of a data store when the need

arises to adapt its capacity as workload demands increase and the system tries to improve

its performance by incorporating more resources. We study the performance impact of

data transfers over the network during this phase and propose a mechanism that sched-

ules data transfers in a fine-grain manner, reducing their performance impact while pro-

gressively increasing the processing capacity in an incremental fashion. The proposed

v

method realizes early benefits from data transfers during the elasticity action as it incor-

porates new resources and makes data sub-sections available prior to completing the full

data transfers.

Next, we study the performance overhead of background activities that often impact

data store performance. We propose replica-group reconfiguration as a way to mask per-

formance bottlenecks in replicated data stores and investigate the benefits of changing

replica-group leadership prior to resource-intensive background tasks (e.g. internal data

reorganization, garbage collection or data backup tasks). Our observation of an occa-

sional performance glitch during reconfiguration actions, caused by cold-cache misses

in the cache of a new leader that was not adequately prepared for the transition to the new

configuration, led us to propose a new mechanism to maintain up-to-date read caches

across replicas without affecting the data consistency and availability by disseminating

read-hints within the replica group.

Finally, in this dissertation we investigate the benefits of automatically aligning data

stores with distributed middleware systems that rely on those data stores to maintain their

state. We do that by appropriately co-locating data partitions of data store with process-

ing tasks of the distributed middleware systems. We propose a system that continuously

strives to discover such alignment opportunities across systems and improve data locality.

The alignment actions combine multiple data store mechanisms in common use, such

as data replication and migration, as well as the adaptation of the partitioning schemes

across systems, a mechanism that has not been studied before in this context.

The evaluation of the proposed mechanisms over widely deployed systems confirms

their performance improvements, advancing the state of the art in distributed data stores

in the direction of systems that adapt more efficiently and in new ways through internal

and external changes in their lifecycle.

Keywords: distributed data stores, adaptation, performance management

Supervisor: Kostas Magoutis

Associate Professor

Computer Science Department

University of Crete

vi

Περίληψη

Η εξέλιξη στον χώρο των κατανεμημένων συστημάτων διαχείρισης δεδομένων, ιδιαίτερα μιας

κατηγορίας τέτοιων συστημάτων που αναπτύχθηκαν τα τελευταία 15-20 χρόνια γνωστά και ως

συστήματα NoSQL, είναι ραγδαία. Μια πληθώρα τέτοιων συστημάτων βασίζεται σε ποικίλες

σχεδιαστικές αποφάσεις που εστιάζουν στην βελτιστοποίηση για συγκεκριμένους τύπους εφαρ-

μογών, μορφών δεδομένων και χαρακτηριστικών φόρτου εργασίας. Τα συστήματα αυτά αποτε-

λούν συνήθως μέρος πολυεπίπεδων εφαρμογών ικανών να εξυπηρετούν φόρτο μεγάλης κλίμακας

(συνήθως προερχόμενο από το Internet) κάτω από πολύπλοκες συνθήκες. ΄Ενας σημαντικός

στόχος για τους παρόχους υπηρεσιών είναι να διασφαλίσουν το επίπεδο απόδοσης των συστη-

μάτων αυτών παρά τις εσωτερικές ή εξωτερικές αλλαγές και προκλήσεις που αντιμετωπίζουν.

΄Ενας τέτοιος στόχος μπορεί να επιτευχθεί μέσω μηχανισμών προσαρμογής που επιτρέπουν στα

συστήματα διαχείρισης δεδομένων να προσαρμόζονται στις αλλαγές αυτόματα, διατηρώντας πα-

ράλληλα τους στόχους και την αποδοτικότητα τους.

Σε αυτή τη διατριβή διερευνούμε μηχανισμούς προσαρμογής σε κατανεμημένα συστήματα δια-

χείρισης δεδομένων που έρχονται αντιμέτωπα με αλλαγές που πηγάζουν είτε από το εσωτερικό

του ίδιου του συστήματος ή από εξωγενείς παράγοντες. Μελετάμε ιδιαίτερα αλλαγές που αντι-

μετωπίζει το σύστημα λόγω αύξησης του φόρτου εργασίας, την εκτέλεση έκτακτων/περιοδικών

δραστηριοτήτων στο παρασκήνιο ή την αλληλεπίδραση και συνέργεια με εξωτερικά συστήμα-

τα τα οποία εξελίσσονται ανεξάρτητα και παράλληλα με τα συστήματα διαχείρισης δεδομένων.

Προτείνουμε νέους μηχανισμούς προσαρμογής των συστημάτων καθώς και βελτιώσεις σε υφι-

στάμενους μηχανισμούς σε τρία διαφορετικά πλαίσια (ελαστικότητα του συστήματος, διαχείριση

της επίπτωσης δραστηριοτήτων που εκτελούνται στο παρασκήνιο και αποδοτικότερη συνέργεια

και αλληλεπίδραση με εξωτερικά συστήματα επεξεργασίας δεδομένων). Μελετάμε προκλήσεις

που δεν είχαν αντιμετωπιστεί μέχρι σήμερα με στόχο τη βελτίωση της συνολικής απόδοσης των

συστημάτων.

Αρχικά εστιάζουμε στην φάση της επέκτασης του συστήματος κατά τη διάρκεια της οποίας

vii

ενσωματώνονται νέοι πόροι ώστε να βελτιωθεί η απόδοσή του και να ανταποκριθεί στην αύξηση

του φόρτου και των προκλήσεων που αυτή συνεπάγεται. Τα δεδομένα ανακατανέμονται εσωτερικά

ώστε οι νέοι πόροι να λάβουν το αναλογούν τους μερίδιο φόρτου. Μελετάμε τον αντίκτυπο

στην απόδοση του συστήματος εξαιτίας της μεταφοράς δεδομένων πάνω από το δίκτυο κατά

αυτή την ανακατανομή των δεδομένων. Προτείνουμε έναν μηχανισμό ο οποίος δημιουργεί και

εφαρμόζει ένα πλάνο μεταφοράς των δεδομένων σε μικρότερα αυτόνομα τμήματα. Κάθε φορά

που η μεταφορά ενός τμήματος των δεδομένων ολοκληρώνεται, η εξυπηρέτηση του φόρτου που

αντιστοιχεί στα δεδομένα αυτά γίνεται από τους νέους πόρους. Με αυτόν τον τρόπο το συνολικό

σύστημα ενεργοποιεί οφέλη των νέων πόρων καθώς η διαδικασία επέκτασης βρίσκεται ακόμα υπό

εξέλιξη (πριν ολοκληρωθεί η πλήρης μεταφορά όλων των δεδομένων) με αποτέλεσμα να αυξάνεται

προοδευτικά η συνολική χωρητικότητα του συστήματος.

Στη συνέχεια, μελετάμε δραστηριότητες που εκτελούνται στο παρασκήνιο (λειτουργίες για

την εσωτερική αναδιοργάνωση των δεδομένων ή ενέργειες δημιουργίας αντιγράφων ασφάλειας)

οι οποίες καταναλώνουν πόρους του συστήματος με αποτέλεσμα να έχουν αρνητική επίδραση

στην απόδοση του συστήματος. Οι κόμβοι των συστημάτων αυτών είναι συνήθως οργανωμένοι

σε ομάδες αντιγράφων για λόγους διαθεσιμότητας των δεδομένων. Συστήματα τα οποία υποστη-

ρίζουν ισχυρή συνέπεια των δεδομένων περιορίζουν την ανάγνωση και εγγραφή των δεδομένων

σε ένα υποσύνολο κόμβων. Προτείνουμε ένα μηχανισμό προσαρμογής της ομάδας αντιγράφων

ώστε οι κόμβοι που εξυπηρετούν κυρίως τον φόρτο των χρηστών να είναι αυτοί οι οποίοι δεν

έχουν ενεργές διεργασίες παρασκηνίου. Επιπλέον παρατηρούμε οτι ο μηχανισμός αλλαγής των

κόμβων που εξυπηρετούν τον φόρτο που παράγουν οι χρήστες εμφανίζει μια αδυναμία η οποία

σχετίζεται με την κρυφή μνήμη (cache). Αυτή οφειλεται στο ότι τα δευτερεύοντα αντίγραφα δεν

ενημερώνουν πλήρως την cache τους με αποτέλεσμα να μην είναι επαρκώς προετοιμασμένα όταν

καλούνται να ξεκινήσουν να εξυπηρετούν τους χρήστες. Αυτή η παρατήρηση μας οδήγησε να

προτείνουμε έναν νέο μηχανισμό που επιτρέπει σε δευτερεύοντα αντίγραφα να διατηρούν ενημερω-

μένες caches. Ο μηχανισμός που προτείνουμε βασίζεται στην διάδοση των εντολών ανάγνωσης

σε όλους τους κόμβους που φιλοξενούν αντίγραφα των δεδομένων χωρίς να αλλοιώνεται το

μοντέλο συνέπειας και διαθεσιμότητας των δεδομένων του συστήματος.

Τέλος, στη διατριβή αυτή διερευνούμε τα οφέλη του αυτόματου συντονισμού κατανεμημένων

συστημάτων διαχείρισης δεδομένων με εξωτερικά συστήματα με τα οποία αυτά αλληλεπιδρούν

(π.χ. κατανεμημένα συστήματα επεξεργασίας δεδομένων) μέσω του συντονισμού της ανάπτυξης

των συστημάτων επί των υπολογιστικών και αποθηκευτικών πόρων. Προτείνουμε ένα σύστη-

μα που διερευνά συνεχώς ευκαιρίες συντονισμού μεταξύ των συστημάτων και βελτιώνει την

τοποθεσία των δεδομένων ώστε να βρίσκονται εγγύτερα στους πόρους επεξεργασίας τους. Ο

συντονισμός των συστημάτων επιτυγχάνεται χρησιμοποιώντας μηχανισμούς προσαρμογής που

σχετίζονται με την δημιουργία αντιγράφων και την μεταφορά δεδομένων. Επιπλέον μελετάμε

viii

για πρώτη φορά σε αυτό το πλαίσιο την προσαρμογή του μηχανισμού με τον οποίο τα δεδομένα

διαμερίζονται και κατανέμονται στους κόμβους του συστήματος.

Η πειραματική αξιολόγηση των μηχανισμών που μελετώνται σε αυτή την διατριβή επιβεβαιώνει

τα οφέλη τους στην βελτίωση της απόδοσης ευρέως διαδεδομένων συστημάτων. Η μελέτη αυτή

συμβάλλει στην εξέλιξη των συστημάτων διαχείρισης δεδομένων προς την κατεύθυνση συστη-

μάτων που μπορούν να προσαρμόζονται αποδοτικά καθώς έρχονται αντιμέτωπα με εσωτερικές ή

εξωτερικές αλλαγές κατά την διάρκεια του κύκλου ζωής τους.

Λέξεις κλειδία: Κατανεμημένα συστήματα διαχείρισης δεδομένων, προσαρμογή συστημάτων, δι-

αχείριση απόδοσης συστημάτων

Επόπτης: Κώστας Μαγκούτης

Αναπληρωτής Καθηγητής

Τμήμα Επιστήμης Υπολογιστών

Πανεπιστήμιο Κρήτης

ix

x

Acknowledgments

There are many people who helped me along the way on this journey; people who signifi-

cantly influenced and inspired my life during my graduate studies.

First and foremost I would like to express my sincere gratitude to my advisor Prof.

Kostas Magoutis for his unwavering support and belief in me. Through our long discus-

sions and debates, I gained invaluable knowledge and learned how to scientifically ad-

dress research problems. He has been an endless source of inspiration, guidance, support

and encouragement. I could not have imagined having a better advisor and mentor for

my Ph.D study.

Besides my advisor, I would like to thank my advisory committee members: Prof. Dim-

itris Plexousakis, and Prof. Evangelos Markatos for their insightful comments, suggestions

and feedback which incented me to widen my research from various perspectives. I would

like to extend my sincere thanks to the examination committee members: Prof. Angelos

Bilas, Prof. Polyvios Pratikakis, Prof. Nikos Parlavantzas and Prof. Evangelia Kalyvianaki

for their insightful comments and suggestions helping me to prepare and improve the fi-

nal version of the thesis.

I would like to thank the Hellenic Foundation for Research & Innovation (H.F.R.I.) for

partly supporting this dissertation through an individual scholarship for PhD Candidates

(2017-2018). I am grateful to the Institute of Computer Science (ICS) of the Foundation

for Research and Technology-Hellas (FORTH) for giving me the opportunity to work and

collaborate with brilliant researchers on interesting projects and also supporting me with

graduate research scholarships throughout my doctoral studies. Funding for my disserta-

tion came from several national and European research projects. I thankfully acknowledge

xi

the H.F.R.I. STREAMSTORE faculty grant (Grant ID HFRI-FM17-1998), the EVOLVE H2020

(GA no. 825061), and the PaaSage FP7 (GA no. FP7-317715) projects, for funding my re-

search. I am also honored to be awarded the Maria Michael Manasaki legacy’s fellowship

for the academic year 2019-2020.

Working on interesting research ideas is hard and challenging but also fun when you

are surrounded by beautiful people. Many thanks to Giorgos Vasiliadis, Michalis Giaour-

tas, Christos Papachristos, Antonis Krithinakis, Manos Papoutsakis, Eva Papadogiannaki,

Manos Pavlidakis, Iakovos Kolokasis and Maria Oikonomidou for having fun times in and

outside of the lab.

I consider myself very fortunate for enjoying the friendship of wonderful people during

my time in Heraklion. I would like to express my sincere appreciation to Tasos Papagian-

nis, Vassilis Papakonstantinou, Ilias Batzelios, Serafeim Chrisovergis, Maria Chalkiadaki

and Ria Vrouva for the love, encouragement and the great moments we had together all

these years.

Last but not least, I would like to express my gratitude to my parents, Maria and Alexan-

dros, and my brother Giorgos. Without their tremendous understanding and encourage-

ment in the past few years, it would be impossible for me to complete my study. My appre-

ciation also goes out to my aunt Despina and my uncle Giorgos for their support during

my time in Heraklion.

Antonis Papaioannou

Heraklion, November 2021

xii

Contents

Abstract . v

Abstract in Greek . vii

Acknowledgments . xi

Table of Contents . xiii

List of Figures . xvii

List of Tables . xxi

1 Introduction . 1

1.1 The profound need for scalable data storage 1

1.2 Adapting to internal or external changes . 4

1.3 Challenges and Assumptions . 8

1.3.1 Expanding storage service capacity . 9

1.3.2 Hiding the overhead of internal or external background activities . . 11

1.3.3 Improving performance during replica-group reorganization 13

1.3.4 Aligning data store partitions with distributed middleware tasks . . . 15

1.4 Contributions . 17

1.5 Related work on autonomous storage systems 20

1.6 Outline of Dissertation . 22

2 Incremental elasticity . 25

2.1 Elasticity mechanisms in data stores . 28

2.2 Design and implementation . 31

2.3 Evaluation . 34

2.3.1 Experimental testbed and methodology 34

2.3.2 Analysis of experimental results . 36

2.3.3 Response time . 40

2.4 Related work . 43

2.5 Summary . 46

3 Replica-group leadership change as a performance enhancing mechanism 47

xiii

3.1 Background . 49

3.2 Design and Implementation . 52

3.3 Evaluation . 57

3.3.1 LSM-tree compactions . 57

3.3.2 Data backup . 59

3.4 Summary . 61

4 Addressing the read-performance impact of replica-group reconfigurations . . . 63

4.1 Background and Related Work . 66

4.2 Design and Implementation . 69

4.2.1 Capturing and dissemination of read hints 72

4.2.2 Read-hints buffer properties . 74

4.2.3 Consistency . 75

4.3 Evaluation . 76

4.3.1 Performance impact during reconfiguration 78

4.3.2 Multi-shard deployments on AWS EC2 81

4.3.3 Effect of cache size on time to restore performance 84

4.3.4 Effect of cache access pattern . 85

4.3.5 Read-write workload . 86

4.3.6 Re-electing a past primary . 88

4.3.7 Performance overhead . 91

4.3.8 Selectively applying read hints . 93

4.3.9 Space overhead . 94

4.3.10 Optimizations to reduce read-hints buffer size 95

4.3.11 TPC workloads . 96

4.4 Summary . 98

5 Amoeba: Aligning Stream Processing Operators with Externally-Managed State . 99

5.1 Related work . 102

5.1.1 Storing and accessing external data . 102

5.1.2 Storage solutions for internal operator state 103

5.1.3 Placement/alignment of SPS tasks . 104

5.2 Design and implementation . 104

5.2.1 Amoeba inputs and metadata discovery 106

5.2.2 Planning alignment actions . 107

5.2.3 Prototype implementation specifics 111

5.3 Linear Road . 113

5.3.1 Linear Road dataflow graph . 114

5.3.2 Linear Road state . 117

5.4 Evaluation . 118

5.4.1 Unaligned access gets worse with scale 120

xiv

5.4.2 Benefits of alignment . 121

5.4.3 Dynamic alignment of partition schemes 123

5.4.4 Combining alignment with data migration 125

5.4.5 Coordinating elasticity actions . 127

5.5 Summary . 129

6 Impact of technology improvements on the proposed methods 131

6.1 Incremental elasticity . 131

6.2 Replica-group reconfiguration . 132

6.3 Improving data locality when accessing external state 133

7 Conclusions . 135

8 Directions for Future Work . 139

Bibliography . 143

Appendices
A Publications . 167

xv

xvi

List of Figures

1.1 A classification of data management systems available commercially or in

open-source form today [29] . 2

1.2 Abstract view of a typical modern scalable application comprising multiple

micro-services. Stateful services generate their response by executing their

processing logic on its state persisted on an external data store 3

1.3 The goals and mechanisms of the adaptation actions used along with the

challenges and the proposed solutions (contributions of this dissertation) . 7

1.4 The performance characteristics ad-hoc data transfers during elasticity ac-

tions . 10

1.5 User requests served by a subset of nodes in replicated stores (e.g. stores fol-

lowing the Primary-Backup replication scheme, requests are served by the

primary node) (left side). While being on the critical path the client-serving

replicas typically take higher load than the other nodes. Any additional over-

head on these nodes may critically affect performance of the replica group

as a whole (right side of the figure) . 12

1.6 Right: Non-read-serving replicas do not fetch up-to-date cache contents in

contrast to replicas serving reads Left: The cold-cache effect after a recon-

figuration action that switches the read serving replicas. The new serving

node requires time to recover to the pre-reconfiguration performance level

due to cold-cache effect . 14

1.7 Amoeba alignment plan example: (a) Initial deployment (3 parallel process-

ing task instances access 2 data partitions), (b) creation of new data shard,

(c) task migration and adaptation of the partition-scheme 16

1.8 Word cloud based on the text of this dissertation 23

2.1 Performance characteristics of parallel network transfers (left) vs. incremen-

tal elasticity (right) . 27

xvii

2.2 Creating shards through tokens (left); cluster expansion via parallel network

transfers (right) . 29

2.3 Elasticity under YCSB workload B (95% read, 5% writes), consistency QUORUM 37

2.4 (a) Parallel streaming with network transfer throttling, (b) Serial but not in-

cremental streaming. Both experiments run under the same configuration

setting as in Figure 2.3 . 37

2.5 Elasticity under YCSB workload B (95% read, 5% writes), consistency ALL . . 38

2.6 Request rate served by joining node during streaming, YCSB workload B

(95% reads, 5% writes) . 38

2.7 YCSB latency under workload B (95% read, 5% writes), consistency QUORUM 41

3.1 The primary-backup (PB) replication scheme. Each data partition (shard)

comprises a replica-group featuring a strong leader (primary) node that co-

ordinates the client requests and a number of replicas 50

3.2 States of a single replica (P: primary; S: Secondary; NC: not compacting; C:

compacting) and transitions . 53

3.3 90% reads-10% writes . 58

3.4 50% reads-50% writes . 59

3.5 Data backup (mongodump –oplog), 90% reads-10% writes 60

4.1 Performance impact of backup activity (a) on replica group (shard) can be

hidden via reconfiguration (b), however new primary suffers from cold-cache

misses [152] . 69

4.2 The Read-Hints Module (RHM) is integrated as a plugin into the replica-

maintainance path; this particular figure is based on MongoDB internals.

The module passively monitors read requests and maintains a Read-Hint

Buffer (RHB) that is periodically disseminated across replicas 71

4.3 Reads may be re-ordered relative to writes, however caches always contain

the latest state written to disk . 76

4.4 Throughput under read-only workload, HDD used as back-end store 77

4.5 Cache miss rate under read-only workload, HDD used as back-end store . . 77

4.6 Monitoring memory use . 80

4.7 Throughput under read-only workload, SSD used as back-end store 81

4.8 Cache miss rate under read-only workload, SSD used a back-end store . . . 82

4.9 Aggregate throughput of a multi-sharded replicated database on AWS EC2

under read-only workload . 83

4.10 Time to restore performance level vs. cache size 85

4.11 Throughput under read-only workload, Zipf distribution, SSD back-end store 86

xviii

4.12 Cache miss rate under read-only workload, Zipf distribution, SSD back-end

store . 87

4.13 Throughput under read-write workload, uniform distribution, SSD back-

end store . 88

4.14 Cache miss rate under read-write workload, uniform distribution, SSD back-

end store . 89

4.15 Node 1 serves as primary again at 600 sec after a second reconfiguration

(RHM disabled, same working set) . 90

4.16 Node 1 serves as primary again at 580 sec after a second reconfiguration

(RHM disabled, working set changes) . 91

4.17 Cache miss rate after migration of the analytics query 97

5.1 Amoeba system design. Without any alignment, each SPS task will be ac-

cessing keys from all KVS partitions. 105

5.2 Example: (a) Initial deployment, (b) creation of new shard, (c) task migra-

tion and partition-scheme change . 108

5.3 Amoeba decision-making process . 110

5.4 Linear Road dataflow graph . 114

5.5 Clusters with more nodes result to lower local-hit rate affecting the through-

put per node. Clusters with more than 16 nodes are close to the worst case

where almost all requests are served by remote KVS instances 121

5.6 Single-partition deployment. Improving data locality results to 2.1x higher

throughput and 2.2x lower processing time on Toll operator 122

5.7 Throughput of Toll (map). Amoeba improves overall throughput consis-

tently for cluster sizes 4-64 AWS nodes . 123

5.8 Dynamic adaptation: our adaptive SPS partitioner contacts the Amoeba co-

ordinator and applies its alignment plan improving the throughput during

the run . 124

5.9 Network traffic and CPU utilization of a cluster node. Alignment improves

resource utilization . 125

5.10 An alignment plan that includes data migration. Amoeba first migrates data

closer to the processing tasks, then aligns the partitioning scheme without

any downtime . 126

5.11 Amoeba matches elasticity actions of the SPS with corresponding actions in

the KVS to maintain alignment . 128

xix

xx

List of Tables

4.1 Applying fewer read-hints lowers RHM overhead, at the cost of reduced cache

efficiency after reconfiguration . 93

5.1 Linear Road external state and its consumers 118

5.2 AWS VM types used in our evaluation . 119

5.3 Local-hit rate per node for different cluster sizes 120

xxi

xxii

Chapter 1
Introduction

1.1 The profound need for scalable data storage

In recent years, the production and storage of data at a global scale has grown nearly ex-

ponentially and to date there is no sign of this trend slowing down. The key drivers for

the rise of Big Data, a domain of technology referring to the pervasive growth in the pro-

duction, storage, and processing of vast quantities of data, is mainly driven by successful

Internet-scale applications processing social media, text messages, and media files, and

by the Internet of Things (IoT) where billions of connected devices continuously generate

new data. At a global scale, data is collected from an increased number of sources and

is consumed by an increasing number of processing tasks. IDC forecasts the global data

space will reach 175 zettabytes1 by 2025 [161]. Cloud computing [54] and other micro-

architectural trends [167, 193] further promote global data access, allowing Internet end-

users to do most of their activities online, from business communications to shopping and

social networking. It is expected that by 2025, 49% of the world’s stored data will reside in

public cloud environments [161]. The profound need for efficient and scalable data man-

agement systems in such infrastructures is today more critical than ever before.

Especially during the last decade, commodity data management systems have evolved

1A zettabyte is a trillion gigabytes. As it is hard to imagine the scale of 175 zettabytes, we quote the example
described by David Reinsel, senior vice president at IDC: ”If one were able to store 175ZB onto BluRay discs,
then you’d have a stack of discs that can get you to the moon 23 times”

1

Chapter 1. Introduction

Figure 1.1: A classification of data management systems available commercially or in
open-source form today [29]

considerably along several directions to accommodate the evolving demand for storing

and managing large amounts of data. Data are diverse, coming in multiple formats; ap-

plications use different data structures with specific data access patterns and have dif-

ferent consistency, durability and availability needs, requiring specific query-processing

architectures and programming interfaces. The emerging application requirements lead

to a plethora of data management systems today optimised for different application types,

data formats and workload characteristics (Figure 1.1). Application designers often face a

dilemma when choosing an appropriate system for their requirements. Multiple factors,

such as the workload characteristics, data access pattern, and the available resources af-

fect the performance of data storage and management systems (also referred to as data

stores for brevity in this thesis). The decision on which data management system to use

2

1.1. The profound need for scalable data storage

Request Routing

< > < >

Client Requests

Application services

Application services

Data management systems
(Data stores)

Figure 1.2: Abstract view of a typical modern scalable application comprising multi-
ple micro-services. Stateful services generate their response by executing
their processing logic on its state persisted on an external data store

and how to tune it for a particular application is a non-trivial undertaking even for experts.

To account for the need for scalable storage in terms of both capacity and performance,

modern data storage systems are typically decentralized systems [5, 23, 32, 53, 70, 86, 132,

174]. Rather than relying on centralized storage arrays, distributed data stores consolidate

large numbers of commodity servers into a single storage pool, providing large capacity

and high performance at low cost over an unreliable and dynamically-changing (often

cloud-based) infrastructure. Data is split into partitions and distributed across nodes al-

lowing systems to scale in order to accommodate increases in client demands. Different

forms of data replication [72] are typically used for reliability and high availability.

Scalable data stores are commonly used as a core component of the persistence tier

of popular Internet-driven application services to maintain and manage their state while

serving tens of millions users at peak times [86]. Figure 1.2 shows an abstract view of a typ-

ical modern scalable application designed by composition of multiple micro-services, as

is often the case in enterprise software architecture today [109]. Stateful services typically

3

Chapter 1. Introduction

read and/or write state persisted in a scalable data store (bottom tier of Figure 1.2) as part

of their processing logic before generating their response to client requests. While a scal-

able caching (middle) tier can reduce the amount of service requests faced by the scalable

data store, writes must typically be handled by it in their entirety. As many applications

have strict operational requirements in terms of performance, reliability and availability,

state management systems often become a dominant factor affecting service quality [86].

The need for good performance from scalable data stores is often a business require-

ment. Large technology companies have highlighted the importance of systems perfor-

mance in the success of any online venture [1, 6, 37, 41]. A data store needs to deliver its

functionality with tight bounds in terms of I/O performance, usually described in terms

of throughput (the number of requests served per second) and/or latency (time required

to serve a request). Amazon reported 1% of sales loss for every 100ms of latency while

Google experiences a 20% traffic drop for a 500 ms increased latency in search page gen-

eration [3]. Scalable data storage systems that can deal with huge data volumes in an ef-

ficient way, allowing applications to achieve their performance oriented goals and satisfy

user requirements, are in need today.

While data store design for a specific target workload and environment/resources is

an important goal by itself, the need to adapt to internal or external changes during the

lifetime of a data store adds to the complexity of their design, as described next.

1.2 Adapting to internal or external changes

Scalable data store design can attempt to optimize for certain workload types by, for ex-

ample, analyzing workload characteristics inferred from production traces [57]. As ap-

plications change over time however, workload characteristics may also shift leading to

different transaction rates over time, access patterns, and so on. Data store designers to-

day understand that they need to design for serving dynamic workloads, i.e. the workload

characteristics such as data-access pattern and the load changes over time.

Data stores need to support on-line transactional processing (OLTP) applications on

real-time data and on-line analytical processing (OLAP) tasks to support business intel-

4

1.2. Adapting to internal or external changes

ligence systems that mine large datasets for business insights. Traditionally application

designers opt for data pipelines with separate state-management systems, optimised for

different data processing tasks, leading to complex system designs and high operation

costs. Modern data-processing systems handle hybrid workloads, combining real-time

transactions and historical data analysis, known as hybrid transactional-analytical pro-

cessing (HTAP) [92, 159, 169], as means to quickly transforming freshly obtained data into

knowledge. Such systems require scalable data stores that are able to adapt to different

workload characteristics. Change in the rate of client load is another dominant source of

change in today’s variable world (driven by sudden changes such as societal trends and

news-driven flash crowds), that data stores should be designed to efficiently adapt to.

Adaptation is a requirement both for maintaining efficiency despite changes, but also

to maintain performance guarantees expressed as service-level objectives (SLOs), where ap-

plicable. A growing number of large-scale data stores used today (often as a service) by In-

ternet enterprises are designed to offer performance guarantees expressed as SLOs. Guar-

anteeing a stable performance while the data store adapts to internal or external changes

and transitions to new configurations is a challenging research area.

Adapting to unpredictable changes while hiding the intrinsic complexity of doing so

from operators and end-users has long been the goal of a line of research aiming to achieve

autonomic systems [124], with significant research activity starting in the early 2000s. Au-

tonomic systems incorporate different degrees of self-management capabilities over dis-

tributed computing resources and commonly operate as monitor-analyze-plan-execute

(or MAPE) control loops to support decision-making. Data stores are indeed long-lived

systems facing significant challenges during their lifecycle. Just as any autonomic system,

they should be able to sustain internal or external change; specifically, they should be able

to adapt to changes transparently while maintaining efficiency or performance goals.

The need for adaptivity in data stores is not new. A form of adaptivity known as re-

source elasticity, namely the ability of a system to dynamically and in an online fashion

adapt their service capacity to accommodate load fluctuations, has been a focus of re-

search for some time [82, 88, 126]. A number of systems today offer elasticity features,

meaning that they can dynamically adapt to load changes by increasing or decreasing their

5

Chapter 1. Introduction

resources during their lifecycle. Other systems employ decision-making techniques to de-

cide on appropriate actions to take during initial deployment or under variations in work-

load and/or system configuration [122]. In this dissertation we build upon and extend

previous work by studying challenges relating to multiple aspects of adaptation in the life-

cycle of scalable data stores, not having been addressed so far. We additionally study the

efficiency of existing adaptation mechanisms and propose improvements to them.

The challenges a data store (or any computer system for that matter) faces can be

internally or externally induced. Examples of internal changes include periodic data re-

organization, data checkpointing, or other data-management activities (such as garbage

collections), known to be the source of performance variability, often resulting in viola-

tions of performance-oriented goals. An important example of external change is load

fluctuations leading to the need for elasticity actions described earlier. External sources

of performance overhead also include externally-triggered tasks such as data-backup ac-

tivities or other external processing competing for resources with common-path process-

ing in a data store. In addition, failures or workload changes may also be considered

externally-induced changes. Ideally, the system should be able to automatically adapt to

these changes in different ways: the use of reconfiguration actions to eliminate or hide

their performance impact is one possible way that is explored in this dissertation.

Data stores often maintain and manage the state of stateful services (as depicted in Fig-

ure 1.2), cooperating with them within a multi-tier distributed system with well-defined

boundaries, rather than a tightly integrated single software system. In such cases, differ-

ent types of systems (the data store and the distributed middleware platform) are often

unaligned in terms of their management policies, such as the allocation of resources and

placement of tasks to those resources; better coordinating such system policies can im-

prove cross-system communication and overall performance, for example by improving

the locality of data access between processing tasks and data-store partitions. Often recon-

figuration actions that are independently decided by one of the systems (such as elasticity

actions) can be considered externally-induced changes that impact the degree of coordi-

nation previously achieved between the different systems. The need to better align (and

maintain alignment over time) via cross-system coordination is another form of adapta-

6

1.2. Adapting to internal or external changes

Long delay or
high overhead
data transfers

Challenge

Proposed
solution

Incremental elasticity:
efficient

data transfers

When & who to
reconfigure

Define policies &
practices

High cross-system
communication

overhead

(Maintain) Alignment
in data placement &
partitioning scheme

Performance hit
during reconfiguration

due to cold-cache

Maintain replica
read-caches warm

Adaptation
action goal

Mask background
activities

Expand
system capacity

Adaptation
mechanism

Data migration Replica-group
reconfiguration

Data migration,
Data replication,

Partition alignment

Maintain cross-system
alignment

Adaptation action goals

Figure 1.3: The goals and mechanisms of the adaptation actions used along with the
challenges and the proposed solutions (contributions of this dissertation)

tion to external change that can lead to benefits in the overall system. Such adaptation

actions should be performed in an efficient and low-cost way allowing for seamless transi-

tion to a new system configuration without any service disruption.

This dissertation focuses on research challenges that typically occur due to the afore-

mentioned internal or external changes over the lifecycle of a distributed data store (a pic-

torial representation appears in Figure 1.3). The first adaptation action we focus on is the

expansion of system capacity as workload demands increase or when the system tries to

improve its performance by incorporating more resources. A second focus area is on adap-

tation actions aiming to mask the performance overheads of internal or external resource

intensive background activities. We propose a reconfiguration action (replica-group re-

configuration) traditionally used for fault-tolerance in the context of hiding performance

bottlenecks. We also identify performance inefficiencies on the mechanism itself and ad-

dress them by proposing improvements over the mechanism. Finally, our third focus area

is on continuous monitoring and improvement of data-access locality in distributed multi-

tier middleware platforms that rely on distributed data stores to maintain and manage

their state. We enhance data-locality in a cross-system fashion using existing reconfigu-

7

Chapter 1. Introduction

ration mechanisms such as data migrations, replication, and elasticity mechanisms and

propose new methods for the alignment of the data partitions and the processing tasks.

Figure 1.3 summarizes the goals and mechanisms of the adaptation actions studied

in this dissertation, along with the challenges and the proposed solutions, at the core of

the contributions of this dissertation. Reducing performance variability and improving

the overall system performance is a challenging task as the system transitions between

configurations during its lifecycle. In the next section (§1.3) we provide a more detailed

discussion on the challenges a data store faces in different phases of its lifecycle. In Sec-

tion 1.4 we outline the contributions of this dissertation in addressing these challenges.

Thesis statement: This thesis experimentally proves that the aforementioned perfor-

mance challenges during changes in distributed data stores can be addressed either

via novel adaptation actions or improvements to existing ones.

1.3 Challenges and Assumptions

The major question we try to address in this dissertation is how a data store can improve

its performance as it continuously adapts using certain adaptation actions to achieve the

goals of its capacity expansion and/or to hide internal or external performance overheads

during its lifecycle. However, we often face some major challenges. Adaptation actions

come at a cost; systems have to pay additional overhead for their internal reconfiguration

and data reorganization. We believe adaptation actions should be transparent to the users

with minimal service disruption, ideally without any noticeable impact. Guaranteeing the

continuous on-line operation of the system while it transitions to the new configuration

with minimal performance impact is a major challenge exposing a key trade-off between

the duration of the action and the performance impact. In general, the more aggressive

an adaptation action, the deeper its performance impact while prolonged actions lead to

delayed benefits of the system’s adaptation actions. Ideally a system should be able to

adapt to data growth or workload changes as quickly as possible to the dynamic service

SLOs. Application designers often opt for ad-hoc solutions to mitigate these challenges;

however, violating the application semantics [11, 40]. While our major focus is on the

8

1.3. Challenges and Assumptions

system performance, we believe that any adaptation action should not compromise other

aspects of the data store such as data availability, durability and consistency.

In this section we discuss the major challenges we face in this dissertation as well as

our approach to address each one.

1.3.1 Expanding storage service capacity

Innovating applications often face the consequences of the rocket of popular success [91]

while the emergence of Web 2.0, social networking, and the Internet of Things (IoT) in-

creased the sources of new information resulted in a significant need for the storage of

data. As modern data stores are distributed, consolidating large numbers of commodity

servers into a single storage pool, they should be able to accommodate the strong data

growth and allow new nodes to join (or leave) the system gracefully, with minimal perfor-

mance and availability loss. Data-intensive applications therefore require data engines

that are elastic, i.e., have the ability to expand or shrink the capacity on demand by pro-

visioning the appropriate resources on an automatic manner to match, as closely as pos-

sible, the workload changes at any point in time [110, 111]. During peak times a store is

required to be able to expand its capacity to match the applications’ higher data access de-

mand, often serving tens of millions of users [86, 91]. In addition to growing data capacity

needs, applications demand high performance from the underlying data stores.

Elasticity in the context of data stores is not a new concept. The majority of large scale

distributed data stores support elasticity actions, i.e. flexibility of the system to expand

or shrink its capacity to match the demand. A premier example is DynamoDB [2], a pro-

prietary scalable key-value store service offered by Amazon. While DynamoDB has been

successful with applications that require fast and predictable performance, it will not scale

automatically if the workload requirements change. Users should explicitly request more

throughput. However, the effect of such a change request is not instant. Amazon states

that the ”increases in throughput will typically take anywhere from a few minutes to a few

hours” 2. A likely cause is that attempting to rapidly change a service-level objective may

2AWS DynamoDB Q&A documentation as of July 2018

9

Chapter 1. Introduction

Time

Th
ro
ug
hp
ut

drop

duration

Throughput
increase

Figure 1.4: The performance characteristics ad-hoc data transfers during elasticity ac-
tions

pose an adverse impact to existing guarantees to applications

To better understand why such actions could impact the performance guarantees of a

data store, we will describe the characteristics of a data store’s expansion actions. The ef-

fect of elasticity actions is not instant as before the system being able to utilize the freshly

joined nodes, large amounts of data have to be transferred to them. Data transfers over the

network raise major performance challenges as they cause significant I/O activity. Figure

1.4 shows the performance characteristics of an elasticity action. Performing data trans-

fers in an ad-hoc manner, results in an overall performance impact as all nodes that are

engaged in data movements simultaneously reduce their processing capacity. In addition,

new resources (joining nodes) cannot contribute their processing capacity until the time

all data transfers are over while the many-to-all communication pattern in this phase is

known, to under certain circumstances, be a cause of throughput collapse in large-scale

data centers [157]. During elasticity actions there is a high performance-hit making the

system unable to meet its performance objectives.

There is usually a trade-off between the duration of the adaptation actions and their

performance impact during adaptation. Nevertheless, the more aggressive the adaptation

action the deeper its impact on application performance. In this thesis we address the

challenge of performing effective and low overhead data movements during an elasticity

action while bringing new capacity to the system before the action is complete, thus, al-

10

1.3. Challenges and Assumptions

lowing the system to achieve its performance goals. In Chapter 2 we propose incremental

elasticity, a mechanism that orchestrates data transfers during elasticity actions. Incre-

mental elasticity allows smoother transition to the new configuration as it ensures that

fewer nodes are involved in network transfer at any point in time, reducing the overall per-

formance drop during elasticity. In addition, as soon as a transfer is over, the associated

data are becoming available for access on the new node, while a subsequent transfer of

data takes place. We evaluate our mechanism under the widely used Cassandra key-value

store, demonstrating that the system exhibits up to 2.6x fewer violations on its response

time SLOs. The proposed mechanism is complementary to systems focusing on resource

provisioning and systems capacity planning [182].

1.3.2 Hiding the overhead of internal or external background activities

During the steady state of a data store (when there is no need to expand the processing

capacity or the performance goals of the store) the system performs internal data reor-

ganization actions. Garbage collection actions such as LSM-tree compactions [22, 146],

checkpoints and backup are necessary to guarantee a long term continuous and efficient

operation of the system as well as data availability. These tasks are performed periodically

and aim to minimize the space amplification and reduce the cost of read and write opera-

tions. Although data reorganization actions are performed as background activities allow-

ing data availability, they result in significant I/O activity and high processing overhead

which cause performance variation as the system serves client requests on the common

path (right side of Figure 1.5). Thus the system may fail to guarantee specific service level

performance objectives. Reducing the impact of such actions is challenging. Although

there are approaches that try to model and estimate the cost of data reorganization ac-

tivities [61] or even explore new mechanisms to reduce the impact [150, 163, 195], these

tasks have still high overhead that impact the overall system performance. Ideally a sys-

tem should combine the best of both worlds, the benefits of the data reorganization and

the stable performance of a system that wouldn’t need to perform these tasks.

As these actions cannot always be avoided or postponed for too long, the challenge

11

Chapter 1. Introduction

Replica Group Time

Periodic data reorganization

Th
ro
ug
hp
ut drop

read-serving node background activity data replication path

Figure 1.5: User requests served by a subset of nodes in replicated stores (e.g. stores
following the Primary-Backup replication scheme, requests are served by
the primary node) (left side). While being on the critical path the client-
serving replicas typically take higher load than the other nodes. Any ad-
ditional overhead on these nodes may critically affect performance of the
replica group as a whole (right side of the figure)

we face is how to mask these overheads allowing the system to guarantee a stable perfor-

mance while it performs data reorganization activity. To address this challenge, we follow

a different approach.

Large scale distributed data stores use replication to improve data availability and dura-

bility. Dynamic reconfiguration of replica groups (i.e., the set of nodes that mirror the data)

has received significant attention recently [62,137,147,168] as the importance of adjusting

the number and type of nodes backing replica groups with minimal downtime has become

a key system requirement of Internet applications. Clients usually direct their requests to

a subset of nodes within the replica group [63,65,69,101,177]. However, being on the criti-

cal path of I/O activity, the client-serving replicas typically take higher load than the other

nodes within the replica group. Any additional overhead on these nodes may critically

affect performance of the replica group as a whole (Figure 1.5 left).

12

1.3. Challenges and Assumptions

In this dissertation we show that lightweight replica group reconfiguration actions can

be used as a means of adaptation actions to hide performance overheads allowing the

system to exhibit a stable performance while it performs internal or external background

activities. We redirect client requests away from background-activity busy nodes to hide

the overheads imposed by the background tasks. In Chapter 3 we propose a lightweight

adaptation action that allows replica-group members to dynamically change roles (i.e. pri-

mary replica, secondary replica) to hide the performance bottlenecks imposed by data

store’s internal and external background tasks; thus, eliminating performance variability.

We describe the general design of such a system, evaluate multiple sources of overhead

(LSM-tree [146] leveled compactions and data-backup tasks) over a wider range of work-

load mixes in a dedicated cluster, using an industrial-strength implementation based on

MongoDB and an LSM-tree based storage manager, RocksDB [10].

1.3.3 Improving performance during replica-group reorganization

Data replication schemes are prevalent in data stores for high availability and reliability as

data are replicated across a set of nodes, comprising a replica group. A range of existing

replication techniques in distributed storage systems dictate how data are propagated to

replicas [63,65,69,101,177]. However, there is a trend in practical systems to restrict reads

to as few replicas as possible, to optimize for read-dominated workloads (Figure 1.6 left).

Reconfiguration actions may shift read-serving nodes within a replica group. A switch

to the read-serving replicas may occur as a result of different types of reconfiguration oper-

ations. One such case traditionally occurs when a serving replica fails and a backup must

take over (failover) or due to load balancing actions or workload migration where parts of

an application are moved across the infrastructure. In a similar case, geo-replicated sys-

tems reconfigure the set of serving replicas (e.g. leader leader) while the client’s location

shift across time zones as they serve Internet users [53, 138, 166, 189]. Another reason for

frequent (e.g. every 20 minutes) replica group reconfiguration include lightweight adap-

tation actions as a performance enhancement mechanism to mask performance bottle-

necks on the serving nodes (Chapter 3).

13

Chapter 1. Introduction

Time

Th
ro
ug
hp
ut drop

duration

Replica Group

read-serving node
High cache
utilization

Low cache
utilization data replication path

Figure 1.6: Right: Non-read-serving replicas do not fetch up-to-date cache contents
in contrast to replicas serving reads Left: The cold-cache effect after a re-
configuration action that switches the read serving replicas. The new serv-
ing node requires time to recover to the pre-reconfiguration performance
level due to cold-cache effect

Not surprisingly, data replication systems maintain in-memory data caches to improve

performance, especially for read-dominated workloads. The efficiency of a read cache

impacts the overall performance of data intensive systems. Data replication techniques

focus on ensuring consistency of the persisted data set, while each node of the replica

group also maintains a memory cache of that set to improve performance. Involving as

few replicas as possible in read operations means that the caches of the remaining replicas

receive delayed or no information about application reads, and thus do not fetch up-to-

date content in memory, in contrast to replicas serving reads (Figure 1.6 left).

While replica group reconfiguration actions allow systems to recover after failures or

aim to improve the overall performance, we observe a performance glitch during the re-

configuration action. A negative side effect at the time of switching the read-serving node,

is a burst of cold-cache misses at the new read-serving replica. This may lead to latency

14

1.3. Challenges and Assumptions

spikes and throughput drops that result in service-level objective (SLO) violations for sig-

nificant amounts of time (several minutes) (Figure 1.6 right).

In this dissertation we propose a mechanism that allows replica nodes to get prepared

for the forthcoming replica-group reconfiguration. Our study in Chapter 4 shows that

the system exhibits up to 70% hit after a reconfiguration due to cold cache misses, tak-

ing almost 18 minutes in some cases to fully restore to the pre-reconfiguration level of

performance. To address this issue we propose a new mechanism that allows the system

to maintain up-to-date read caches across replicas without affecting the data consistency

and availability properties of the system. Our method eliminates the cold-cache effect

observed after a reconfiguration on the new node that serves reads, which impacts the

overall system performance observed by the clients. We describe a lightweight, best-effort

synchronization method that tries to minimize the overall cache divergence between the

primary and replica nodes allowing for a seamless transition to the new configuration. The

system exhibits a seamless transition to the new configuration avoiding downtime and an

underperforming period.

1.3.4 Aligning data store partitions with distributed middleware tasks

In multitier architectures distributed middleware systems rely on data stores to maintain

and manage their state. As these systems usually have strict performance requirements,

the underlying data stores need to deliver its functionality with even tighter bounds. Tun-

ing both systems is a challenging task. Determining how to effectively combine and coor-

dinate the two types of systems remains a challenging research problem, as has also been

pointed elsewhere [181]. Typically, the data store and the middleware –as two different

types of systems, have a different lifecycle. Distributed systems are deployed over a set of

nodes. The lack of coordination across systems results to unnecessary network cross-talk

communication and misalignment of adaptation policies (e.g. elasticity). Even when dif-

ferent systems are deployed on the same set of nodes (e.g. the data store is colocated with

processing tasks), this does not guarantee an efficient systems alignment.

In this dissertation we use stream-processing systems (SPSs) as a distributed middle-

15

Chapter 1. Introduction

Node 2

su
bs
tre
am

substream

substream

Node 3

Node 4

Node 1

(a) (b) (c)

su
bs
tre
am

substream

substream
su
bs
tre
am

substream

substream

Processing Task Data partition

Figure 1.7: Amoeba alignment plan example: (a) Initial deployment (3 parallel pro-
cessing task instances access 2 data partitions), (b) creation of new data
shard, (c) task migration and adaptation of the partition-scheme

ware platform use case. Scalable stream-processing systems and analytics applications

provide valuable insights by processing trillions of events per day [21]. Persistence of the

applications external state, such as data produced by streaming jobs or by other applica-

tions or systems or ground-truth table data that can be accessed during the execution of

analytics applications, is an important concern. Typically a data store’s lifecycle is discon-

nected from that of the analytics applications. The cross-layer communication (between

the application and the data store (Figure 1.2) highly affects the overall performance. The

lack of coordination between systems and misalignment of adaptation policies (e.g. elas-

ticity actions) misses opportunities for better cross-layers communication allowing for an

overall improved performance.

We build upon the idea that the data access path can be improved via co-location of the

processing tasks and data partitions. In Chapter 5 we describe the design and implemen-

tation of Amoeba, a system that coordinates the alignment between stream processing

task partitions and data store partitions. Each system may apply a different initial deploy-

ment topology and parallelism (1.7(a)). Amoeba generates alignment plans that can the

16

1.4. Contributions

align that parallelism of systems (Figure 1.7(b)) and/or migrate data partitions or process-

ing tasks across nodes (Figure 1.7(c)) to improve data locality. However, co-locating both

systems in the same set of nodes does not always lead to efficient cross-system communi-

cation. Amoeba can also adapt the systems partitioning scheme to exploit the co-location

between processing operators and data partitions We also demonstrate the decision pro-

cess during the alignment plan generation. We experimentally evaluate Amoeba on an

advanced, complex stream processing benchmark application, Linear Road [52, 180], on

large-scale deployments of up to 64 nodes on Amazon EC2 platform 3 showing 2.6x perfor-

mance improvement when Amoeba aligns the data store with the SPS tasks.

1.4 Contributions

The goal of this dissertation is to propose novel adaptation mechanisms and improve-

ments on existing ones aiming to improve the overall performance while the data store

adapts to internal or external challenges. More specifically the contributions of this disser-

tations are:

1. We study the performance impact of data transfers over the network during the elas-

ticity actions when the store expands its capacity. We propose a new mechanism

that schedules data transfers in a fine-grain manner reducing the performance over-

head of data transfers while progressively increases the processing capacity of the

system in an on-line incremental fashion. The proposed method shows early bene-

fits of data transfers during the elasticity action as it incorporates new resources and

makes data sub-sections available prior to completing the full data transfers. In our

evaluation we use the widely used Cassandra key-value store [132] and demonstrate

2.6x fewer violations on its response time SLOs during the elasticity actions.

2. We propose replica-group reconfiguration as a way to mask performance bottlenecks

in replicated data stores following the primary-backup replication scheme. We inves-

tigate the benefits of changing replica-group leadership prior to resource-intensive

3https://aws.amazon.com/ec2

17

Chapter 1. Introduction

background tasks (e.g. LSM-tree compactions [146] or data backups on the primary

node). We apply our mechanism in a state-of-the-art store, MongoDB [23] using

RocksDB [10] as its internal storage engine, demonstrating that our adaptation mech-

anism is lightweight and can effectively hide performance bottlenecks of internal

or external background activities allowing the system to guarantee a stable perfor-

mance.

3. We study the impact of reconfiguration actions within the replica groups. Starting

from the observation that under certain circumstances practical systems restrict reads

to a few replicas (typically one) to optimize for read-dominated workloads, we ob-

serve a performance glitch during the reconfiguration as secondary replicas cannot

fetch up-to-date contents into their own cache. We address this issue by proposing

a new mechanism to maintain up-to-date read caches across replicas without affect-

ing the data consistency and availability by disseminating read-hints within replica-

group. Our proposed solution is a lightweight, best-effort synchronization method

that tries to minimize the overall cache divergence between members of the same

replica group. Thus, the system is able to seamlessly transition to the new configura-

tion without the performance gap during the replica group re-organization. This is

especially important under the read-intensive workloads that are common today.

4. We investigate the benefits of automatically aligning data stores with distributed

middleware systems that rely on data stores to maintain their state. We describe

the design and implementation of Amoeba, a system that continuously strives to

discover alignment opportunities across systems and improve data locality. Our sys-

tem achieves this either via appropriate (informed) initial placement of data parti-

tions and alignment of data partitioning schemes across different systems with the

ensuing data movement where appropriate while it continuously coordinates adap-

tation actions across systems. We experimentally evaluate Amoeba on an advanced,

complex streaming benchmark application, Linear Road [52, 180], on large-scale de-

ployments of up to 64 AWS nodes showing 2.6x performance improvement when

Amoeba aligns the data store with the SPS tasks. Our novel solution addresses the

18

1.4. Contributions

research problem of automatically streamlining and integrating state management

capabilities across stream and storage technologies, a complex undertaking that to-

day requires deep human expertise, making it a hard and failure-prone undertaking.

Figure 1.3 shows the goals and the mechanisms of the adaptation actions we study in

this dissertation along with the challenges and the proposed solutions (contributions of

this dissertation) The dissertation has different types of contributions that can be grouped

based on common characteristics as follows:

• Improvements to existing adaptation mechanisms. More specifically, this thesis

contributes to more efficient elasticity actions and replica-group reconfiguration ac-

tions (contribution 1 and 3)

• Studying novel adaptation mechanisms. We propose replica-group reconfiguration

as a performance enhancement adaptation action (contribution 2). We also propose

data partitions and processing tasks alignment through the adaptation of the parti-

tioning scheme (contribution 4).

• Using of known adaptation mechanisms (migration, replication, elasticity) to im-

prove efficiency in multi-tier (distributed middleware - data stores) systems (contri-

bution 4)

The space of large scale distributed storage systems is broad. The design, implementa-

tion and evaluation of our proposed mechanisms that address the challenges largely fall

in the category of NoSQL key-value stores. Our implementation and evaluation effort in

this thesis is based on and in certain cases extends several state of the art, widely used sys-

tems in this area: Cassandra [132], MongoDB [23], RocksDB [10], Redis [32]. However, the

contributions of this dissertations have a broader applicability in the area of distributed

storage system that share the same design principles, namely replication (i.e. multiple

copies of data stored on different locations to improve the overall data availability and

durability), sharding (i.e. split data in multiple partitions that are held on separate store

instances to spread load) and elasticity (i.e. the system is able to expand or shrink its ca-

pacity on demand). To the best of our knowledge, the majority of modern data storage

19

Chapter 1. Introduction

systems follow these design principles and thus the work of this dissertation can be more

broadly applicable.

1.5 Related work on autonomous storage systems

The concept of storage systems that can adapt to application requirements is not new. In

the last five decades, storage systems have evolved significantly in this direction. One way

for storage systems to enable adaptation is by exposing configuration knobs that allow

users to access the underlying (re)configuration mechanisms and tuning their behaviour

according to performance objectives. However, optimizing data stores to meet the appli-

cations needs is a tedious and complex task even for experienced system administrators.

The idea of automatically tuning storage systems through optimal configuration set-

tings allowing them to adapt to workload characteristics, available resources and other

challenges they face, was initially explored in the 1970s. In the late 1970s, the idea of

self-adaptive systems was proposed [106]. They were meant to be used as recommenda-

tion tools aiming to assist the database physical design (such as the selection of indices

to match projected access requirements) [107, 108, 136, 194]. Later, during the late 1990s

and early 2000s, self-tuning systems [73, 188] supported additional recommendations for

multiple data store configuration knobs (e.g. configure the database memory heaps and

cumulative database memory allocation) [74, 85, 172, 173, 185].

Early systems were created as standalone and external to the data store systems, used

as recommendation tools to assist system administrators in the tuning process. As the

number of the data store configuration knobs increased significantly, some of the con-

figuration tools included the support of automatic knob configuration through the data

stores APIs. The reconfiguration settings are based on ”best practices” and heuristic al-

gorithms evaluating hard-coded rules in order to discover the optimal configuration set-

tings [108, 179, 185]. Heuristic-based approaches rely on assumptions regarding the work-

load and the environment of the storage system that may not always accurately reflect the

real-world. More recent knob configuration tools are built using machine learning tech-

niques [186]. These techniques are based on model training using runtime collected data.

20

1.5. Related work on autonomous storage systems

In addition, this approach allows the system to leverage past experience and reuse training

data gathered from previous sessions [186].

In this approach the reconfiguration policy is external to the data store, defined in the

external recommendation systems. Users or external systems treat the data store as black

box leveraging the reconfiguration mechanism through the exposed knobs and APIs to

apply the reconfiguration policy. The data store is not aware of the reconfiguration actions

plan and the targets of the policy or the applications goals.

Another approach is to define the reconfiguration policy and the goals of the systems

within the data store [183,184]. The data store does not necessarily expose reconfiguration

knobs for the underlying reconfiguration mechanisms that are integrated into its core. The

reconfiguration actions do not require any human intervention or external systems that

monitor the data store and discover tuning opportunities through reconfiguration actions.

The data store continuously monitors its environment and workload characteristics and

decides to reconfigure itself to adapt to its internal or external challenges [156]. Recent

work in this direction focuses on the adaptation of the internal data representation [48,55]

and tune its internal data structures [83, 84].

This thesis contributes in a number of ways towards more autonomic data stores ap-

plying reconfiguration actions to improve overall system performance, leveraging existing

reconfiguration mechanisms as well as proposing new ones. The reconfiguration policy is

integrated into the data store whenever possible, allowing it to reconfigure itself as it faces

internal or external challenges without any external input. However, in cases where the

data store has to coordinate its reconfiguration actions with the (re)configuration actions

of other systems –such as in multi-tier architectures where the cross-system alignment is

necessary to improve the overall performance– external reconfiguration systems are nec-

essary to orchestrate the reconfiguration actions of the data store.

Overall, in this dissertation we contribute towards the vision of autonomous data stores

incorporating different reconfiguration policies and mechanisms that allow efficient adap-

tation actions addressing internal or external changes throughout their lifecycle.

21

Chapter 1. Introduction

1.6 Outline of Dissertation

The remainder of this dissertation is organized as follows. In Chapter 2 we study the perfor-

mance impact of data movements during elasticity actions. We identify that performing

data migrations in an ad-hoc manner overloads all involved nodes leading to overall sys-

tem performance degradation. To address this problem we propose a new mechanism, in-

cremental elasticity, that orchestrates data movements to reduce the performance impact.

The fine-grain data migrations allow the associated data become available for access on

the new node while the whole elasticity action is still in progress.

In Chapter 3 we study the impact of data stores’ internal or external background activ-

ities competing for resources. We discover that these tasks are the source of performance

variability. To overcome these challenges we propose a lightweight adaptation mechanism

that is based on replica-group reconfiguration by redirecting the client requests away from

nodes that perform background activities.

In Chapter 4 we study the performance impact during replica-group reconfiguration

actions. We discover that the system performance suffers from high cache-miss rate on

some nodes right after the reconfiguration as practical systems restrict read requests only

to a subset of nodes. As a result, non-serving replicas cannot keep their in-memory cache

contents updated; thus, during a reconfiguration or a fail-over action, the system suffers

from a high read-performance impact for a significant amount of time due to cold-cache

misses. In the chapter we describe our approach to address this problem. We propose

a mechanism to maintain up-to-date read caches across replicas by disseminating read

hints to the non-serving replicas to keep their caches warm; thus the system is able to

seamlessly achieve the same performance level even in the face of a replica group re-

organization.

In Chapter 5 we study the benefits of automatically aligning data stores with distributed

stream processing systems that rely on data stores to maintain their state. We propose

Amoeba, a system that dynamically adapts data-partitioning schemes and/or task or data

placement across systems to eliminate unnecessary network communication across nodes.

The system incorporates adaptation actions such as data migrations, elasticity actions

22

1.6. Outline of Dissertation

Figure 1.8: Word cloud based on the text of this dissertation

and partitioning scheme alignment across systems to improve the overall systems perfor-

mance.

Finally in Chapter 7 we summarize and conclude and in Chapter 8 we point directions

for future research

Figure 1.8 presents a word cloud a visual representation of the text of this dissertation

(word cloud). Words that appear bigger are more often mentioned in the text.

23

24

Chapter 2
Incremental elasticity

The emergence of Web 2.0, social networking, and the Internet of Things increased the

sources of new information and resulted in a significant need for the storage of data. Al-

though part of the data may be stored temporarily for subsequent analysis, storage space

and throughput requirements rise dramatically during time periods where large amounts

of new data is created. Data-intensive applications therefore require data engines that are

elastic (can adapt resources to requirements dynamically), accommodating strong data

growth and allowing new nodes to join (or leave) the system gracefully, with minimal per-

formance and availability loss.

In this chapter we study elasticity mechanisms in distributed data stores and the per-

formance impact while the systems transition to the new configuration. A number of

large-scale data stores in the marketplace today used (often as a service) by Internet en-

terprises are designed to offer performance guarantees expressed as service-level objec-

tives. A premier example is DynamoDB [2], a proprietary scalable key-value store service

offered by Amazon. While DynamoDB has been successful with applications that require

fast and predictable performance, it will not scale automatically if the workload require-

ments change. Users should explicitly request more throughput. However the effect of

such a change request is not instant. Amazon states that the “increases in throughput

will typically take anywhere from a few minutes to a few hours” 1. A likely cause is that

1AWS DynamoDB Q&A documentation as of July 2018

25

Chapter 2. Incremental elasticity

attempting to rapidly change a service-level objective may pose an adverse impact to ex-

isting guarantees to applications. This means that throughput spikes cannot be rapidly

remedied. As a result, applications using DynamoDB may experience periods where a

portion of their requests will be dropped or blocked until the system is reconfigured. This

leads application developers to opt for ad-hoc solutions [11,40] which may violate applica-

tion semantics (e.g. violate durability semantics when using intermediate buffers/queues

in order to handle request throttling by DynamoDB).

There is usually a trade-off between the duration of the elasticity actions and their per-

formance impact during adaptation. Ideally, the system should be able to adapt to data

growth or workload changes as quickly as possible to satisfy application requirements.

Nevertheless, the more aggressive the adaptation action the deeper its impact on applica-

tion performance. In this chapter we focus on the performance impact of elasticity actions

in NoSQL data stores. In particular we target data stores that horizontally partition data

(referring to data partitions as shards) and spread them as far as possible on the available

nodes for load balancing.

Next we will give an overview of elasticity actions in modern distributed NoSQL stores.

Several popular data stores [5, 86, 132, 175] require a new (joining) node to take responsi-

bility for sections of data spread across the existing nodes to achieve a more efficient load

balancing, receiving the corresponding data via network transfers. One common option

to carry out these network transfers [5, 132, 175] is to perform them in parallel towards

the new node, raising a number of challenges: First, a large number of nodes are simul-

taneously reducing their processing capacity while engaged in data transfer, resulting in

an overall performance impact. Second, the new (joining) node is solely engaged in data

transfer (at the speed of its network link) and cannot contribute processing capacity until

the time all data transfers are over. Third, with all data transfers completing at about the

same time, associated activities such as data compactions [146] are likely to also overlap,

resulting in significant I/O activity at the new node during the early stages of its normal

operation [8]. Fourth, the many-to-all communication pattern in this phase is known to

under certain circumstances be a cause of throughput collapse in large-scale data cen-

ters [157]. In this chapter we describe incremental elasticity, our proposed mechanism

26

Figure 2.1: Performance characteristics of parallel network transfers (left) vs. incre-
mental elasticity (right)

that addresses all four challenges.

Incremental elasticity replaces parallel network transfers with a sequential communi-

cation schedule where senders take turns sending data to the new node. As soon as a

transfer is over, the associated data are becoming available for access on the new node,

while a subsequent transfer of data takes place. The expected performance benefits of in-

cremental elasticity (visualized in Figure 2.1) are summarized as follows: Fewer nodes are

involved in network transfer at any time, reducing the overall performance drop during

elasticity. With data becoming available on the new node as soon as data transfers com-

plete, processing capacity increases in a step-wise incremental fashion, providing early

benefits of the newly available capacity while the elasticity action is still on. With only a

single sending server active at a time, the delay due to its higher load may be masked by

other replicas of the data it owns.

In this chapter, we demonstrate the benefits of incremental elasticity using Cassan-

dra [132], a popular open-source key-value store inspired by Dynamo [86]. Our contribu-

tions are:

• A new mechanism for gradually increasing the processing capacity of scalable data

stores called incremental elasticity

• An implementation of incremental elasticity in the context of the Cassandra column-

27

Chapter 2. Incremental elasticity

oriented key-value store

• An experimental evaluation of the benefits of incremental elasticity vs. simultane-

ous parallel network transfers under Yahoo! Cloud Serving Benchmark (YCSB) work-

loads

The remainder of this chapter is structured as follows: Section 2.1 provides background

on elasticity mechanisms in data stores, including specifics on Cassandra. Section 2.2

describes our design and implementation of incremental elasticity. Section 2.3 describes

the performance results and comparison of incremental elasticity vs. parallel transfers in

Cassandra under different YCSB workloads. Section 2.4 discusses related work and finally

we summarize our conclusions in Section 3.4.

2.1 Elasticity mechanisms in data stores

Elasticity is the ability of a system to dynamically (in an online fashion) adjust its pro-

cessing capacity by adding or removing resources to meet workload changes. Changes

to system capacity while a workload runs typically impact its performance. Ideally, data

store elasticity should result in an adjustment of processing capacity proportional to the

resources being added or removed, completes at the shortest possible time, and impacts

running workloads as little as possible. To achieve a proportional increase in overall per-

formance, the data migrated should be chosen appropriately so as the elasticity action

results in a well-balanced system. Elasticity may either expand capacity in a horizontal

manner, adding or removing nodes from a cluster, or in a vertical manner increasing or

decreasing the amount of resources (CPU, memory, I/O) of existing nodes of a cluster. In

this thesis we focus on the most common form of elasticity actions, the horizontal elastic-

ity, in data stores whose nodes privately own and manage their storage resources (local or

network disks or SSDs). Thus, a new (joining) server must receive the data it manages to

its own storage upon joining the cluster, via network transfers from other data-store nodes.

In such a model, elasticity actions apply to both compute and storage resources.

Distributed data stores split data into partitions, also termed shards, and assign them

28

2.1. Elasticity mechanisms in data stores

Figure 2.2: Creating shards through tokens (left); cluster expansion via parallel net-
work transfers (right)

across system nodes. There are several different methods for data partitioning. Several

popular data stores [5,86,132,175] achieve data partitioning using consistent hashing [119]

for mapping keys to nodes. The specific variation of consistent hashing used in this work

(implemented by the Cassandra [132] column-oriented data store) is to associate each

physical node with a number of non-contiguous key ranges, tokens, hashed to a ring (Fig-

ure 2.2 left). Each token identifies a key range, starting from the previous token (in coun-

terclockwise order) up to it. Tokens are also referred to as “virtual” nodes or vnodes. Keys

are mapped first to tokens and then to nodes. This allows a finer granularity in data distri-

bution among servers [18]. Cluster expansion via the addition of a new node introduces

a number of new tokens to the ring (e.g. tokens of Node 6 in Figure 2.2 right). The new

node will take responsibility for key ranges identified by its tokens, and will receive the

corresponding data via network transfers from previous data owners (Figure 2.2 right).

To durably store data, Cassandra implements a version of Log-Structured Merge (LSM)

trees [146]. Cassandra nodes apply each incoming update to a write-ahead log for durabil-

ity and then to an ordered memory buffer (the memtable), which is periodically flushed to

an indexed ordered file (the SSTable). A number of SSTables may be consulted to retrieve a

requested key/value. Periodic compactions (merge sort runs) of SSTables aim to maintain

29

Chapter 2. Incremental elasticity

a small number of large SSTables, improving read performance.

Elasticity via parallel data transfers. The Cassandra column-oriented data store performs

elasticity actions by transferring data to a joining node via parallel network transfers. The

associated configuration (state) changes are communicated via a gossip protocol [132]. At

startup, a new (joining) node uses the gossip protocol to announce itself to the cluster and

to receive information about the node topology as well as the tokens that each existing

node owns in the cluster. The startup phase of a joining node is also referred to as boot-

straping. An important task during this phase is to select the tokens for which the new

node will take responsibility, and to initiate the data transfer corresponding to these to-

kens from existing cluster nodes. Fine granularity in data distribution ensures that a new

node will assume responsibility for a balanced share of data from other nodes in the clus-

ter [18]. All data transfers are performed in parallel.

Cassandra uses a streaming protocol to handle the data exchange among nodes in the

cluster. Bootstrap of a joining node involves several stream sessions, each involving the

joining node (receiver) and one of the existing nodes in the cluster (follower), transferring

data between each pair of nodes in four steps: (1) The receiver initiates a stream session

with a follower; (2) After the initial handshake, the receiver sends a list of tokens (key

ranges) it needs from the follower. Upon receiving the preparation message, the follower

records which sections of the data it owns (the SSTable files) it has to send according to the

requested tokens and enters the streaming phase; (3) During the streaming phase the fol-

lower sends the data to the new node; (4) Finally after all the data transfer tasks complete,

the nodes agree to close the session.

During bootstrap, the joining node does not serve client requests. To maintain avail-

ability during elasticity actions, Cassandra does not suspend updates on tokens (key ranges)

involved in streaming and about to change ownership. To ensure that the joining node

will receive such updates, Cassandra operates as follows: Prior to initiating streaming, the

bootstrapping node announces the tokens that it will be responsible for. Existing nodes

in the cluster mark these tokens as pending and forward a copy of any write request on

the pending tokens to the joining node (in the following we refer to these writes as shadow

30

2.2. Design and implementation

writes). In this way, when the new node finally joins the cluster, it will already have re-

ceived any updates accepted by the system after streaming started, avoiding consistency

gaps that may lead to repair [31] operations in the future. When all streaming sessions

complete and all data are available to the new node, it updates its status from joining to

normal state and announces (through gossip) its availability to serve client requests. Note

that token transfers typically materialize as many small SSTables in the new node, trigger-

ing several data management activities such as data compactions to consolidate them.

The aggregate ability of all sending nodes to transfer data may exceed the available

network throughput at the receiving side. TCP will thus appropriately throttle each sender.

Additionally, Cassandra offers a configuration option (stream throughput outbound megabits per sec)

to limit each sender’s streaming throughput. This addresses an empirical observation

(e.g. [130]) that high streaming throughput often leads to significant performance variabil-

ity. Throttling sources reduces the impact of streaming on performance, however it would

also increase the duration of elasticity without any incremental benefit in the meantime,

as all tokens are made available only at the end of the streaming sessions.

2.2 Design and implementation

Design. At its core, incremental elasticity orchestrates data transfers in order to bring new

capacity earlier into the system and reduce the overhead of ad-hoc data movements. It in-

volves a communication mechanism that transfers data to a joining node via a sequential

schedule where senders take turns sending data to the new node. As soon as a transfer is

over, the associated data are becoming available for access on the new node, while a sub-

sequent transfer of data is in progress. To enable incremental elasticity, senders should

either cooperatively decide the schedule of data transfers or assign the task of coordinat-

ing those transfers to the joining node, aiming for sequential transfers between a pair of

nodes (existing node, new node), allowing only one active such session at a time. Gener-

ally speaking, we can schedule transfers between arbitrarily-sized subgroups of nodes and

the joining node but we consider only subgroups of size one in this work.

Assuming the simpler solution that the joining node is responsible for coordinating

31

Chapter 2. Incremental elasticity

data transfers in a pair-wise manner, the choice of which node to stream from can be sim-

ple, such as using a round-robin policy or random. Other policies however, such as start-

ing from nodes that are better prepared for the transfer, are possible. The data transfer

protocol used should support pair-wise transfers and orchestration by the new (receiving)

node, as can (with appropriate modifications) the streaming protocol described in Sec-

tion 2.1.

At startup the new (joining) node should build a current view of the system by contact-

ing its membership service and receiving information about the node topology and data

distribution in the cluster (Figure 2.2 left). At this point it must be decided which parts of

the data the joining node will eventually serve. A key design point for incremental elas-

ticity is to ensure announcements of data ownership (e.g., that a certain region of data is

now served by the new node) are now performed incrementally and in a piecemeal fash-

ion. This affects both read and write operations: As soon as a section of data is now owned

by the joining node, reads are now directed to it, and writes need no longer be performed

twice (cf. shadow writes described in Section 2.1).

Under parallel data transfers, a joining node is fully dedicated to processing stream

sessions as fast as its CPU resources are able to cope with network traffic (ideally at link

speed). As the aggregate network bandwidth of all senders may far exceed the network

bandwidth of the receiver, senders are expected to be throttled by TCP, if not by data-store-

level streaming limits. Replacing parallel stream sessions by sequential ones should not

necessarily increase the overall duration of the elasticity action, if data transfer still hap-

pens at the speed of the receiver’s network link. In incremental elasticity, the same stream-

ing throughput could be achievable even with a single sender, if the sender is able to send

as fast as its network link allows it. While we initially aimed to achieve the same duration

of elasticity actions between parallel and incremental elasticity, in our implementation

we found that senders cannot achieve full network speed, even with the addition of mul-

tithreading techniques. However, reducing the speed at which the joining node processes

incoming traffic means that the node has more CPU resources to devote to processing

requests after the first batch of tokens become available. Any delay in completing the elas-

ticity action is thus compensated by additional processing capacity available during the

32

2.2. Design and implementation

action. Even if we are able to (through a more aggressive implementation) achieve full

link speed at the receiver, acquiring additional processing capacity there can be achieved

by dynamically changing the allocation of memory and virtual CPU resources at runtime

through most hypervisors, for the duration of elasticity.

We consider the above design principles as straightforward and believe that they can

easily be supported by many distributed data stores. In what follows we describe our im-

plementation in the Cassandra column-oriented data store.

Implementation. Our implementation extends Apache Cassandra version 3.7, especially

its gossip and streaming components. Each Cassandra node has a StreamManager module

responsible for all streaming operations. When a new node bootstraps it creates a Stream-

Plan object to associate token requests with the existing nodes. Internally it builds Stream-

Sessions to handle network communication between nodes. The StreamPlan is associated

with a StreamCoordinator component that manages the StreamSessions. StreamCoordina-

tor initiates the stream sessions sequentially ensuring that only one is active at a time. As

soon as a stream session is over, it selects the next session to start from the inactive stream

sessions queue.

The state of a node indicates its status in relation to the cluster. At startup when the

joining node announces itself to the cluster, it enters the joining state. In this state, it

does not receive any client requests (either directly from clients or re-directed from other

nodes). State transitions are announced using Cassandra’s gossip protocol. With incre-

mental streaming we expect that the aggregate processing capacity of the cluster should

increase each time a batch of tokens are made available to the new node. In our imple-

mentation we introduce a new state, the partial join state, for the joining node. As soon

as the first streaming session is over, the bootstrapping node enters in state partial join in

which it remains until the end of the streaming process. This state indicates that the node

has available data and is able to serve client requests on a subset of tokens but is not yet

fully integrated to the cluster. To support the partial join state, we introduced a new type

of gossip message sent by the new node when a stream session completes, announcing

the state and informing the cluster of the tokens the new node is responsible for. Nodes

33

Chapter 2. Incremental elasticity

receiving this message update their tokens-to-node mapping, and start to appropriately

redirect client requests to the new node.

Modifying the scheduling of token transfers means that we should modify the schedul-

ing of shadow writes as well. In incremental elasticity, shadow writes only concern tokens

that are being streamed at a specific time period. In standard Cassandra, nodes mark as

pending those tokens that the joining node advertises as tokens it will eventually be re-

sponsible for. In our implementation, only tokens currently being transferred (streamed)

are shadow-written until the end of the current streaming session. Tokens that correspond

to future streaming sessions are fully served by their current owning nodes and there is no

need to be shadow written. This is possible since the new node announces the pending

tokens during the preparation step of each stream session and tokens become available

when the session is complete. Overall this reduces the load that shadow writes place on

the joining node during streaming. As soon as all data transfers are complete, the new

node updates its state as normal and announces it to the cluster.

2.3 Evaluation

2.3.1 Experimental testbed and methodology

Our experimental testbed is a cluster of 9 servers, each equipped with a dual-core AMD

Opteron 275 processor at 2.2GHz with 12GB of main memory. All servers run Ubuntu

14.04 64-bit with a 3.14.1 Linux kernel and are interconnected via a 1Gb/s Ethernet switch.

Servers store data on a dedicated 300GB 15,500 RPM SAS drive that delivers 120MB/s in

sequential reads and 250 IOPS in random reads with a 4K block size. Hard drives are for-

matted with the ext4 file system.

We use Cassandra version 3.7 with the OpenJDK 1.8.0-91 Java runtime environment.

Our evaluation workload is the Yahoo Cloud Serving Benchmark (YCSB) [81] version 0.11

executing on a dedicated server. The benchmark is configured to produce two different

mixes of reads vs. updates/writes: 95%-5% (Workload B) and 50%-50% (Workload A) re-

spectively, with requested keys selected randomly with the Zipf distribution. The YCSB

34

2.3. Evaluation

evaluation dataset consists of 80 million unique records, replicated 3 times resulting to

240 GB of data (34GB per node) when loaded. Our initial Cassandra cluster consists of 7

servers. During elasticity actions an 8th server joins the cluster.

We experiment with Cassandra data-consistency levels QUORUM and ALL. QUORUM

requires responses from a majority (2 out of 3 in this case) of replicas to complete a read

or write operation, whereas ALL involves all replicas. In QUORUM reads, 2 of the 3 replicas

return only a checksum of the data, a Cassandra optimization to reduce network traffic

[17].

The number of YCSB client threads (number of parallel connections between database

client and servers) is set to 30 and 25 for the QUORUM and ALL consistency levels respec-

tively, empirically determined to stress the cluster while keeping average response time

under 50ms (considered a reasonable threshold). We used the default settings for node

caches, namely key cache enabled and row cache disabled (however nodes benefit from

caching at the OS buffer cache). Unless stated otherwise, we do not limit each node’s

streaming throughput (stream throughput outbound megabits per sec set to 0). For re-

peatability, we modified the default token partitioner to ensure that each Cassandra node

will be responsible for serving the same key ranges across experiments. The dataset is

loaded fresh onto Cassandra nodes before each experiment.

Impact of compactions. To isolate the performance impact of SSTable compactions on

the joining node from the impact of the streaming process itself we chose to disable com-

paction activities on the joining node (node 8) during its bootstrapping process. This

choice was based on the observation that high compaction activity is significantly penal-

izing the joining node right after the elasticity action under parallel streaming. It also re-

flects standard practice in field use of Cassandra [8]. We observed that under incremental

streaming, the impact of compactions is spread over time, however for fairness we used

the same delayed compaction policy in that case as well. Other solutions to reducing the

impact of compactions on the joining node are to limit compaction throughput and the

number of active compaction tasks at any time, however an in-depth investigation of this

aspect is beyond the scope of this work.

35

Chapter 2. Incremental elasticity

2.3.2 Analysis of experimental results

Figure 2.3 depicts YCSB throughput (YCSB ops/sec) with the workload mix for 95% reads

5% writes and QUORUM consistency. The elasticity action is triggered 30 minutes into

the experiment when the system is deemed to have reached a steady state. The dura-

tion of streaming activities is highlighted by dashed vertical lines. In the inset we de-

pict a bar chart indicating the relative performance change during the elasticity action vs.

pre-elasticity performance. The latter is the average throughput during the most recent

5-minute time window before the elasticity action starts. Each histogram bar corresponds

to an average over a 2-minute interval window.

Figure 2.3a (parallel streaming) exhibits a clear performance hit of about -14% during

data streaming, followed by a performance increase (vs. pre-elasticity levels) due to the

expansion of the cluster after the elasticity action is over (640 vs. 820 ops/sec). Perfor-

mance under incremental streaming (Figure 2.3b) exhibits very little degradation into the

early stages of elasticity (-2.5%) and a performance increase via the growing processing

capacity of the joining node. This result highlights the benefit of decreased performance

impact during elasticity actions with incremental streaming. Streaming takes 26 minutes

for incremental vs. 9 minutes for parallel, with both systems taking additional time to

reach their full post-elasticity throughput. Taking this additional time into account, we

observe that Cassandra with incremental streaming takes about twice the time to reach

its full post-elasticity throughput compared to parallel streaming. However, early benefits

of the additional capacity of the new node are observed earlier (after 4 minutes) while the

elasticity action.

To statistically validate the results depicted in Figures 2.3a and 2.3b, we calculated the

average performance change during streaming over ten runs. The maximum performance

hit observed during parallel streaming over those runs was on average -13% (standard de-

viation 1.17%) with a maximum of -15.1%. During incremental streaming, the maximum

performance hit over the ten runs was on average -2.3% at the beginning of streaming,

with a near-linear improvement as the new node progressively joins the cluster.

One (existing) way to limit the performance impact of streaming is to actively throttle

36

2.3. Evaluation

 0

 200

 400

 600

 800

 1000

 400 800 1200 1600 2000 2400 2800 3200 3600 4000
-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140
Y

C
S

B
 T

h
/p

u
t
(o

p
s
/s

e
c
)

%
 T

h
ro

u
g
h
p
u
t
d
if
f
v
s
.
p
re

-e
la

s
ti
c
it
y
 l
e
v
e
l

Time (seconds)

(a) Parallel streaming

 0

 200

 400

 600

 800

 1000

 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800
-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

Y
C

S
B

 T
h
/p

u
t
(o

p
s
/s

e
c
)

%
 T

h
ro

u
g
h
p
u
t
d
if
f
v
s
.
p
re

-e
la

s
ti
c
it
y
 l
e
v
e
l

Time (seconds)

(b) Incremental streaming

Figure 2.3: Elasticity under YCSB workload B (95% read, 5% writes), consistency QUORUM

 0

 200

 400

 600

 800

 1000

 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800
-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

Y
C

S
B

 T
h
/p

u
t
(o

p
s
/s

e
c
)

%
 T

h
ro

u
g
h
p
u
t
d
if
f
v
s
.
p
re

-e
la

s
ti
c
it
y
 l
e
v
e
l

Time (seconds)

(a)

 0

 200

 400

 600

 800

 1000

 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800
-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

Y
C

S
B

 T
h
/p

u
t
(o

p
s
/s

e
c
)

%
 T

h
ro

u
g
h
p
u
t
d
if
f
v
s
.
p
re

-e
la

s
ti
c
it
y
 l
e
v
e
l

Time (seconds)

(b)

Figure 2.4: (a) Parallel streaming with network transfer throttling, (b) Serial but not in-
cremental streaming. Both experiments run under the same configuration
setting as in Figure 2.3

parallel streaming transfers through a Cassandra configuration setting (stream through

put outbound megabits per sec). To highlight the benefits of incremental streaming over

this solution, we repeat the previous experiment using standard Cassandra set to limit

streaming throughput to a level comparable to the aggregate network throughput achieved

with incremental streaming. Under incremental streaming (Figure 2.3b), the joining node

receives tokens at 210Mbps (vs. 490Mbps with unthrottled parallel transfers). We thus set

the throughput limit of each (parallel) sender to 30Mbps so that the joining node receives

37

Chapter 2. Incremental elasticity

 0

 100

 200

 300

 400

 500

 600

 700

 400 800 1200 1600 2000 2400 2800 3200 3600 4000
-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

Y
C

S
B

 T
h
/p

u
t
(o

p
s
/s

e
c
)

%
 T

h
ro

u
g
h
p
u
t
d
if
f
v
s
.
p
re

-e
la

s
ti
c
it
y
 l
e
v
e
l

Time (seconds)

(a) Parallel streaming

 0

 100

 200

 300

 400

 500

 600

 700

 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800
-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

Y
C

S
B

 T
h
/p

u
t
(o

p
s
/s

e
c
)

%
 T

h
ro

u
g
h
p
u
t
d
if
f
v
s
.
p
re

-e
la

s
ti
c
it
y
 l
e
v
e
l

Time (seconds)

(b) Incremental streaming

Figure 2.5: Elasticity under YCSB workload B (95% read, 5% writes), consistency ALL

 0

 100

 200

 300

 400

 500

 600

 0 500 1000 1500 2000 2500 3000

T
h
ro

u
g
h
p
u
t
(r

e
q
u
e
s
ts

 /
 s

e
c
)

Time (seconds)

read write

(a) Consistency Level ALL

 0

 100

 200

 300

 400

 500

 600

 0 500 1000 1500 2000 2500 3000

T
h
ro

u
g
h
p
u
t
(r

e
q
u
e
s
ts

 /
 s

e
c
)

Time (seconds)

read write

(b) Consistency Level QUORUM

Figure 2.6: Request rate served by joining node during streaming, YCSB workload B
(95% reads, 5% writes)

at the same rate (30 Mbps × 7 nodes = 210Mbps) as in incremental streaming. Figure 2.4a

shows that the performance impact under throttled parallel transfers is reduced to -6%

over a 24-minute elasticity interval vs. -14% over 9 minutes in unthrottled parallel stream-

ing. Prolonging the elasticity action to reduce the performance impact results in late ben-

efits of the elasticity action. So the system has to wait until the whole elasticity action is

over before the capacity of the new node contributes to the overall system capacity. This

also means that a large fraction of the processing capacity of the joining node goes unused,

explaining the performance advantage of incremental elasticity.

38

2.3. Evaluation

Another way to showcase the positive impact of increasing the processing rate of the

joining node during elasticity is to contrast it with a system that schedules sequential

pairwise transfers (as in incremental streaming) but does not make transferred tokens

incrementally available on the joining node. Results with such a system (Figure 2.4b)

demonstrate that performance during elasticity remain at the same level as before elas-

ticity, through the end of the streaming process: Although the joining node receives data

from the existing servers in pair-wise manner (similar to incremental elasticity) the trans-

ferred data are not available for access to the new node. This means that the capacity of the

cluster remains the same until the end of elasticity action when the new node announces

the ownership of the received tokens and is fully integrated to the system (as in parallel

streaming). Incremental elasticity schedules data transfers in pair-wise fashion in order to

bring the additional capacity of the new node earlier into the system. As soon as a transfer

is complete data become available for access on the new node during the elasticity action.

The increase of the cluster processing capacity in a stepwise fashion can also be ob-

served by examining the rate of requests handled at the new (joining) server. Figure 2.6

illustrates that the joining node indeed serves progressively more client requests (read-

s/writes served locally –excluding those only coordinated2 – by the joining node) during

streaming. The time between two dashed lines in the graph corresponds to a streaming

session between the joining node and an existing server. Each data point represents the

rate of requests served in a time window of two seconds. Figure 2.6a shows the requests

that are served by the joining node under consistency level ALL. In this case each request

must be acknowledged by all replicas, thus the joining node is involved on all requests for

tokens it has already received. Figure 2.6b depicts the number of client requests served

by the joining node under consistency level QUORUM. In both cases, we can observe the

increasing number of requests as the streaming process progresses. In case of consistency

level QUORUM the steps are somewhat more noisy (the concentration of points is wider)

as the new node may or may not be asked to participate in the majority (2 of 3) of replicas

2In Cassandra any read/write request can be sent to any node in the cluster. If the node is responsible for the
requested key(s) it serves the request otherwise it acts as a proxy and forwards the request to the correspond-
ing node. This proxy node is called coordinator. The coordinator is responsible for the entire request path
and responds back to the client [9]

39

Chapter 2. Incremental elasticity

that serve a request. In Figure 2.6 we observe that the rate of write requests is higher dur-

ing the elasticity action in both cases. This is due to the extra overhead of shadow writes

during streaming.

Figure 2.5 depicts YCSB throughput for the same dataset for 95% reads 5% writes (work-

load B) under the stricter consistency level ALL. We observe similar trends as with the

previous configuration applying consistency level QUORUM. With parallel streaming the

throughput drops up to -17% during the elasticity action. Incremental streaming exhibits

little degradation (-2.5%) at the start of the streaming phase. Under this configuration the

performance increases in smaller steps during the elasticity action. Although with incre-

mental elasticity one streaming node is active at a time, every request involves all replicas

and thus performance is determined by the slowest replica. A small fraction of requests

corresponding to tokens that are part of the active streaming session involve the streaming

source node, and thus are expected to be impacted due to its higher load during streaming.

Requests that do not hit this node will not be impacted under this consistency level.

Repeating these experiments with the 50%-50% read/write workload mix shows similar

trends with the exception that the performance impact during streaming increases under

both parallel and incremental streaming. With QUORUM consistency, parallel streaming

exhibits steady performance degradation (similar to that observed Figure 2.3) up to -11%,

while incremental elasticity exhibits a smoother transition to the new configuration with

a maximum performance hit less than -4% during the early stages of elasticity, increasing

to +10% as the streaming process progress. With consistency level ALL, parallel streaming

exhibits a performance penalty up to -16%, whereas incremental elasticity exhibits a per-

formance hit of up to -6.5% at the early stages of streaming, increasing slightly over the

baseline (+3%) until the elasticity action completes.

2.3.3 Response time

The response-time trends observed in previous experiments are identical to those ob-

served for throughput, with throughput drops corresponding to response-time increases.

In this section we aim to extend our evaluation in two directions: First, to provide a response-

40

2.3. Evaluation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 500 1000 1500 2000 2500 3000 3500 4000 4500

Y
C

S
B

 l
a
te

n
c
y
 (

m
s
)

Time (seconds)

read threshold

(a) Parallel streaming

 0

 10

 20

 30

 40

 50

 60

 70

 80

 500 1000 1500 2000 2500 3000 3500 4000 4500

Y
C

S
B

 l
a
te

n
c
y
 (

m
s
)

Time (seconds)

read threshold

(b) Incremental streaming

Figure 2.7: YCSB latency under workload B (95% read, 5% writes), consistency QUORUM

time view of incremental vs. parallel streaming. Second, to demonstrate a scenario of a

variable-load client and a simple elasticity controller that drives an elasticity action to ac-

commodate the increased load. Our evaluation sets the incremental elasticity technique

into context with quality of service (QoS)-aware data stores that often rely on response-

time targets to maintain specific goals [68, 86, 120, 140].

Variable levels of client load may occasionally result in a system exceeding a fixed

response-time goal. A QoS-aware controller typically incorporates a monitoring compo-

nent [68] that combines response-time metrics reported across client processes, analyzes,

plans, and executes elasticity actions to re-provision service capacity as needed. We do

not aim to fully evaluate an elasticity controller in this work. We use a simple such con-

troller to compare the impact of incremental vs. parallel elasticity in maintaining a given

response-time target. Figure 2.7 depicts YCSB read latency with a 95% read, 5% writes

workload mix, consistency QUORUM, under variable load. The targeted response time of

50ms is highlighted with a horizontal red line in Figure 2.7.

Load generated by 20 YCSB threads results initially in 40ms average response time for

read operations. 30 minutes into the experiment when the system has reached steady

state, we increase the load by adding 10 more client threads to a total of 30, leading to an

increase of the average response time above 50 ms. About 5 minutes later, the controller

detects a response-time target violation and triggers an elasticity action whose duration is

41

Chapter 2. Incremental elasticity

highlighted by dashed vertical lines. Each data point in Figure 2.7 is average response-time

over a 2-second window. Under parallel streaming (Figure 2.7a) we observe that the elas-

ticity action leads to a further increase of response times, further exceeding our target. In

contrast, incremental elasticity (Figure 2.7b) has lower impact on response time, produc-

ing fewer target violations and achieving a smoother transition to the new configuration.

To quantitatively compare incremental to parallel streaming with respect to violations

of the response-time service-level objective (50ms in this case) that they produce, we

count the proportion of those requests with response time exceeding our objective, using

the following formula:

score =
Sn∑
i=S1

penaltyi (2.1)

where S1 and Sn are the first and last interval of the streaming process, and

penaltyi =

1, if resp. time > 50

0, if resp. time ≤ 50
(2.2)

The score function with the above penalty expresses the amount of time intervals that

the elasticity process results in a target violation. The execution of Figure 2.7a (parallel

streaming) results to a score of 237. This means that the response time exceeds the tar-

geted threshold for 474 seconds (each time interval corresponds to 2 seconds), whereas

the execution of Figure 2.7b (incremental streaming) has a score of 144 (144 x 2 = 288 sec),

thus incremental streaming has 39% fewer response-time violations compared to parallel

streaming.

In the above analysis, any violation of the response-time target is considered equally

harmful and contributes a penalty of 1. However, one can argue that the amount by which

the threshold is violated is also practically relevant. We can capture this factor by replacing

formula (2.2) with (2.3) in the score function, thus taking into account by how many ms the

42

2.4. Related work

average response time exceeds the target at each data point.

penaltyi =

50 − (resp. time) if resp. time > 50

0 if resp. time ≤ 50
(2.3)

According to this penalty function, parallel streaming has a score of -1170 while in-

cremental streaming has a score of -440, indicating that incremental elasticity scores 2.6x

higher than parallel streaming when taking into account both the number of response-

time violations and their extent.

In Figure 2.7 we observe that Cassandra with parallel transfers is about twice as fast

in bringing response time to its stable post-elasticity level compared to our implemen-

tation using incremental streaming. Thus if an application is insensitive to service-level

violations or performance cost during elasticity, parallel streaming may be a preferable

elasticity mechanism.

2.4 Related work

NoSQL systems, like nearly all data-intensive systems, require reconfiguration over time

so that data is redistributed across server nodes for the purpose of load balancing, expand-

ing/shrinking resources, or rehashing data to server nodes. Elasticity is a special form of

reconfiguration where a fraction of the overall dataset is moved to new nodes (or taken out

of nodes about to be decommissioned) to grow or shrink processing capacity in an online

manner. In what follows we look into previous research on reconfiguration in NoSQL data

stores, with a special focus on elasticity.

Several data stores are able to expand or shrink their use of server resources through

migration of shards and replicas. Petal was an early elastic storage system offering a vir-

tual disk abstraction featuring incremental reconfiguration [135], namely the ability to re-

stripe a logical disk on fewer or more storage servers without blocking access to the entire

disk. Incremental elasticity shares the concept of transferring a piece of the overall state

at a time but has different goals.

A number of NoSQL data stores (sych as Dynamo [86], Cassandra [132], Riak [5], and

43

Chapter 2. Incremental elasticity

Voldemort [175]) use a variant of consistent hashing originally introduced by Karger et

al. [119] and Stoica et al. [171], to map key ranges to server nodes. Instead of mapping

a node to a single point in the circle, each node gets assigned to multiple points in the ring,

each such point called a virtual node. Each node in the NoSQL system can be responsible

for more than one virtual node. Systems using virtual nodes involve all-to-one transfers

during elasticity and can benefit from the use of incremental elasticity.

Ghosh et al. [100] described Morphus, a methodology for supporting online reconfig-

urations in sharded NoSQL systems. Morphus introduces algorithms for re-sharding a

database aiming to reduce the total network transfer volume during reconfiguration and

to achieve a load balanced assignment. Morphus is implemented within MongoDB and

applied to the case of changing the sharding key of an existing table. It leverages inter-

nal MongoDB mechanisms to reconfigure secondary shard replicas and transfer data via

many-to-all communication patterns inherent in such resharding scenarios. Changing

the sharding key entails a heavier reconfiguration compared to adding new servers con-

sidered in our work.

DDS [104] was an early scalable key-value store with the ability to split partitions (shards)

and migrate replicas between nodes. It chooses shard size so that migration of a shard is a

rapid process and opts for migrating replicas at the full speed of the network rather than in

a controlled, background process. The authors of DDS do not detail a complete elasticity

mechanism.

The term incremental elasticity has also been used in the context of array databases [90].

In this work, Duggan et. al. design an elasticity controller that decides when to expand an

array database cluster and how to repartition a growing multi-dimensional data set within

it. Our use of the term refers to progressive increases of processing capacity in a fine-grain

manner during an elasticity action and is thus complementary.

MongoDB utilizes the cluster balancer module, which migrates data chunks between

different shards when the chunk number ratio of the biggest shard to the smallest one

reaches a certain threshold. MongoDB appears to support an elasticity mode where data

is being served by newly added nodes as soon as they arrive [89]. Based on the scarce

documentation available for this feature, it does not appear related in any other way to

44

2.4. Related work

incremental elasticity. Voldemort [175] uses a rebalance controller that allows a joining

node to participate in multiple parallel transfers, ensuring that each sender has only one

active token-transfer at a time. Riak [5] supports the adjustment of the number of node-to-

node transfers using a per-node transfer limit parameter (default 2). It appears that this

parameter controls the number of tokens involved in data transfers rather than the num-

ber of parallel transfers towards a joining node. It has been used on disk-capacity issues

in expanding clusters [35] but we have found no systematic evaluation of its performance

impact or a specification of how data transfers using it are coordinated/managed across

nodes.

Konstantinou et al. [127] describe a generic distributed module, DBalancer, that can

be installed on top of a typical NoSQL data-store and provide an efficient configurable

load balancing mechanism. Balancing is performed by simple message exchanges and

typical data movement operations supported by most modern NoSQL data-stores. In a

related work, Konstantinou et al. [182] present a cloud-enabled framework for monitor-

ing and adaptively resizing NoSQL clusters. Kuhlenkamp et al. [130] evaluate the elasticity

of HBase and Cassandra and show a tradeoff between the speed of scaling and the perfor-

mance variability while scaling. These works rely on the use of generally available elasticity

mechanisms and thus could benefit from the use of the incremental elasticity mechanism.

Data stores offering performance-oriented service-level agreements (SLAs) such as Dy-

namo [86] use online elasticity mechanisms as one among different ways of adjusting pro-

cessing capacity to fit client needs. Typically, a combination of vertical (increasing single-

node processing capacity) and horizontal (increasing number of nodes) elasticity is used

in this space, also known as scale-up and scale-out elasticity. Incremental elasticity is an

instance of the latter. Recent work [68] proposed a measurement-based prediction ap-

proach [121] to achieving data store performance SLA by means of elasticity actions over

the Cassandra NoSQL store. Here we improve on this work by reducing the impact of elas-

ticity actions.

Brown et al. [64] introduce a methodology for benchmarking the availability of RAID

arrays after a disk crash, highlighting a trade-off between the speed of data reconstruc-

tion and its impact on application performance, similar in spirit to the elasticity tradeoff

45

Chapter 2. Incremental elasticity

explored in our work. They study the policies used by different software RAID implemen-

tations (Solaris, Linux, Windows) and find that Linux follows the slowest approach, dedi-

cating less disk bandwidth to reconstruct data posing no significant effect on application

performance, whereas Solaris defines the opposite extreme making its RAID reconstruc-

tion over 7 times faster than Linux, albeit at a significant performance hit during recon-

struction.

2.5 Summary

In this chapter we describe incremental elasticity as a way to reduce the performance

penalty incurred during elasticity actions in distributed data stores. Our implementation

on the Cassandra column-oriented data store shows that such an implementation is fea-

sible with reasonable complexity. Our evaluation shows that incremental elasticity results

in smoother, more stable elasticity actions compared to parallel network transfers across

all cases considered. Incremental elasticity reduces the performance impact (-2.32% vs.

-12.96% drop in aggregate throughput for 95%-5% reads/writes and QUORUM consistency,

-2.5% vs. -17% under 95%-5% reads/writes and ALL consistency) compared to parallel net-

work transfers. In a scenario involving a service-level management controller, incremental

elasticity leads to 39% fewer response-time violations compared to parallel streaming dur-

ing elasticity.

46

Chapter 3
Replica-group leadership change as a

performance enhancing mechanism

During the lifecycle of a data store the system faces a number of challenges as it evolves

through multiple phases. The challenges a system faces can be internal or external. In-

ternal data reorganization or backup and checkpointing background tasks competing for

resources can be the source of performance variability resulting in violations of its per-

formance oriented goals. Data stores maintain, organize and store data using data struc-

tures. There are various types of data structures for storing data offering different and

unique features each one [113]. During its lifecycle, a data store performs data reorgani-

zation operations on its internal data structures allowing continuous and efficient oper-

ation. Log structured merge tree (LSM tree) [146] is a popular data structure underlying

many highly scalable distributed data stores [36,49,71,86,98,132] and embedded key value

stores [10, 16]. Periodic compaction operations (merge sort operation over the data) are

necessary actions to reduce space amplification and improve read operations over time.

However, the compaction tasks lead to a lot of overhead, such as CPU resources consumed

by data compression, decompression, copying and comparison, and also the disk I/O of

data reads and writes. Data backup is a data protection method that creates a copy of the

store’s state allowing it to restore the state in case of a failure or roll back if the system’s

state is corrupted. Regular backups keep the data stores state safe and sound. However,

47

Chapter 3. Replica-group leadership change as a performance enhancing mechanism

backup operations put additional strain to the system as it creates significant I/O activity,

memory pressure and CPU overhead. Thus, the system may fail to sustain the expected

performance while such background activities are active.

Data replication is a standard technique for achieving high data availability and relia-

bility, and a range of data replication techniques are essential components of distributed

storage systems today [72]. Dynamic reconfiguration of replica groups has received signif-

icant attention recently [62, 137, 147, 168] as the importance of adjusting the number and

type of nodes backing replica groups with minimal downtime has become a key system

requirement of Internet applications.

In this chapter we aim to systematically explore replica group reconfiguration policies

and mechanisms as a means of adaptation action that can mask the performance bottle-

necks imposed by data store’s internal and external background tasks. We describe the

general design of such a system, evaluate multiple sources of overhead (LSM-tree [146]

leveled compactions and data-backup tasks) over a wider range of workload mixes in a

dedicated cluster, using an industrial-strength implementation based on MongoDB and

an LSM-tree based storage manager, RocksDB [10].

We outline the general design of such a system by defining the states each replica can

be in (primary or secondary, performing a background task or not) and their transitions,

and highlight the key policies and mechanisms involved. We further present key imple-

mentation choices we made within MongoDB/RocksDB, in maintaining global informa-

tion about node activities for ranking nodes as candidates for primary, coordinating be-

tween the independent replication (MongoDB) and storage (RocksDB) layers, and ensur-

ing that our preferred candidate can always be elected by the PB election algorithm.

Our experimental evaluation highlights the performance benefits of reconfiguration

actions in the case of LSM-tree compactions and data backup processes. There are other

known performance issues, such as slow system response during checkpoint writing [24],

that could be similarly addressed by our system and that we plan to evaluate in future

work.

Our key contributions in this chapter are:

• A description of the design concepts (replica states, transition policies, and under-

48

3.1. Background

lying mechanisms) in using replica-group leadership change as a performance en-

hancing mechanism in primary-backup replication

• Addressing key challenges in an implementation of the design within an industrial-

strength NoSQL data store (MongoDB) and storage manager (RocksDB) using LSM-

trees with leveled compaction

• An evaluation of the prototype under two sources of periodic performance impact

on replica-group nodes: LSM-tree compactions and data backup tasks.

The remainder of this chapter proceeds as follows: In Section 3.1 we provide back-

ground on the primary-backup (PB) replication scheme as well as details on the MongoDB

replication internals and RocksDB storage engine based on LSM trees. In Section 3.2 we

describe the design and implementation of our system. In Section 3.3 we discuss our ex-

perimental evaluation, and in Section 3.4 we conclude.

3.1 Background

As background to our design and implementation in Section 3.2 we describe the basic

operation of replication on MongoDB [23] and RocksDB [10], the storage manager we use

in this work. In general, MongoDB stores data in documents. It groups documents in

collections (akin to tables), partitions data via sharding, and replicates shards as explained

below.

Primary-backup replication. Data replication schemes are prevalent in data stores for

high availability and reliability as data are replicated across a set of nodes, comprising a

replica group. A range of existing replication techniques in distributed storage systems

dictate how data are propagated to replicas.

Primary-backup (PB) replication [65] is a strongly consistent replication technique in

widespread use today [117, 145, 147, 187]. Systems implementing PB replication feature

a strong leader (the primary) that coordinates write operations (in some systems, reads

as well) towards secondary replicas (backups) (Figure 3.1). Any PB implementation must

49

Chapter 3. Replica-group leadership change as a performance enhancing mechanism

Replica Group 1 Replica Group 2 Replica Group N

Shard 1 Shard 2 Shard N

. . .

Leader node

Figure 3.1: The primary-backup (PB) replication scheme. Each data partition (shard)
comprises a replica-group featuring a strong leader (primary) node that
coordinates the client requests and a number of replicas

handle failure of the primary by electing a new primary within the current configuration,

as a standard reconfiguration action (a view change). In recent years, certain PB imple-

mentations offer APIs that externally trigger such reconfiguration actions for management

purposes.

Being on the critical path of I/O activity, the primary in a PB system typically takes

higher load than secondary replicas. Any additional overhead on the primary may crit-

ically affect performance of the replica group as a whole. Recent research [96] demon-

strated use of targeted leadership-change actions as a driver for lightweight adaptation of

replica groups, by moving the primary away from nodes that are, or will soon be, heav-

ily loaded. In this way, a certain level of load balancing is feasible at low cost (the short

availability lapse that such reconfigurations entail), occasionally leading to large bene-

fits. Leadership change has also been proposed in the context of Byzantine fault tolerance

for mitigating attacks in which a leader intentionally misbehaves [79]. Use of leadership-

50

3.1. Background

change in BFT settings, while partly sharing goals with our work, differs in terms of the

policies and mechanisms involved.

MongoDB replication. MongoDB replicates shard data using primary-backup replica-

tion [65]. Each replica group has a single primary and multiple secondaries. Our brief

discussion of the replication protocol is based on online documentation [26] and inspec-

tion of the source code (MongoDB version 3.7). A primary is associated with a given term,

indicating the election number at which it was elected. The primary inserts each client

update it receives to an operation log (the OpLog) stored as a local file and then (asyn-

chronously) applies it to its local copy of the database. Secondaries pull OpLog entries

from the primary or from another secondary, known as their sync-source node. Each sec-

ondary stores fetched updates to its own OpLog and applies them to their own database

copy. In our experiments the sync-source is always set to be the primary.

All MongoDB nodes maintain topology and status information about other nodes in

the cluster. Each node communicates regularly (in heartbeats every 2 seconds) with all

other nodes to check their status, to stay up to date with their sync source (fetching OpLog

entries), and to notify them of their progress.

A node runs an election when it has not seen a primary within the election timeout, or

during explicit reconfiguration (termed a priority takeover). The election process is based

on the Raft [147] protocol. When a candidate wins an election, it notifies all nodes via a

round of heartbeats. It then checks if it needs to catch up with the former primary. This

process tries to commit as many as possible of the entries the last primary managed to

send to secondaries, but may not have managed to commit (they will otherwise be rolled

back). Prior to accepting writes, the primary-elect drains its OpLog from previous-term

entries by applying them to the database.

RocksDB. The implementation of MongoDB we employ in this work uses RocksDB [10]

as a storage engine. RocksDB stores data in Log-Structured Merge (LSM) trees [146]. It

applies each incoming update to a write-ahead log for durability and then to an ordered

memory buffer (the memtable), periodically flushed to an immutable indexed ordered

51

Chapter 3. Replica-group leadership change as a performance enhancing mechanism

file (the SSTable). To retrieve a requested key, a number of SSTables may have to be con-

sulted. Periodic compactions (merge-sort runs) of SSTables aim to maintain a small num-

ber of large SSTables, improving read performance. RocksDB implements leveled com-

pactions [22], initially proposed in LevelDB [16], a key-value storage engine written at

Google.

The MongoDB OpLog is implemented as a specific collection type called a capped col-

lection, built as a circular buffer. It is a fixed-sized collection that automatically overwrites

its oldest entries when it reaches its maximum size. MongoRocks monitors the size of

the OpLog collection and reduces it via compaction. Due to heavy overwrite activity, the

OpLog involves significant data-discarding during compactions, affecting overall perfor-

mance. Thus MongoRocks triggers compaction periodically even if the size of the OpLog

has not reached its limit. OpLog compactions have higher priority in the queue of pending

compaction operations.

3.2 Design and Implementation

Design. Our design goal is to mask the impact of resource-intensive background activities

on replica-group performance. Such activities, caused by internal storage-system needs

(such as LSM-tree compactions) or external tasks (such as automated backup jobs), are

often essential for smooth operation and cannot be avoided or postponed for too long, as

doing so impacts application performance and/or data availability. The key idea is to de-

mote a primary who is about to engage in such a resource-intensive background task into

a secondary, in effect executing such tasks on secondary nodes only. The key mechanisms

that facilitate this design are:

• Notifying the primary that a background task is upcoming

• Reconfiguring the group with minimal service disruption.

• Maintaining a global view of background tasks executing on replica group members.

Each replica ni periodically gossips the following status to the group: whether there

is a background task (internal or external) executing on ni; when the last background

52

3.2. Design and Implementation

Report status to RG and start compacting

Need to compact &&
(!worth reconfiguring (Policy 1) || postponed too long)

P, NC S, NC

S, C

Demote current primary in favor of node X

Worth reconfiguring (Policy 1) &&
good choice for new primary (X) exists (Policy 2)

No action taken (postpone compaction)

Need to compact && worth reconfiguring (Policy 1) &&
no candidates for new primary exist (Policy 2)

P, C

Promote node X

Report status to RG
and start compacting

Need to compact

Report status to RG

Done compacting

Figure 3.2: States of a single replica (P: primary; S: Secondary; NC: not compacting; C:
compacting) and transitions

activity completed on ni.

A state machine describing the states a replica can be in and possible transitions is

depicted in Figure 3.2. For concreteness and without loss of generality we assume that

the background activity we aim to mask is LSM-tree compactions, however other (and

different types of) activities are supported. A primary starts in state P, NC (primary, non-

compacting) and each secondary in S, NC (secondary, non-compacting). A reconfigura-

tion moves the primary from P, NC → S, NC and a secondary from S, NC → P, NC. Two

key policy decisions are when to trigger a reconfiguration and when that happens, which

secondary is the best choice for new primary:

Policy 1: When is reconfiguration beneficial. A primary decides that a reconfiguration

of the replica group is worthwhile when a background task is upcoming on the primary

and the anticipated performance impact justifies the cost (short availability lapse) of re-

configuration. The impact of the type of background tasks we consider in this work (LSM

tree compactions, data backups) nearly always justifies a reconfiguration. In future work

we intend to broaden our investigation to a wider range of background activities, includ-

ing shorter background activity spikes.

Policy 2: What is the best choice for new primary (if any). Another key policy is se-

53

Chapter 3. Replica-group leadership change as a performance enhancing mechanism

lecting the replica to promote to next primary. The selection process is based on a replica-

ranking (RR) algorithm that takes into account the gossiped state of all replicas. The RR

algorithm on the primary considers all secondaries that are not executing an internal or

external background task as candidates for new primary. If there are more than one can-

didates, the algorithm by default favors the node that most recently completed an inter-

nal background task (“most recently completed”, MRC). Since internal tasks (such as com-

pactions) are usually periodic, the expectation is that this candidate should enjoy a longer

background-activity-free period until its next internal background task.

Another option is to select the candidate that served as primary for the longest time

in the past (“longest-served primary”, LSP). Since all replicas maintain an in-memory read

cache but only nodes that serve client requests (primaries) use it (secondaries only fetch

updates to their OpLogs, bypassing their cache), LSP effectively favors nodes with warmer

caches.

Policies 1 and 2 (when to reconfigure and whom to promote) may in some cases be inter-

related: A reconfiguration may be called as soon as the background task on a recently-

demoted primary is over (even though there may not be a pending compaction on the

current primary), turning the leadership to the previous primary. This joint policy choice

(an LSP variant we term “preferred primary”) in which a single node acts as primary, except

for periods when it performs heavy background tasks, is geared to promote high cache hit

rates.

If there is no suitable candidate (e.g., if all secondaries are compacting), the primary

postpones its background activity (P, NC→P, NC) and re-evaluates its decision as soon as it

receives a status update from any of the secondaries that may point to a suitable candidate.

The primary decides to start the activity anyway (P, NC→ P, C) if the reconfiguration is not

worthwhile or if it has been postponing it for too long. Secondaries that need to perform

a resource-intensive background task are allowed to proceed (S, NC→ S, C). During that

period they are ineligible to become primary.

A key challenge for our work is that a suitable candidate for primary may not be always

easy to elect in existing variants of primary-backup [26, 117, 145, 147]: Most such election

algorithms require that the elected primary is a node that has seen all committed propos-

54

3.2. Design and Implementation

als, whereas our optimal choice for next primary may be a node that has not participated

in a committing majority for a long time (e.g., due to a heavy activity in the past on their

side). To ensure that our choice for new primary does not lead into a state where the node

cannot be elected within a reasonable amount of time, if the candidate fails to get a ma-

jority of votes (voters’ OpLog being ahead of the candidate’s OpLog) the current primary

steps down (prohibiting new updates) so that the primary-elect catches up with the latest

OpLog entries and request that replicas vote again, eventually ensuring success.

Implementation. Our implementation is based on MongoDB [23] with the RocksDB en-

gine [10] (MongoRocks [28]).

MongoDB has built-in support for reconfiguring a replica group. Replicas regularly ex-

change a ReplicaSetConfig structure, listing all nodes in the replica group at a particular

configuration version. Changes in the configuration are indicated by a change in the ver-

sion number and propagated from the primary (downstream) to all nodes. Each replica-

group member has a priority property that affects the timing and thus the outcome of

elections for primary. When a node learns of the new ReplicaSetConfig, it ranks all of the

priorities listed there and assigns itself a timeout proportional to its rank

(priority rank + 1) × election timeout

After the timeout expires, it checks if it is eligible to run for election, and if so it starts an

election.

In our implementation, we programmatically assign priorities to each node in a new

ReplicaSetConfig as indicated by our replica-ranking (RR) algorithm. The node we aim to

elect as the new primary has higher priority than the current primary. We modified the

priority takeover timeout to activate the action as soon as possible. In practice, reconfigu-

ration completes within a few hundreds of milliseconds.

Each replica-group member maintains a view of the current background tasks running

on all replicas as input to the RR algorithm. All members periodically report their status

over the regularly-exchanged MongoDB heartbeats. We use the RocksDB internal com-

55

Chapter 3. Replica-group leadership change as a performance enhancing mechanism

paction statistics API to expose the counter of currently-running compactions (rocksdb.num-

running-compactions property) to the MongoDB layer and embed this information to

every heartbeat message. The receiver extracts information from heartbeats from each

replica-group member and derives when the last compaction ran on each node. Our RR

algorithm selects only between non-compacting nodes and by default favors the one with

the most-recently completed compaction (MRC policy). In addition to LSM-tree com-

pactions, the current implementation carries information about and handles externally-

triggered data backup tasks.

Reconfigurations of the replica group can only be triggered by the primary. To re-

instate the previous primary (“preferred primary” policy), the current primary monitors

the status of its predecessor (now a secondary) based on its periodically reported status.

When the current primary notices that the “preferred primary” has completed its internal

background activities, it triggers elections proposing it as a candidate. We have observed

in our experimental evaluation that the preferred-primary policy promotes good cache

behavior as the primary maintains a fresh cache for a long period of time.

RocksDB communicates with MongoDB over a sockets channel to notify it of a com-

paction task and ask its permission to start it. If the MongoDB replica is a secondary,

it responds positively. If it is primary, MongoDB asks RocksDB to defer the compaction

and starts a reconfiguration. RocksDB uses a pending-compaction-queue to remember

the database that requested the compaction. When the node transitions to secondary,

RocksDB goes over entries in the pending-compaction-queue to reconsider delayed com-

pactions. We use MongoDB’s ReplicationCoordinator public API to expose information

about replica state transitions to the storage engine.

MongoRocks uses compaction tasks to reduce the size of the OpLog. By default it trig-

gers OpLog compactions at least every 30 minutes, even if the OpLog has not reached its

limit. Assuming that all members of a replica set start at the same time, this would nor-

mally lead all nodes to perform their OpLog compactions in sync. In this way there would

be no available non-compacting replica to replace the primary. In our implementation

we randomize this time interval on every node to be between 30 to 45 minutes. In our

experiments the system was always able to find a non-compacting replica.

56

3.3. Evaluation

3.3 Evaluation

Our experimental testbed is a cluster of 4 servers, each equipped with a dual-core AMD

Opteron 275 processor clocked at 2.2GHz with 12GB of main memory. All servers run

Ubuntu 14.04 64-bit with a 3.14.1 Linux kernel and are interconnected via a 1Gb/s Ether-

net switch. Servers used as MongoDB servers have a base 72GB 10,000 RPM SCSI drive

with an additional 300GB 15,500 RPM SAS drive dedicated to storing data. All hard drives

are formatted with ext4.

We use MongoDB 3.7 with RocksDB 5.7 as storage engine. Our evaluation workload is

the Yahoo Cloud Serving Benchmark (YCSB) [81] version 0.11 executing on a dedicated

server. The benchmark is configured to produce two different mixes of reads vs. up-

dates/writes: 90%-5% (read intensive) and 50%-50% (write intensive), with requested keys

selected randomly with the Zipf distribution. The YCSB evaluation dataset consists of

12 million unique records or 15GB of data per node. Our initial MongoDB cluster con-

sists of one shard and 3 servers in the replica group. The number of YCSB client threads

(number of parallel connections between database client and servers) is set to 2. We

set MongoDB’s write concern to one, meaning that writes are considered complete when

acknowledged by the primary. We use journaling, which requires OpLog entries to be

durable (written to disk) before acknowledging. We use the default settings for RocksDB:

max background jobs, the maximum number of concurrent background jobs (including

flushes and compactions) is set to 2, and compaction style set to level. The dataset is

loaded fresh onto MongoDB nodes before each experiment. In the following two sec-

tions we evaluate the benefit of reconfiguration actions in the presence of LSM-tree com-

pactions and data backups. The default RR policy, MRC, is used in all experiments.

3.3.1 LSM-tree compactions

Figure 3.3 depicts YCSB throughput (ops/sec) under the read-intensive workload mix. As

in all subsequent figures, time (x-axis) starts one hour into the experiment, when the sys-

tem is deemed to have reached a steady state. Figures 3.3a and 3.3b depict performance

without and with reconfigurations. Colored squares at the top of a graph (and correspond-

57

Chapter 3. Replica-group leadership change as a performance enhancing mechanism

 0

 100

 200

 300

 400

 500

04:20 04:30 04:40 04:50 05:00 05:10 05:20

node 1 node 1

node 2

node 3

Primary node 1

Y
C

S
B

 T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

Time of day

(a) Standard MongoRocks (primary node: 1)

 0

 100

 200

 300

 400

 500

01:20 01:30 01:40 01:50 02:00 02:10 02:20

n
o

d
e

 1

n
o

d
e

 2

n
o

d
e

 1

node 1

node 2 node 2

node 3Y
C

S
B

 T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

Time of day

(b) MongoRocks with reconfigurations

Figure 3.3: 90% reads-10% writes

ing vertical dashed lines) represent elections of a node as primary. Horizontal solid lines

represent compaction tasks performed on a node. Each line may represent more than one

sequentially-executing compaction tasks at different levels [22].

Figure 3.3a exhibits a clear performance hit during the compaction tasks at the pri-

mary node (indicated by horizontal orange lines labeled “node 1”). The average through-

put during the one-hour window shown is 295 ops/sec. During primary compactions the

average throughput is 253 ops/sec, whereas non-compacting time periods have an aver-

age throughput of 310 ops/sec. Thus there is a 18.4% performance hit during compaction

tasks at the primary.

Performance exhibits a more stable behavior under the automated replica-group lead-

ership change mechanism (Figure 3.3b), achieving an average of 318 ops/sec over the one-

hour window. Overall our system exhibits 7.2% higher throughput during the one-hour

window. Compaction tasks in this experiment were mostly due to growth of the OpLog

database.

Figure 3.4 presents YCSB throughput under the write-intensive workload. Figure 3.4a

exhibits a clear performance hit during the compaction tasks on node 1 (primary). The

average throughput for the one-hour window is 239 ops/sec. Average throughput dur-

ing compactions is 194 ops/sec, whereas non-compacting periods (on primary) have an

average throughput of 252 ops/sec. There is thus a 23% performance hit during com-

58

3.3. Evaluation

 0

 50

 100

 150

 200

 250

 300

 350

 400

18:10 18:20 18:30 18:40 18:50 19:00 19:10

node 1 node 1 node 1

node 2 node 2 node 2

node 3 node 3

Primary node 1

Y
C

S
B

 T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

Time of day

(a) Standard MongoRocks (primary node: 1)

 0

 50

 100

 150

 200

 250

 300

 350

 400

14:20 14:30 14:40 14:50 15:00 15:10

n
o

d
e

 1

n
o

d
e

 1

n
o

d
e

 2

n
o

d
e

 2

n
o

d
e

 3

n
o

d
e

 3

n
o

d
e

 3

node 1 node 1

node 2 node 2 node 2 node 2

node 3 node 3 node 3

o
p

s
/s

e
c

Time of day

(b) MongoRocks with reconfigurations

Figure 3.4: 50% reads-50% writes

pactions on the primary. Throughput using reconfigurations exhibits a more stable rate

(Figure 3.4b) achieving on average 250 ops/sec. Under the write-intensive workload the

system achieves on average 4.2% higher throughput. We observe that our results are not

sensitive to the read/write ratio as compactions are mostly OpLog-driven and in both

cases have relatively low frequency. However, the performance improvement of reconfig-

urations in these representative runs is significant (18%-23%) during compactions in both

cases.

3.3.2 Data backup

We extend our evaluation to external background tasks, and study performance while tak-

ing an online data backup with the MongoDB mongodump utility [27]. We use the –oplog

option to capture incoming writes that occur during the mongodump operation into a

file, ensuring that backups are point-in-time snapshots of the database state. During the

backup process, the tools force a running database instance to read all data through mem-

ory. Reading infrequently-used data has the side effect of evicting frequently-accessed

data from the cache, causing the performance of the regular database workload to deteri-

orate.

Figure 3.5 exhibits the impact of the backup process on performance while executing

a read-intensive workload. Figure 3.5a shows a clear performance hit during the backup

59

Chapter 3. Replica-group leadership change as a performance enhancing mechanism

 0

 100

 200

 300

 400

 500

02:10 02:20 02:30 02:40 02:50 03:00

b
a

c
k
u

p
 s

ta
rt

b
a

c
k
u

p
 e

n
d

node 1

node 2

node 3

Primary node 1

Y
C

S
B

 T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

Time of day

(a) Standard MongoRocks

 0

 100

 200

 300

 400

 500

20:10 20:20 20:30 20:40 20:50 21:00

b
a

c
k
u

p
 s

ta
rt

b
a

c
k
u

p
 e

n
d

n
o

d
e

 2

n
o

d
e

 3

n
o

d
e

 2

node 1

node 2 node 2

node 3 node 3

 Y
C

S
B

 T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

Time of day

(b) MongoRocks with reconfigurations

Figure 3.5: Data backup (mongodump –oplog), 90% reads-10% writes

task (whose duration is indicated by the vertical dashed lines) when there is no reconfig-

uration action. The average throughput achieved during the one-hour window is 266 op-

s/sec. At 02:30 mongodump completes the extraction of data and begins to copy OpLog en-

tries. The OpLog dump has no effect on the cache in contrast to the previous phase, where

throughput was more noisy. At the end of the backup process there is an overlapping com-

paction task that results in a further performance degradation. The average throughput

during the background tasks (backup and compaction) is 229 ops/sec, whereas average

throughput when no background task executes is 314 ops/sec. The system achieves 35%

higher throughput when there are no background activities on the primary.

Figure 3.5b exhibits performance when applying a reconfiguration action prior to the

backup. At 20:16 the system is notified about the upcoming external background task and

the primary initiates a replica-group reconfiguration to mask its impact. The RR algorithm

selects node 2, the replica with the most recently completed compaction (default policy),

as the new primary. Node 2 serves as primary for the first time and therefore it initially suf-

fers from low cache-hit ratio (causing the performance dip at 20:16), gradually increasing

performance. This has not been a problem in previous experiments as the role of pri-

mary had been rotated around nodes a few times already before the measurement phase

began, warming up caches. In this case, the average throughput during the one-hour win-

dow is 306 ops/sec, 15.8% higher average throughput than standard (non-reconfiguring)

60

3.4. Summary

MongoDB. In addition, our system benefits the data backup task itself, as there is lower

contention for resources in secondary nodes. The elapsed time of the backup task in our

system is 21.5% shorter than the non-reconfiguring system (1,349 vs. 1,640 sec).

3.4 Summary

In this chapter we evaluate the performance benefits of automated replica-group reconfig-

urations under the impact of periodic sources of overheads such as LSM-tree compactions

and data backup tasks, using the YCSB benchmark. We find that targeted leadership change

actions lead to 18-23% improved performance during execution of compaction tasks and

4-7% improved performance overall for LSM-tree compactions. Replica-group leadership

change prior to a data backup task on the primary leads to 35% better performance and

21.5% faster backup compared to standard MongoRocks.

61

62

Chapter 4
Addressing the read-performance

impact of replica-group

reconfigurations

Replica-group reconfiguration actions occur for many reasons such as performance en-

hancements (as we described in Chapter 3) but also due to failures, load balancing and

workload migration. Nevertheless we observe a performance glitch within the reconfigu-

ration action. In this chapter we study the performance impact during the replica-group

reconfiguration actions. Based on our observation that the serving nodes suffer from high

cache-miss rate during the transition, we propose a method to eliminate the cold-cache

effect.

Raw data is often several times larger than available memory, and performance of

storage devices is still orders of magnitude lower than that of main memory. In combi-

nation with today’s read-dominated production workloads and strong temporal locality

among requested keys [57], application performance still depends on the efficiency of

data caching. Not surprisingly, modern data stores maintain in-memory data caches to

improve performance, especially for read-dominated workloads. The efficiency of a read

cache impacts the overall performance of data intensive systems.

In replicated data stores, data is replicated across a set of nodes comprising a replica

63

Chapter 4. Addressing the read-performance impact of replica-group reconfigurations

group. A range of existing replication techniques in distributed storage systems dictate

how data are propagated to replicas. Based on the consistency model used, replica groups

ensure that replicas within them apply updates in some specific order (strongly consistent

systems require that replicas totally agree on this order). Data replication techniques focus

on ensuring consistency of the persisted data set, while each node of the replica group also

maintains a memory cache of that set to improve performance.

There are multiple replication models in use today. Primary-backup (PB) replication [65]

is a traditional replication technique in widespread use [117, 145, 148, 187]. Systems im-

plementing PB replication feature a strong leader (or primary) that coordinates read and

write operations towards secondary replicas (or backups). Reads are typically served by a

single replica, most commonly the primary itself. Many such systems allow clients to read

from any single replica to better distribute read-intensive workloads. Active replication sys-

tems, such as those based on the Paxos algorithm [133], have also been in use in storage

systems [63, 69]. Formally such systems involve several replicas to carry out operations,

typically a majority. Efficiency considerations in today’s read-dominated workloads [57]

have led to active-replication systems that permit reads from a single replica, similar to PB

systems, through lease-based mechanisms [103, 134, 142]. Quorum-based systems is an-

other class of replication systems where reads involve a set of nodes [58,86,101]. Efficiency

considerations in quorum-based systems have also led to configurations featuring a small

read set (often a single replica [116]). We can thus identify a trend in practical systems to

restrict reads to as few replicas as possible, to optimize for read-dominated workloads.

Involving as few replicas as possible in read operations means that the caches of the

remaining replicas receive delayed or no information about application reads, and thus

do not fetch up-to-date content in memory, in contrast to replicas serving reads. This

often does not pose a problem, when reads are satisfied consistently by a single or the

same set of replicas. However, when the replica(s) satisfying reads shift to replicas that

have not actively maintained their read cache, a performance impact is incurred for read

operations.

A switch of the read-serving replica may occur as a result of different types of reconfig-

uration operations. One such case is the frequent (e.g. every 20 minutes) replica group

64

reconfiguration include lightweight adaptation actions as a performance enhancement

mechanism to mask performance bottlenecks on the serving nodes (Chapter 3). Replica-

group reconfiguration traditionally occurs when a serving replica fails and a backup must

take over (failover) or due to load balancing actions or workload migration where parts

of an application are moved across the infrastructure. In a similar case, geo-replicated

systems reconfigure the set of serving replicas (e.g. leader leader) while the client’s loca-

tion shift across time zones as they serve Internet users [53, 138, 166, 189]. While such

reconfiguration actions have a positive long term impact, a negative side effect at the time

of switching the read-serving node, is that a burst of cold-cache misses at the new read-

serving replica may lead to latency spikes and throughput drops that result in service-level

objective (SLO) violations for significant amounts of time (several minutes).

In this chapter we address this problem by maintaining up-to-date read caches across

all replicas without increasing the number of replicas actually serving reads or modifying

the replication semantics of the system. We achieve this through a low-overhead mecha-

nism by which all replica nodes eventually see a tunable subset of read operations (loading

the respective data into their in-memory data cache) in the order seen by replicas serv-

ing reads and primarily responsible for serving client requests. This method eliminates

the cold-cache effect observed after a reconfiguration on the new node that serves reads,

which impacts the overall system performance seen by clients. Our proposed solution is

a lightweight, best-effort synchronization method that tries to minimize the overall cache

divergence between the primary and replica nodes, by disseminating read requests across

replicas in the background (not tied to the execution of client requests). To achieve this,

read serving nodes keep a volatile buffer containing information about the reads executed

by the replica group. The buffer is periodically disseminated to replicas not involved in

serving reads and is used as hints to update their caches. The design of this mechanism is

based on basic principles and can be easily integrated to production replicated key-value

stores such as the widely used MongoDB. Our evaluation demonstrates that the overhead

is minimal and that the prototype maintains stable performance eliminating SLO viola-

tions during reconfiguration actions.

The rest of the chapter is organized as follows. Section 4.1 describes background and

65

Chapter 4. Addressing the read-performance impact of replica-group reconfigurations

related work and Section 4.2 describes our design choices and implementation details. In

Section 4.3 we present evaluation results, and in Section 4.4 we conclude.

4.1 Background and Related Work

Two major points relating to our work are (i) replication systems today read from a subset

of replicas (typically one), leading to situations where backup (non-reader) replicas have

an out-of-date memory cache; and (ii) under certain situations (such as after a failure of

the primary or other reconfiguration action) reads are directed to such replicas, leading

to a surge in cache misses. In what follows we will describe how different replication sys-

tems relate to points (i) and (ii). There is currently no system that directly addresses this

problem (short of issuing reads to all replicas, which penalizes the common path of read

operations and thus avoided in practice).

Modern systems often read from one replica per group (shard). The design and im-

plementation details of replication mechanisms (such as, for instance, how read and write

operations are performed) vary across systems, entailing consistency, availability, and per-

formance tradeoffs [102]. A trend in practical replication systems is to restrict reads to

often just one (dynamically selected) replica per shard, to optimize for read-dominated

workloads.

In quorum-based [86,101] or active-replication (Paxos) [63,69] systems, read and write

operations are typically issued towards sets of replicas (or quorums), which can generally

differ for reads and writes, and whose sizes may range from one to all nodes1. Produc-

tion systems using quorum replication (Amazon Dynamo, Apache Cassandra, Voldemort,

Riak) execute reads only on a majority of nodes. Different approaches to selecting the

specific majority include network proximity [42], performance history [177] or load bal-

ancing [44]. In some cases even some nodes that are part of the majority may not perform

the actual read of data and rather rely on metadata (e.g. digest reads [43]). In primary-

backup (PB) [65] replication implemented by several popular open-source stores (Mon-

1A small read-quorum typically requires a large write-quorum, overlapping in at least one replica, for ensuring
strong consistency.

66

4.1. Background and Related Work

goDB, CouchDB, RavenDB), client read requests are served only by the primary or (relax-

ing consistency) by any single replica. These choices are justified by the need to optimize

performance in read-dominated workloads. The system presented in this chapter is appli-

cable to data stores serving reads from any single replica at a time.

A write operation typically requires a number (k) of acknowledgements that replicas

have durably stored an update, before informing the requesting client of a successful op-

eration. In several systems, a write request is sent to a broader set of replicas (n, where

n > k) than the number of acknowledgements needed (k), eventually reaching the entire

replica group. Updates to the first k replicas to respond are synchronous with the user up-

date, whereas the remaining updates can proceed asynchronously in the background. Al-

though one could argue that dissemination of updates eventually reaching all replicas (as

performed by most replication technologies) could be sufficient to keep memory caches

of all replicas fresh, in reality the data being written may not overlap at all with the read

working set of application (e.g., in the case of writing new data while performing read-

intensive analytics on past values). Thus update propagation by itself cannot maintain

up-to-date memory caches across all replicas. In addition, occasional restarting of repli-

cas, such as in the context of rejuvenation [125] and proactive recovery in adaptive repli-

cated services [80], completely wipes out their memory caches.

Reads may shift to replicas with outdated caches. Non-read-serving replicas are not

aware of reads and thus cannot keep their memory caches warm. We previously described

that systems may dynamically decide which replicas form quorums that execute requests.

Another reason that triggers a shift in read-serving replicas is failures. If a serving replica

fails or is brought down for maintenance, a previously non-serving replica must take over.

Another reason is workload migrations, where parts of an application are moved across the

infrastructure for load balancing or other maintenance operations (in such cases reads

are usually directed to the nearest replica). Failover actions are frequent in large data

centers [60], and adaptation actions are increasingly used for performance improvement.

Geo-replicated stores automatically reconfigure the set of serving replicas (e.g. leader

change) to satisfy application-defined constraints as locations and their access pattern

shift across different time zones [53, 138, 166, 189]. Production systems at Google [166]

67

Chapter 4. Addressing the read-performance impact of replica-group reconfigurations

trigger a reconfiguration as often as every 30 minutes when the system re-evaluates the

optimal placement of a leader or its replicas based on workload characteristics, or every

2 hours in the case of Microsoft’s store [53] that adapts to the shift of traffic across differ-

ent time zones. Frequent reconfiguration actions may also be used as a lightweight adap-

tation mechanism to hide internal performance bottlenecks or in the case of colocated

resource intensive background tasks on the serving replicas [96, 152]. In all these adap-

tation mechanisms, the newly assigned read-serving replicas (although consistent at the

level of persisted data) may have missed recent reads and thus have an outdated memory

cache leading to a performance impact (Section 4.3). Empirical evidence of the challenge

addressed in this chapter (and inspiration for this work) is provided by our own previous

research [96,153,170]. Figure 4.1 (from [152]) demonstrates that the action of changing the

primary replica can hide the performance impact of a backup task, however the improved

system (Figure 4.1b) still suffers from a smaller but non-negligible performance hit (area

in red circle) due to cold-cache misses at the new primary (a previously non-read-serving

replica). Other work on measuring the recovery time of a replicated version of the HDFS

metadata server [170] (§4.4.3) showed that switching the primary to a new replica with a

cold memory cache can lead to significantly higher time to recover compared to a version

switching to a hot spare.

Our approach aims to keep the caches of future read-serving replicas warm by dissem-

inating read hints to them from current read-serving replicas. This approach is similar

in spirit to prefetching in storage systems, which rely on high-level knowledge of future

data accesses disclosed by an application [155] or history-driven predictions [76] to warm

a cache ahead of time and thus increase hit rates. Our approach differs in that instead of

informed guesses, replicas learn of read operations executed on a read-serving node and

execute them locally to maintain an up-to-date cache view. Traditional prefetching mech-

anisms are complementary to our approach and can be applied in read-serving and non-

read-serving replicas. Challenges investigated in the context of prefetching, especially in

balancing prefetching with caching [66], are also applicable in our work.

68

4.2. Design and Implementation

 0

 100

 200

 300

02:10 02:15 02:20 02:25 02:30 02:35 02:40 02:45 02:50

b
ac

k
u
p
 s

ta
rt

b
ac

k
u
p
 e

n
d

Y
C

S
B

 T
h

ro
u

g
h

p
u

t
(o

p
s/

s)
(a) Performance impact of backup task on primary (2:10-2:40)

 0

 100

 200

 300

20:10 20:15 20:20 20:25 20:30 20:35 20:40 20:45 20:50

b
ac

k
u
p
 s

ta
rt

b
ac

k
u
p
 e

n
d

20% reduction

Y
C

S
B

 T
h

ro
u

g
h

p
u

t
(o

p
s/

s)

Time of day

(b) A drop is observable after switching to new primary

Figure 4.1: Performance impact of backup activity (a) on replica group (shard) can be
hidden via reconfiguration (b), however new primary suffers from cold-
cache misses [152]

4.2 Design and Implementation

We next describe the major design choices and the implementation details of our mecha-

nism.

Design. Our goal is to ensure that non-read-serving replicas within a replica group

keep track of the read working set and are always prepared to serve read requests without

a performance impact due to cache misses, ensuring a smoother transition during a recon-

figuration or failover. We aim to achieve this without modifying the replication protocol

or system properties such as data consistency or availability. The mechanism should be

transparent to users, and not have an impact on common-case performance of client read

operations.

69

Chapter 4. Addressing the read-performance impact of replica-group reconfigurations

Our evaluation (Section 4.3) shows that in a typical application scenario over a repli-

cated key-value store (MongoDB), a reconfiguration that changes the primary node in a

replica group leads to higher latency for client requests, because of a low cache hit rate

at the primary node, for the period of time (several minutes) it takes to load the working

set into memory. This time depends on the amount of state that needs to be brought into

memory (§4.3.3) and the speed at which the underlying storage device operates (§4.3.1).

We aim to mitigate this problem by allowing the memory caches of non-read-serving repli-

cas to keep track of the read working set using principles that can be easily implemented

and integrated into existing replicated key-value stores.

A replication module is typically responsible for replicating requests across replicas in

any distributed store, however the caching mechanism in each node is independent of the

other replicas. A standard cache management policy over persisted data in each node is to

apply every incoming read or write operation through the memory cache (implementing

the necessary miss handling and write-through actions).

In order to disseminate read requests even to non-read-serving replicas and thus help

them keep their caches warm, we propose recording the read operations executed on the

serving replicas as hints, and send them over to non-read-serving replicas in the back-

ground. To achieve this, we introduce a read-hints module (RHM) and integrate it into all

replicas. Figure 4.2 presents the RHM integrated into the primary and sencondary replicas.

Read-serving nodes use RHM to passively monitor the executed read requests and main-

tain a read-hints buffer (RHB), which keeps a minimal description of each read operation

applied on the serving replica. RHM periodically disseminates the contents of the buffer

(in batches) to the non-read-serving replicas which store the received hint into their lo-

cal RHB. Based on the hints a replica is able to replay read-operations (note that we are

shipping read operations, not the data), leveraging the data store’s existing read path and

cache management mechanism.

Our mechanism does not require any modifications to the pre-existing replication and

dissemination of writes, it uses separate data structures and dissemination channel for

the read hints as depicted in Figure 4.2 and in no way affects the data consistency or avail-

ability properties of the system (§4.2.3). As a read operation can always be satisfied by the

70

4.2. Design and Implementation

(write) oplog

On disk data

Cache

RHM

RHB

write read

Read-serving replica
(Primary)

On disk data

Cache

RHM

RHB

Non-read-serving replica
(Secondary)

Replication protocol
(writes)

Read hints dissemination

(write) oplog

read
applier

Figure 4.2: The Read-Hints Module (RHM) is integrated as a plugin into the replica-
maintainance path; this particular figure is based on MongoDB internals.
The module passively monitors read requests and maintains a Read-Hint
Buffer (RHB) that is periodically disseminated across replicas

underlying disk, our proposal is a best-effort mechanism that allows replicas to keep their

caches warm when they become aware of the reads executed on the serving nodes. The

design supports dissemination of read operations from more than one read-serving repli-

cas and allows tuning of the degree of dissemination (how many replicas to disseminate

to) and intensity of communication (degree of batching and frequency). In systems where

reads are served by a different replica at a time for load balancing, RHM can be config-

ured so that each read-serving replica disseminates read-hints to all replicas. However, we

expect the biggest benefit from RHM will be realized in strongly-consistent systems that

serve reads from a single primary replica.

A naive implementation that directly issues read requests to all replica nodes and waits

for the first response is expected to maintain warm caches across all replicas. However,

the consistency model of such approaches is weaker compared to the strong semantics

achievable by reading and writing from/to the primary node. As such, naive approaches

are not an option for applications requiring strong semantics from the underlying data

71

Chapter 4. Addressing the read-performance impact of replica-group reconfigurations

store, whereas RHM covers such cases as well. RHM is based on an asynchronous best-

effort background dissemination of read-hints and does not require any modification to

the read/write protocol.

Section 4.2.1 describes in detail the implementation, tuning parameters, and different

tradeoffs involved extending MongoDB v4.0.6. Section 4.2.2 supports our choice to design

our mechanism as a separate module of the data store and discusses read-hints buffer

properties. Section 4.2.3 explains that the design does not affect the replication and con-

sistency model of the data store and that data consistency is preserved between in-cache

and on-disk data within a replica node that updates its cache based on the received read

hints buffer.

4.2.1 Capturing and dissemination of read hints

Our implementation of the read-hints module extends the MongoDB v4.0.6 codebase. Mon-

goDB implements a passive replication system following the primary-backup replication

model. The primary node serves client requests. In case of writes it applies the operation

to its local state and updates its cache. Each update is also logged to its internal oplog data

structure (Figure 4.2). The updates are propagated to all replicas through the replication

of the oplog. However the RHM is by design a separate module. The rationale for this deci-

sion, as opposed to integrating reads into the existing oplog, is discussed in Section 4.2.2.

The RHM monitors reads served on a primary extending the code path that handles

the read request, cloning the read operation and channeling it to the RHM code. It keeps

into RHB a minimal description of each read operation to allow a replica to locate the

data, avoiding unnecessary information such as request type, session ID and hash signa-

tures used for sanity checking on the primary node only. The RHB is periodically synced

across replicas, with internode communication within a replica group specifically built

for this purpose and implemented over TCP/IP sockets. The replication is performed by

default in batches over 90ms intervals or when the RHB reaches its maximum capacity

(by default 10,000 entries). We have empirically determined that these settings allow repli-

cas to be reasonably up-to-date with minimal overhead (§4.3.7), but both parameters are

72

4.2. Design and Implementation

configurable. We experiment with different settings in Section 4.3.

On a read-serving node, a background thread is responsible for periodically sync’ing

the RHB to the replicas. To avoid contention between threads that update and disseminate

RHB across replicas we apply double-buffering techniques, i.e. when the buffer is marked

as ready to be shipped over the network, it is marked as read-only and swapped with a new

empty buffer to log the read-hints. We also pre-allocate the memory buffers that support

RHB to avoid allocation overheads. After the RHB synchronization is complete, the read-

only buffer is marked as clear and ready to be reused.

Batching multiple reads allows for summarization, an optimization where multiple oc-

currences of the same request in the RHB may be consolidated to the last read of each

key. Thus several requests for the same data are logged just once in the buffer, enabling a

compact view of the requested data and reducing the total RHB size to be shipped across

replicas. Other techniques [192] that further reduce the amount of transferred data over

the network could also be applied.

On the receiving replica, a receiver thread, part of the RHM, is responsible for handling

incoming connections from the serving node RHM and storing hints into its local buffer.

Threads off of a read-applier thread pool are in charge of taking the read operations off the

local RHB and applying them to the local copy of the database. During periods of resource

strain, a secondary replica can apply a subset of read hints received or even turn RHM

off while overload conditions last (§4.3.8). Threads from the read-applier pool shepherd

requests through the same code path followed by a normal user read request (except this

code path was previously only executed by the primary replica). In this way, the replica

cache tracks the read working set along with the primary node’s cache.

RHM allows the configuration on the number of replicas that will sync the RHB. It sup-

ports three options: all, one, region-one. With option all (one), all (one) replica(s) receive

RHB updates from the primary node. Option one is useful when CPU and network band-

width are scarce; on the downside, only one replica will be well prepared to serve reads.

Region-one is used in geo-replicated systems and allows syncing the read log with one

replica in each region. Furthermore in resource-constrained nodes where secondary repli-

cas are co-located with primaries, the RHM can selectively apply or even turn off read

73

Chapter 4. Addressing the read-performance impact of replica-group reconfigurations

hints, similar to adaptation strategies followed in prefetching systems [66].

When reconfiguration actions are known in advance, a potential alternative is to delay

the dissemination of read hints to that time. However, such a delay is not expected to

be beneficial. Storing the history of read hints at the read-serving node for a long time

would require significant amounts of memory. In addition, disseminating read-hints in

a burst just before a reconfiguration action could pose a significant performance hit and

also delay the reconfiguration until the replica is prepared. Thus we believe that even in

the case of frequent reconfiguration actions (such as in systems described in Section 4.1),

there are practical benefits to the continuous dissemination of read-hints.

4.2.2 Read-hints buffer properties

Our mechanism is by design a self-contained module (Figure 4.2), ensuring that our im-

plementation is generally applicable (not too tied to the design principles of a specific

stores replication module) and can be easily integrated into most distributed data stores.

Using existing data structures or mechanisms of the existing replication subsystem would

require tight coupling with a specific store. In addition, our read hints buffers have differ-

ent durability properties. Since the cache is essentially soft state that need not be persisted

as a separate entity, we can treat the dissemination of the read as a hint mechanism to the

replicas; thus in case of node failure, a lost RHB has no impact on data availability or recov-

ery mechanism. This also allows to delay the replication of the hint buffers and transfer

read ops in batches to amortize the transmission cost. Batching allows us to benefit from

summarization and to further reduce the amount of transferred data (§4.3.10).

The format of an RHB entry is simple: it carries only minimal description of the re-

quested data (e.g. the key and some filters) derived from a read request –there is no need

to include information about client, session or timestamps as described in Section 4.2.3–

further contributing to a reduction of the amount of information sent over the wire.

74

4.2. Design and Implementation

4.2.3 Consistency

Consistency across nodes. Our mechanism does not affect the store’s consistency model

leaving the replication mechanism intact. Standard replication mechanisms dictate how

committed state updates are eventually applied to all replicas. Updating replica caches by

our read-operation dissemination mechanism ensures that a cache is refreshed with the

most recent state that has already been applied on the same replica (stored on its disk).

The shipping of read-operations (rather than shipping the data) and their execution, re-

flects the latest state known to replicas in their local cache. As such, the cache remains

consistent with the on-disk state, which in turn follows whatever consistency guarantees

are implemented in the specific distributed store.

Consistency between in-cache and on-disk state. As reads are shipped independently

of writes across replicas, there is a probability that reads may be reordered relative to

writes (Figure 4.3). This does not cause a problem as a read operation applied in the lo-

cal cache of another replica will always reflect in memory the latest state written to disk at

the time. In this way, cache contents always remain valid. The order of writes will remain

as decided by the primary, and each write will consistently update cache and disk.

We note that correctness relies on correct implementation of atomic execution and se-

rialization of read and write (updating cache and disk) operations in each replica’s storage

backend.

Cached objects view across nodes. Even with our mechanism, caches in different

nodes may have different contents due to the delay in disseminating operations as well

as due to actions of the cache replacement policy. Typically, most systems feature a cache

eviction policy that favors recently or frequently accessed objects (e.g., LRU, LFU). We ex-

pect that with our mechanism, a cache will contain the objects of the last applied RHB and

the most recently accessed objects for any node (with the primary or read-serving nodes

being somewhat ahead of others). It is not a goal of our work to keep caches fully in sync,

and we think that there is little benefit in trying to achieve such a stringent objective. Our

approach is a best effort mechanism aiming to help non-read-serving replicas track the

read working set and thus be well prepared to serve future reads. In Section 4.3 we show

75

Chapter 4. Addressing the read-performance impact of replica-group reconfigurations

Primary replica Non-read-serving replica

Reads o
ps

Write ops

Operation sequence (on primary): Wy=11,Wx=7, Ry, Wx=9, RX

Read-hints buffer

Ry Rx…

(Write) oplog

Op. sequence applied in local cache

Cache state
x=9y=11…

… Wx=7 Wx=9Wy=11 Wy=11,Wx=7, Wx=9, RX, Ry

Figure 4.3: Reads may be re-ordered relative to writes, however caches always contain
the latest state written to disk

that our mechanism is able to achieve our goal with no noticeable overhead.

4.3 Evaluation

In this section we evaluate the benefits of allowing non-read-serving replicas track the

read working set using our extended prototype of MongoDB v4.0.6. The MongoDB bi-

naries used have been compiled with debug symbols. Our results show that the system

exhibits stable performance after shifting the node that serves reads from primary to the

nearest secondary replica after the workload migration. The overhead of our mechanisms

does not have a measurable impact on overall system performance (compared to the base-

line implementation). Unless otherwise stated, all experiments use a non-sharded Mon-

goDB installation with one replica group consisting of one primary and two replica nodes.

Our main experimental testbed consists of four servers, each equipped with a Intel Xeon

Bronze 3106 8-core 1.70GHz CPU, 16GB DDR4 2666MHz DIMMs, 256GB Intel D3-S4610

SSD and 2TB Ultrastar 7K2 HDD, running Ubuntu Linux 16.04.6 LTS, interconnected via

a 10Gb/s Dell N4032 switch. Whenever a different testbed is used (such as AWS EC2 in

§4.3.2), this is clearly stated in the text.

Our evaluation includes three workloads: the Yahoo Cloud Serving Benchmark (YCSB) [81]

v0.11, TPC-C [38], a popular OLTP benchmark adapted for NoSQL systems [118]; and an

76

4.3. Evaluation

 0

 50

 100

 150

 200

 250

 2000 3000 4000 5000 6000 7000

R
ec

o
n
fi

g
u
ra

ti
o
n

Y
C

S
B

 T
h
ro

u
g
h
p
u
t

(o
p
s/

se
c)

Timeline (sec)

(a) Read-hints module disabled (unmodi-
fied MongoDB)

 0

 50

 100

 150

 200

 250

 2000 3000 4000 5000 6000 7000

R
ec

o
n
fi

g
u
ra

ti
o
n

Y
C

S
B

 T
h
ro

u
g
h
p
u
t

(o
p
s/

se
c)

Timeline (sec)

(b) Read-hints module enabled

Figure 4.4: Throughput under read-only workload, HDD used as back-end store

 0

 20

 40

 60

 80

 100

 2000 3000 4000 5000 6000 7000

R
ec

o
n
fi

g
u
ra

ti
o
n

%
 M

is
s

R
at

e

Timeline (sec)

node 1
node 2

(a) Read-hints module disabled (unmodi-
fied MongoDB)

 0

 20

 40

 60

 80

 100

 2000 3000 4000 5000 6000 7000

R
ec

o
n
fi

g
u
ra

ti
o
n

%
 M

is
s

R
at

e

Timeline (sec)

node 1
node 2

(b) Read-hints module enabled

Figure 4.5: Cache miss rate under read-only workload, HDD used as back-end store

analytical processing workload modeled after the popular TPC-H [39] benchmark. In all

cases the workload driver executes on a dedicated server. In experiments where the work-

load switches the read-serving node to the nearest replica (to achieve the shortest possible

latency), we sidestep the fact that our testbed has a flat network topology (nearly identical

latency across all replicas) and emulate the selection of the nearest replica via MongoDB’s

server tagging feature [25]. The dataset is loaded fresh onto MongoDB nodes before each

experiment and caches are dropped before each run.

77

Chapter 4. Addressing the read-performance impact of replica-group reconfigurations

4.3.1 Performance impact during reconfiguration

In this section we evaluate our method under the YCSB workload generator. The bench-

mark is configured to produce two different mixes of reads vs. updates/writes: a 100%

read workload to stress our mechanism as the primary node has to keep up with a busy

read-hints module, and 80% (reads)-20% (updates) to demonstrate performance under a

mixed workload including both reads and writes.

Unless otherwise stated, the requested keys are randomly selected from a uniform dis-

tribution. The dataset consists of 50 million unique records resulting to 60GB of data on

disk (including indexes) per node. The number of YCSB client threads (number of parallel

connections between database client and servers) is set to 8, empirically determined to

stress the cluster while keeping average response time under 20ms (considered a reason-

able threshold). MongoDB is configured with 10GB of cache size. Read and write concern

use the majority option by default.

Figure 4.4 depicts YCSB throughput (ops/sec) under the read-only workload, with data

stored on HDDs on each node. As in all subsequent figures, time (x-axis) starts 30 minutes

into the experiment, when the system is deemed to have reached a steady state. The y-

axis depicts throughput in YCSB ops/sec. Figure 4.5 presents the MongoDB cache miss

rate on node 1 (the primary node that serves client requests at the beginning of the run),

and node 2 (the nearest replica serving reads after the workload migration). Figures 4.4a

and 4.5a correspond to unmodified MongoDB, while Figures 4.4b and 4.5b correspond to

our prototype. The vertical dashed line represents the transition of read serving node from

node 1 to node 2.

Figure 4.4a exhibits a clear performance hit for unmodified MongoDB (read-hints mod-

ule is disabled), right after the reconfiguration at 3600 seconds. We observe system through-

put (217 ops/sec before the reconfiguration) dropping to 65 ops/sec right after reconfigu-

ration (a 70% reduction), taking 18 minutes to reach its pre-reconfiguration serving rate

again. The performance hit is explained by the new serving node (node 2) high cache miss

rate (up to 86%) at the early stages of its serving operation phase (Figure 4.5a), significantly

higher than the 31% miss rate that either node experiences while at steady state. Note that

78

4.3. Evaluation

the reported cache miss rate takes into account data and index accesses, as MongoDB

loads indexes into its internal cache to speed up read requests. In Figure 4.5a, node 2 re-

ports 0% cache activity before it starts serving client requests (as it does not perform any

read operations); similarly node 1 does not serve reads after the workload migration starts

directing its requests to the nearest replica. We note that had node 2 been operating as a

read-serving node in the recent past, the performance impact may be lower than observed

in this experiment.

Figure 4.4b depicts throughput with our RHM enabled. The reported throughput is

about 211 ops/sec during the whole run of the experiment, while the MongoDB cache

miss rate remains stable at 31% at all nodes during the entire run (Figure 4.5b). We observe

that our mechanisms are effective in keeping replica caches up to date, saving a 55% spike

on the cache miss rate experienced by unmodified MongoDB when the nearest replica

starts serving client requests. Unmodified MongoDB cannot meet its pre-reconfiguration

throughput for a long period of time, even with a cache size of 10 GB.

For further insight into internal resource use, we report the total amount of physical

memory used in each node (Figure 4.6). In line with observations in Figure 4.5b, it takes

almost 20 minutes to bring data in memory right after reconfiguration at 3600 seconds

with unmodified MongoDB (Figure 4.6a, node 2). Our prototype (Figure 4.6b) is able to

maintain data in memory (application cache) in node 2, resulting in a smoother transition

to the new configuration. Note that the memory reported as used exceeds 10GB (the Mon-

goDB cache size) as it includes the memory used by the MongoDB process and the OS as

well.

Next we study the effect of a faster storage device (SSD) on the performance impact dur-

ing reconfiguration. In general, using SSDs we expect to be able to serve client requests

and to recover (restore a replica’s working set) at a higher rate. Figure 4.7a depicts through-

put with unmodified MongoDB using SSD as a back-end store. The system initially serves

requests at a rate of 2260 ops/sec. At 1250 seconds we trigger the workload migration and

the serving replica moves from node 1 to node 2, which causes a clear performance hit.

The throughput drops at 1510 ops/sec (a 33.1% reduction), taking over 2 minutes to reach

its stable state again of 2260 ops/sec, caused by cold-cache misses at the new serving node.

79

Chapter 4. Addressing the read-performance impact of replica-group reconfigurations

 0
 2
 4
 6
 8

 10
 12
 14
 16

 2000 3000 4000 5000 6000 7000

R
ec

o
n
f.G
B

node 1
node 2

(a) Read-hints module disabled (unmodified MongoDB)

 0
 2
 4
 6
 8

 10
 12
 14
 16

 2000 3000 4000 5000 6000 7000

R
ec

o
n
f.

G
B

Timeline (sec)

node 1
node 2

(b) Read-hints module enabled

Figure 4.6: Monitoring memory use

Figure 4.8a depicts MongoDB cache experiencing a 87% miss rate right after reconfigura-

tion, before reaching again its stable rate at 31% until the end of the run. Our prototype

is able to maintain throughput stable during the whole run (Figure 4.7b) as the MongoDB

cache-miss rate is not affected when moving the serving replica from node 1 to node 2

(Figure 4.8b).

We note that with the read-hints module disabled, MongoDB cache-miss rate at the

early stages of reconfiguration does not depend on the back-end store (HDD or SSD). This

is expected as the dataset and cache capacity are the same in both cases. In the case of SSD,

the system is able to recover faster as it can serve client requests at a higher rate. However,

recovery time would increase as cache sizes grow, as seen in §4.3.3. Overall we observe

that even with faster storage devices, a primary-backup replication management system

that executes reads only at the primary, exhibits a steep performance degradation for long

80

4.3. Evaluation

 0

 500

 1000

 1500

 2000

 2500

 1000 1100 1200 1300 1400 1500 1600 1700

R
ec

o
n
f.

Y
C

S
B

 T
h
ro

u
g
h
p
u
t

(o
p
s/

s)
(a) Read-hints module disabled (unmodified MongoDB)

 0

 500

 1000

 1500

 2000

 2500

 1000 1100 1200 1300 1400 1500 1600 1700

R
ec

o
n
f.

Y
C

S
B

 T
h
ro

u
g
h
p
u
t

(o
p
s/

s)

Timeline (sec)

(b) Read-hints module enabled

Figure 4.7: Throughput under read-only workload, SSD used as back-end store

periods of time (several minutes) right after reconfiguration, due to cold-cache misses at

the new serving node. Our mechanisms are able to mask this impact with no measurable

performance overhead in steady-state performance.

4.3.2 Multi-shard deployments on AWS EC2

Next we evaluate the RHM mechanism over a sharded MongoDB deployment using mul-

tiple replica groups. The evaluation was carried out on Amazon EC2 cloud platform, to

validate portability and reproducibility of our results. Our database is split in three shards.

Each shard comprises a replica group. Each server node hosts two MongoDB instances, a

primary and a secondary replica, belonging to different shards. A multi-shard deployment

requires a MongoDB metadata config server and a query router process (mongos), inter-

81

Chapter 4. Addressing the read-performance impact of replica-group reconfigurations

 0

 20

 40

 60

 80

 100

 1000 1100 1200 1300 1400 1500 1600 1700
R

ec
o
n
f.

%
 M

is
s

R
at

e

node 1
node 2

(a) Read-hints module disabled (unmodified MongoDB)

 0

 20

 40

 60

 80

 100

 1000 1100 1200 1300 1400 1500 1600 1700

R
ec

o
n
f.

%
 M

is
s

R
at

e

Timeline (sec)

node 1
node 2

(b) Read-hints module enabled

Figure 4.8: Cache miss rate under read-only workload, SSD used a back-end store

facing between client applications and the sharded cluster2. The 3 EC2 VMs allocated for

the database nodes are of type r5a.xlarge featuring 4 vCPUs and 32GB of memory. Each

MongoDB process is configured with 14GB of cache size. The metadata server is hosted on

a c5.xlarge (4 high performance vCPUs) instance. We use a dedicated c5.xlarge instance

for the YCSB workload generator.

Figure 4.9 depicts the aggregate throughput of unmodified MongoDB vs. with RHM

enabled. In the case of unmodified MongoDB (top graph) we observe a clear performance

hit during reconfiguration, with system throughput dropping from 1090 ops/sec before

reconfiguration to below 500 ops/sec right after reconfiguration, requiring almost 2 min-

utes to fully recover to the pre-reconfiguration throughput. MongoDB with RHM enabled

exhibits a smooth transition to the new configuration (Figure 4.9b). The cache-miss ratio

2https://docs.mongodb.com/manual/sharding (retrieved july 2021)

82

4.3. Evaluation

 0

 500

 1000

 650 700 750 800 850 900

R
ec

o
n
f.

Y
C

S
B

 T
h
ro

u
g
h
p
u
t

(o
p
s/

s)
(a) Read-hints module disabled (unmodified MongoDB)

 0

 500

 1000

 650 700 750 800 850 900

R
ec

o
n
f.

Y
C

S
B

 T
h
ro

u
g
h
p
u
t

(o
p
s/

s)

Timeline (sec)

(b) Read-hints module enabled

Figure 4.9: Aggregate throughput of a multi-sharded replicated database on AWS EC2
under read-only workload

for unmodified MongoDB is up to 75% for the new primary node right after the reconfigu-

ration, exhibiting a similar trend to the cache-miss ratio of experiments in §4.3.1.

The aggregate steady-state throughput in this experiment is lower than reported in

the experiments of §4.3.1. This is due to different specs of the two platforms and the ad-

ditional entities (metadata configuration server and query router) required for a multi-

shard MongoDB deployment.However, both cases exhibit a similar trend: unmodified

MongoDB suffers a significant performance hit due to cold-cache misses after a recon-

figuration, whereas MongoDB with RHM enabled results in a much smoother transition.

83

Chapter 4. Addressing the read-performance impact of replica-group reconfigurations

4.3.3 Effect of cache size on time to restore performance

In previous experiments we noted that the time to restore performance of unmodified

MongoDB after the read-serving node changes, improves with a faster back-end store. In

this section we investigate experimentally the impact of the size of the cache, an important

issue in light of larger memory capacities typical of high-end enterprise servers. To evalu-

ate the relationship between the time to restore performance after a read-serving replica

change vs. cache size, we perform experiments using unmodified MongoDB with an SSD

back-end and different cache sizes, measuring the time to reach its pre-reconfiguration

throughput after a primary change.

To ensure that we can control the memory available for caching, we had to regulate

both MongoDB’s own internal cache implemented within its storage engine (WiredTiger)

as well as the filesystem cache. MongoDB’ internal WiredTiger cache loads collection data

and indexes and is of configurable size; however, the filesystem also indirectly caches Mon-

goDB data and automatically uses free memory left unused by the WiredTiger cache or

other processes. MongoDB thus benefits from both caches to reduce disk I/O. To effect a

system-wide limit on cache size, we resorted to the Linux control groups (cgroups) feature

that can limit the total memory available for all caches (MongoDB internal and filesystem

caches).

Figure 4.10 shows that there is a direct relationship between recovery time (time to

refill the cache) and cache size. Increasing cache capacity from 1GB to 10GB leads to

longer time to refill the cache, taking over 2 minutes to reach steady state performance

level with 10 GB of cache as it has to bring more data into memory to fill the cache and

reach steady state. Production deployments with even larger memory capacities (orders

of magnitude larger memories are very common in enterprise environments) are expected

to result in much longer periods of low system performance. Large caches are expected to

be characterized by low response times (during steady-state performance) and long time

to refill after a reconfiguration, yielding prolonged periods of large (as a ratio of recovery

vs. steady-state performance) SLO violations, making a strong case for the mechanisms

proposed.

84

4.3. Evaluation

 0

 50

 100

 150

 200

1 2 6 10

R
ec

o
v
er

y
 T

im
e

(s
ec

)

Cache size (GB)

Figure 4.10: Time to restore performance level vs. cache size

4.3.4 Effect of cache access pattern

To determine what (if any) is the impact of the cache access pattern, we run experiments

with the read-only workload and a Zipf-distributed (rather than uniform) access pattern.

We thus configure YCSB to select keys using the Zipf distribution, which exhibits a stronger

temporal locality and is expected to increase the efficiency of cache and result in higher

overall throughput.

In Figure 4.11 we observe that throughput is indeed increased to 2689 ops/sec. Mon-

goDB (both the unmodified version and our prototype) exhibits a stable miss rate at 18%

over the entire run. Following a reconfiguration, the throughput of unmodified MongoDB

drops by 39% due to an increase of the cache miss rate. The cache behaviour follows a sim-

ilar trend to the experiments under uniform distribution (Figure 4.8). After the reconfigu-

ration, the cache miss rate increases to 80% (Figure 4.12). As the new serving node is warm-

ing up its cache, it takes almost up to 2 minutes for the system to reach the steady-state

throughput following the reconfiguration. Our prototype exhibits a smooth transition to

the new serving replica, just as in previous cases. Thus, even though we have stronger

85

Chapter 4. Addressing the read-performance impact of replica-group reconfigurations

 0

 500

 1000

 1500

 2000

 2500

 3000

 1100 1200 1300 1400 1500 1600 1700

R
ec

o
n
f.

Y
C

S
B

 T
h
ro

u
g
h
p
u
t

(o
p
s/

s)

(a) Read-hints module disabled (unmodified MongoDB)

 0

 500

 1000

 1500

 2000

 2500

 3000

 1100 1200 1300 1400 1500 1600 1700

R
ec

o
n
f.

Y
C

S
B

 T
h
ro

u
g
h
p
u
t

(o
p
s/

s)

Timeline (sec)

(b) Read-hints module enabled

Figure 4.11: Throughput under read-only workload, Zipf distribution, SSD back-end
store

locality and more efficient use of cache in this case, we observe similar behavior to the

experiment with uniform distribution.

4.3.5 Read-write workload

In the 100%-read workload evaluated so far, backup replicas in unmodified MongoDB did

not see any of the read operations, explaining the high miss rates experienced after recon-

figuration. As soon as writes are introduced into the mix, however, backup replicas have

a way to learn of updates (as writes are propagated through the stores replication mecha-

nism). Thus, if the working set of future reads has strong spatial and temporal overlap with

the working set of past writes, it is expected that the performance impact of a reconfigu-

ration action will be reduced. Indeed, our experiments showed that when the percentage

86

4.3. Evaluation

 0

 20

 40

 60

 80

 100

 1100 1200 1300 1400 1500 1600 1700

R
ec

o
n
f.

%
 M

is
s

R
at

e

node 1
node 2

(a) Read-hints module disabled (unmodified MongoDB)

 0

 20

 40

 60

 80

 100

 1100 1200 1300 1400 1500 1600 1700

R
ec

o
n
f.

%
 M

is
s

R
at

e

Timeline (sec)

node 1
node 2

(b) Read-hints module enabled

Figure 4.12: Cache miss rate under read-only workload, Zipf distribution, SSD back-
end store

of writes issued by YCSB increase, the performance impact experienced by unmodified

MongoDB diminishes, due to the fact that reads and updates access the same set of keys.

However, in several applications (e.g., in typical big-data analytics scenarios where up-

dates are inserting new records, whereas reads are accessing past -historical- records) this

is not expected to be the case. To characterize such a scenario, we set up an experiment

with an 80%-20% read-write workload mix. However, in this case the read and writes are

performed on a different set of keys, using a uniform distribution for both operation types.

Figure 4.13a depicts results with unmodified MongoDB, with read throughput exhibit-

ing a clear performance hit, up to 58% during reconfiguration. This is due to the high

cache miss rate (89%) on the new serving replica right after the workload migration (Fig-

ure 4.14a). Write throughput is not affected by the reconfiguration as caching does not

87

Chapter 4. Addressing the read-performance impact of replica-group reconfigurations

 0

 500

 1000

 1500

 2000

 2500

 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600

R
ec

o
n
f.

Reads

Writes

Y
C

S
B

 T
h
ro

u
g
h
p
u
t

(o
p
s/

s)

(a) Read-hints module disabled (unmodified MongoDB)

 0

 500

 1000

 1500

 2000

 2500

 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600

R
ec

o
n
f.

Reads

Writes

Y
C

S
B

 T
h
ro

u
g
h
p
u
t

(o
p
s/

s)

Timeline (sec)

(b) Read-hints module enabled

Figure 4.13: Throughput under read-write workload, uniform distribution, SSD back-
end store

directly affect write performance.

In Section 4.3.11 we extend our evaluation through experimentation with TPC-C and

TPC-H workloads.

4.3.6 Re-electing a past primary

In previous sections, the replica node that takes over as a primary has an empty cache as

would be the case if that node recently joined the group. In a system that has been online

for some time and, especially for a node that has served as a replica-group primary in

the past, it may be the case that its cache has some or all of the key-values in the current

working set of the client application, thus resulting in few or no cache misses after the

reconfiguration. In Figure 4.15a (YCSB throughput) we exhibit the outcome of a second

88

4.3. Evaluation

 0

 20

 40

 60

 80

 100

 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600

R
ec

o
n
f.

%
 M

is
s

R
at

e

node 1
node 2

(a) Read-hints module disabled (unmodified MongoDB)

 0

 20

 40

 60

 80

 100

 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600

R
ec

o
n
f.

%
 M

is
s

R
at

e

Timeline (sec)

node 1
node 2

(b) Read-hints module enabled

Figure 4.14: Cache miss rate under read-write workload, uniform distribution, SSD
back-end store

reconfiguration re-electing as leader node 1 at 610 sec, after having served as leader in

0-300 sec, with RHM disabled. The throughput remains unaffected during the second

reconfiguration as YCSB clients access the same working set during the run. In Figure

4.15b we observe that node 1’s cache miss rate does not increase when node 1 becomes

primary again. Several practical factors however can still render a past leader’s cache cold:

One such case is when an application’s working set changes over time, a fact that has been

supported by analyses of real environments [57]. Other factors that may occasionally wipe

out the memory contents of replica nodes are (1) replica migrations that often take place in

the background for load balancing or management needs, or (2) power losses and reboots.

To highlight the impact of a time-varying working set when RHM is disabled, we set

89

Chapter 4. Addressing the read-performance impact of replica-group reconfigurations

 0

 500

 1000

 1500

 2000

 2500

 400 500 600 700 800 900 1000 1100 1200

R
ec

o
n
f.

R
ec

o
n
f.

primary: node 1 primary: node 2 primary: node 1

Y
C

S
B

 T
h
ro

u
g
h
p
u
t

(o
p
s/

s)

(a) YCSB Througput

 0

 20

 40

 60

 80

 100

 400 500 600 700 800 900 1000 1100 1200

R
ec

o
n
f.

R
ec

o
n
f.

primary secondary primary

%
 M

is
s

R
at

e

Timeline (sec)

(b) Cache miss rate on node 1

Figure 4.15: Node 1 serves as primary again at 600 sec after a second reconfiguration
(RHM disabled, same working set)

up an experiment3 featuring two synthetic workloads (two YCSB instances) with different

working sets. Again we perform two reconfigurations, with node 1 re-elected primary for

a second time at 580 sec (Figure 4.16). Initially, node 1 is primary and serves requests from

clients accessing key set 1. At 435 sec it steps down and node 2 takes over as primary. At

about the same same time, an additional set of clients starts accessing a different set of

keys (key set 2). As node 2 has an empty cache (first time serving as primary), we observe

a performance hit of up to 65% (Figure 4.16). We note the reduced throughput per client

group in 435-560 sec as they share the replica group. At 560 sec the set of clients accessing

key set 1 stop executing, briefly improving throughput for clients accessing key set 2. At

580 sec, node 1 is promoted to primary again. While node 1 has keys in its cache, they are

3We use a slightly different testbed (Intel Xeon Bronze 3206 8-core CPU 1.90GHz, 32GB DDR4, Micron 5200
MAX SSD) in this experiment.

90

4.3. Evaluation

 0

 1000

 2000

 3000

 4000

 5000

 350 400 450 500 550 600 650 700

R
ec

o
n
fi

g
u
ra

ti
o
n

R
ec

o
n
fi

g
u
ra

ti
o
n

Key set 1
Key set 2

Key set 1

Key set 2

primary: node 1 primary: node 2 primary: node 1

Y
C

S
B

 T
h
ro

u
g
h
p
u
t

(o
p
s/

s)

Timeline (sec)

Figure 4.16: Node 1 serves as primary again at 580 sec after a second reconfiguration
(RHM disabled, working set changes)

no longer useful as the working set has changed, resulting again to a performance drop.

Enabling RHM (not shown in Figure 4.16) results in a smooth transition from node 1 to

node 2 (for clients accessing key set 1) and back to node 1 (for clients accessing key set 2).

4.3.7 Performance overhead

In this section we study the performance overhead of our mechanisms, namely the mon-

itoring and logging of read requests into in-memory buffers (the read-hits buffers) and

their communication to replica nodes. We focus on the performance impact on through-

put under a 100% read workload, in order to fully stress our mechanisms which only apply

to read operations.

We repeat the experiment of Section 4.3.1 using SSD as back-end store and we mea-

sure the performance overhead in terms of throughput while the system is at steady state

91

Chapter 4. Addressing the read-performance impact of replica-group reconfigurations

without applying a change of the serving node. In this case the CPU utilization is at 80%

(combined user and system time). We break overhead in two parts: (a) the impact of log-

ging every read request and (b) the impact of replicating the read log under different con-

figurations. In our first experiment we enable the logging mechanism but do not replicate

the read log. Although we do not replicate the read log across replicas, we still swap the

read-log buffer (part of the double buffering being performed, Section 4.2.1) every 90 ms.

The average performance impact of logging is found to be 0.6% (average of 10 runs with a

relative standard deviation of 0.16%).

We next study the impact of our mechanism with the replication of read log enabled.

The reported impact is cumulative, meaning that it includes the cost of logging of read

requests and the cost of replication of the read log buffers. We experiment with different

replication intervals and number of replicas to sync the read log with. When only one

replica gets the read-log updates the performance overhead is 0.9%, increasing to 1.6%

when all replicas receive the updates (average of 10 runs for each configuration, with rela-

tive standard deviation 0.25% and 0.21% respectively). Experimenting with different repli-

cation intervals (90ms and 1000ms) does not seem to have any impact on the overall sys-

tem performance. A short replication interval creates small frequent batches of read log

that are replicated across replicas while a long interval creates less frequent but bursty

batches. Overall, we find that the performance impact of our mechanism to maintain up-

to-date read caches across replicas is minimal even under stress.

Finally, we focus on the cost of RHM maintenance under resource strain, caused by the

sharing of resources between a primary and a backup replica co-located on the same node

on AWS EC2. We use a single-shard deployment and focus on the performance (through-

put) of a single node hosting the primary replica and a backup. To fully stress the RHM sys-

tem, we use a read-only workload. We compare unmodified MongoDB to the same system

with RHM enabled with a workload that drives the former at an average CPU utilization

of 70%, considered fully utilized. At that point, we observe 4.65% lower throughput for

MongoDB with RHM vs. the unmodified, as seen by clients. For a lighter loaded server, we

observe no noticeable impact on overall system performance. While the impact is consid-

ered low even under stress, RHM could be temporarily stopped or selectively apply read

92

4.3. Evaluation

%Hints Cache CPU Disk reads

Applied miss rate usr+sys I/O wait MB/s ops/s

10% 39% 5.2% 0.37% 8.8 484

20% 33% 7.3% 2.36% 16.2 794

33% 31% 10.2% 4.26% 25.1 1137

50% 30% 13.4% 5.97% 34.9 1501

100% 30% 24.7% 8.62% 60.9 2426

Table 4.1: Applying fewer read-hints lowers RHM overhead, at the cost of reduced
cache efficiency after reconfiguration

hints to reduce it even further.

4.3.8 Selectively applying read hints

As noted in Section 4.2, a secondary replica can selectively apply the read hints it receives

via RHM from the primary to reduce the overhead of the mechanism. Here we quantify

the overhead (CPU and read I/O) attributed to RHM when applying a fraction of the read

hints received (10%, 20%, 33%, 50%) under a YCSB workload with a uniform access pattern.

Our results highlight the point that RHM can be applied in an adjustable manner, in line

with the amount of resources available to a specific deployment at any point in time. In

addition, RHM can be switched off during periods of excessive load, and turned back on

after such periods or after more resources are provided to a deployment.

Table 4.1 shows that as the amount of hints applied is reduced, RHM overhead (CPU

and read I/O4) is also reduced while the cache miss rate on the node that takes over as

primary after reconfiguration increases. The cache miss rate on the primary node (which

applies all read requests) is 30% at steady state. We also observe that applying 50% of read

hints on replicas matches the miss rate on the primary allowing a smooth primary tran-

sition between nodes. This is evidence that significant benefits are possible by applying

4We use mpstat and iostat to collect CPU and I/O statistics respectively; the monitored I/O device is used
exclusively by MongoDB

93

Chapter 4. Addressing the read-performance impact of replica-group reconfigurations

even a small fraction (10-33%) of read hints.

Another key point is that the RHM mechanism can be turned off during periods of over-

load (90-100%). These are not expected to last too long, either because they are typically

due to bursts and expected to recede or will be absorbed by adding new resources (elastic-

ity actions), at which point RHM dissemination can resume at a level (% of hints) adjusted

to the current level of load.

4.3.9 Space overhead

Read-oplog entries contain just the minimum description of requested data (IDs and some

filters) necessary to identify the requested data. To reduce the read log size and the amount

of data sent over the wire, we omit (unnecessary to the replicas) information regarding the

session id, signature hash and other fields of the read request used on primary node. A

replica that receives read log batches can reconstruct and apply the corresponding read

requests. Listing 4.1 contains a human-readable representation of a read log entry. In

this case the space overhead of the read log entry is 39 bytes (the collection name and the

contents of the filter).

{

f i n d : ” u s e r t a b l e ” ,

f i l t e r : {

i d : ” user8458018675393720714 ”

}

}

Listing 4.1: Read-hints buffer entry

As the read log is replicated in batches across replicas, the communication interval

affects the size of each batch but not the total data transferred over the network. A repli-

cation interval of 1000 ms corresponds to a batch size of 2,260 log entries (matching the

serving rate of read requests reported in Section 4.3.1 using SSD as back-end store). A

replication interval of 90 ms (default in our prototype) corresponds to a batch size of 205

94

4.3. Evaluation

entries. In both cases, 2,260 requests/sec are communicated to replicas, resulting to 88

Kbytes/sec per replica. The required network bandwidth to replicate the read log is anal-

ogous to the serving rate of reads on primary. However we communicate only a minimal

description of read requests as hints and not the data itself. In the experiments described

in this section, we log all read requests. In Section 4.3.10, we evaluate our optimizations to

further reduce the size of the read log.

4.3.10 Optimizations to reduce read-hints buffer size

Batching reads operations provides an opportunity to reduce the total size of the read log

to be shipped across replicas as multiple requests for the same data can be logged just

once (summarized) in the buffer. This depends on the access pattern of data, the replica-

tion interval of read log (as summarization can be performed for requests within the same

interval) as well as the serving rate of the system. A system with high serving rate using

a long replication interval and featuring strong locality in the access pattern, can greatly

reduce the amount of transferred data across replicas.

In this section we study two different access patterns (uniform, Zipf) under two differ-

ent read log replication interval settings using the fixed serving rate of our system using

SSD back-end. Under uniform accesses, almost all the requested keys in every interval

are unique, even when the duration of the interval is set to 1,000 ms. Due to the relatively

large dataset size (50 million unique keys) it is highly unlikely that during an interval the

driver selects the same keys more than once. Under the Zipf distribution, we find that 12%

fewer data are transferred to replicas when we use the default read log replication interval

of 90 ms. Setting the interval to 1000 ms, 21% fewer read log data are transferred over the

network to replicas.

When network bandwidth is scarce, one could apply compression or use more sophis-

ticated deduplication techniques [192] on the read log to further reduce network traffic.

95

Chapter 4. Addressing the read-performance impact of replica-group reconfigurations

4.3.11 TPC workloads

This section extends our evaluation using workloads modeled after two popular TPC bench-

marks, TPC-C (online transaction processing) and TPC-H (online analytical processing).

TPC-C

We experimented with TPC-C [38], a popular online transaction processing benchmark

emulating a commerce system with five types of transactions. While initially designed to

test traditional RDBMS systems, we used a recent implementation that adapts it to match

the NoSQL document data model and to test transactional features [118]

The database is populated to simulate 500 warehouses resulting to 66 GB of data size

(41.5 GB on disk space using compression). To have a continuous view of performance,

we adapted the benchmark to report throughput and response time for each query every

2 seconds.

Queries are served by the primary node at the start of the run. Initially we aimed to

shift the read-serving node to the nearest secondary during the run. However, in this

way we could re-target only the STOCK LEVEL query (a read-only query) [118] towards the

secondary node. We thus moved towards scenarios where we switch the primary node

within the replica group. This may occur during a failover action or to improve perfor-

mance [53, 96, 138, 152]. In this case, all transactions are executed in the node that serves

as primary. However, switching the primary yields minimal impact on performance (we

observe no cold-cache misses). An analysis showed that this is because most of the queries

have a similar pattern (read, then update (modify) the same keys), thus eventually propa-

gating the read working set to all replica caches, achieving as a side effect the benefits of

our mechanism. We wanted to investigate whether a different type of workload, online

analytical processing, has different characteristics. Our results are summarized next.

TPC-H

TPC-H [39] emulates a decision support system or business intelligence database environ-

ment tasked with providing answers for business analyses on a dataset, initially designed

96

4.3. Evaluation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 318 320 322 324 326 328

%
 M

is
s

R
a
te

Timeline (sec)

Figure 4.17: Cache miss rate after migration of the analytics query

for traditional RDBMSs. The workload is generally read- and scan-intensive. We imple-

mented a subset of the benchmark5, namely the ”Pricing Summary Report Query (Q1)”

compatible with the MongoDB query model. This query reports the amount of business

that was billed, shipped, and returned. The query exhibits a high degree of complexity.

As it has to scan and fetch data from disk and then perform aggregation operations on

them (e.g. sum, average), it is both I/O and CPU intensive. We load the database using

the DBGen6 tool using a scaling factor of 10. To improve transaction performance, we

built indexes on fields used for the query. The total database size is 29 GB (resulting in 13

GB on-disk allocated space using compression). The query parameters (e.g. the shipdate

interval) are randomly selected.

Initially the query is executed on the primary node with a warm cache (having previ-

ously executed another instance of the query), achieving an execution time of 1.2 sec with

a nearly 0% cache miss rate. After workload migration (changing read replica) with our

mechanism enabled, the query execution time is the same as the new read node has a

warm cache. After disabling our mechanism however, replica caches cannot stay in sync

with the primary node’s cache. Thus, after a migration, query execution time increases to

5The database schema could be adapted to better fit the NoSQL document data model but this is out of scope
of this work

6DBGen is a TPC provided software package that must be used to produce the data used to populate the
database.

97

Chapter 4. Addressing the read-performance impact of replica-group reconfigurations

6.3 sec (a 5.25 times slower query execution time) due to initial cold-cache misses. Fig-

ure 4.17 shows that the cache miss rate is between 60% and 40% during the execution of

the query that performs read and scan operations. Our mechanism is able to maintain

warm caches across replicas, achieving an 80% reduction of execution time.

4.4 Summary

In this chapter we propose a low-overhead mechanism for maintaining warm read caches

across all replicas in systems that serve reads from a small number of (typically one) repli-

cas. We find that the mechanism can have significant performance benefits during recon-

figuration actions, avoiding large performance drops for long periods of time (order of

minutes). The performance drops avoided by our mechanism are observable even with

faster storage devices and are proportional to the size of the cache. Mixed (read/write)

workloads featuring non-overlapping read and write working sets are also exposed to the

problem described in this chapter and benefit from our solution. All in all, the proposed

mechanism is low cost, easy to implement and retrofit in existing systems, and results in

significant benefits during reconfiguration actions. Its low performance impact observed

under periods of resource strain can be avoided by reducing or stopping the maintenance

of read hints during such periods. While the benefits of our mechanism are not on the

common path of system performance, the challenge addressed in this work has the poten-

tial to be even more impactful in the future, as reconfigurations become more frequent

for management actions such as replica rejuvenation, proactive recovery, adaptive place-

ment, and to mask the performance impact of resource-heavy activities.

98

Chapter 5
Amoeba: Aligning Stream Processing

Operators with Externally-Managed

State

In multitier service architectures the application building blocks are separate layers. The

application logic is often separated from the data persistence layer (storage system). Dis-

tributed middleware systems rely on data stores to maintain and manage their state. State-

ful services generate their response by executing their processing logic on its state per-

sisted on an external data storage system. As these systems usually have strict perfor-

mance requirements, the underlying data stores need to deliver its functionality with even

tighter bounds. Tuning both systems is a challenging task. In addition, the cross-system

communication for the data access path can critically affect the overall service perfor-

mance. In this chapter we study the performance improvements of more efficient cross-

system communication by aligning data stores with distributed middleware platforms

We use stream-processing systems (SPSs) as a distributed middleware platform use

case. Scalable stream-processing systems and analytics are key to a number of high data-

volume Internet services [7, 21, 50, 75, 115, 160, 176]. As real-time data analytics provide

valuable insights, there are cases where stream-processing platforms process trillions of

events per day [21]. A stream application can be modeled as a directed dataflow graph

99

Chapter 5. Amoeba: Aligning Stream Processing Operators with Externally-Managed
State
comprising processing operators [47]. Each operator transforms data flowing from its in-

puts to its outputs. Stateful operators preserve a sequence of recent data as ephemeral in-

ternal state and apply a transformation on a subset of its incoming data (e.g. aggregating

values over a time window). Storing intermediate (ephemeral) state of streaming applica-

tions in a reliable, recoverable manner is important for the fault-tolerance of long-running

jobs.

Early SPSs stored ephemeral operator state in memory or on an external data store

(e.g., an SQL server). Modern systems offer data management mechanisms using embed-

ded local key-value stores (KVS), typically coupled with periodic checkpoints stored on

external storage systems [67, 144] for fault-tolerance. Other systems externalize data man-

agement to distributed storage systems for out-of-the-box fault-tolerance, recovery, and

elasticity [46, 95].

Persistence of external state of streaming jobs is a separate but equally important con-

cern. External state refers to data produced by streaming jobs or by other applications or

systems [50,75,115,176], or ground-truth table data that can be accessed during the execu-

tion of streaming applications. External state has typically a lifecycle that is disconnected

from that of streaming applications and is often stored on scalable KVSs [78, 115, 176].

Current state-of-the-art solutions, such as IBM InfoSphere Streams, provide support for

general-purpose access to external state on scalable KVSs [160, 164]. However, lack of co-

ordination in the placement/partitioning policies of SPSs and external-state KVSs, results

in unnecessary network cross-talk (often on the critical path of a streaming application),

and mis-alignment of adaptation policies such as elasticity.

In this thesis, we build upon the idea that the performance of accessing external state

can be improved via co-location of internal and externally-managed state partitions. This

is possible either via appropriate (informed) initial placement of such partitions and align-

ment of SPS and KVS key partitioning schemes or via migration of tasks (along with their

internal state) or externally-managed state partitions, with the ensuing data movement

where appropriate. Early experimental results (poster [94]) report the benefits of align-

ing data and task placement/partition policies in scalable SPSs with externally-managed

state KVSs. That study used a simple application derived from the Yahoo streaming bench-

100

mark [78] deployed on the Flink [67] SPS using Redis as an external-state KVS. The results

provided early evidence of significant performance benefits on manually created configu-

rations and small-scale setups.

In this work we extend those early results in a number of directions. We describe the

design and implementation of an actual system that we call Amoeba1 that implements

the alignment between SPS task partitions and externally-managed KVS-based state. We

experimentally evaluate Amoeba on an advanced, complex streaming benchmark appli-

cation, Linear Road [52,180], on large-scale deployments of up to 64 AWS nodes. Our work

makes the following research contributions:

1. A broad investigation of the benefits of automatically aligning SPS tasks with externally-

managed state in large-scale production-quality workloads.

2. Determination of the benefits possible with shared access on externally-managed

tables, and how these benefits change with increasing system scale.

3. Investigation of combined actions (shipping data to tasks or vice versa, adaptation

of partitioning schemes) to align externally-managed state partitions with SPS task

partitions to exploit locality.

4. Development and use of a scalable implementation of the state-of-the-art Linear

Road benchmark [52, 154, 180].

The research work reported in this chapter provides a novel solution to the research

problem of automatically streamlining and integrating state management capabilities across

stream and storage technologies, a complex undertaking that today requires deep human

expertise, making it a hard and failure-prone undertaking.

The rest of this chapter is structured as follows. In Section 5.1 we position Amoeba in

relation to previous research in this space. In Section 5.2 we detail our design and proto-

type implementation of Amoeba. In Section 5.3 we describe our implementation of Linear

1An amoeba is a type of cell or unicellular organism that has the ability to alter its shape, primarily by extend-
ing and retracting pseudopods [4]. Its adaptivity as a defining characteristic inspired us to name the system
presented in this chapter after it.

101

Chapter 5. Amoeba: Aligning Stream Processing Operators with Externally-Managed
State

Road for the Flink SPS using the Redis KVS for storing externally-managed state. In Sec-

tion 5.4 we discuss our extensive evaluation of Amoeba on AWS deployments of up to 64

nodes. Finally, in Section 5.5 we conclude.

5.1 Related work

Stream processing applications can be expressed as a collection of processing tasks (op-

erators) connected in a dataflow graph [47, 178], with each operator transforming data

flowing from its inputs to its outputs. Operators can be stateless or stateful. The output of

stateless operators (such as filters) is based on the current inputs only and does not take

into account state from previous computations. Stateful operators (such as aggregations)

build state from past inputs and use it to influence the processing of future input.

Amoeba addresses the alignment between tasks managing stream-processing state

and partitions of externally-stored and managed state. Here we review related research

in three areas: SPS access to externally-stored and managed state (§5.1.1); the manage-

ment of SPS internal state (ephemeral operators state) (§5.1.2); and finally, task placemen-

t/alignment to improve performance in different contexts (§5.1.3).

5.1.1 Storing and accessing external data

Streaming applications often require access to external data on the common path, typ-

ically stored on external systems whose lifecycle is decoupled from that of the stream-

processing application. Access to external data may be needed in the context (and for

the purposes) of either stateful or stateless operators. Management of external state is

orthogonal to the management performed by SPS of internal state (ephemeral operator

state); the latter is the focus of Section 5.1.2.

Several production use-cases highlight the need to use external storage systems to

share state across different processing applications and management systems [50,75,164].

Existing scalable SPSs provide ways to interact with scalable external stores. One way is

through source/sink operators channeling streams to scalable key-value stores such as

102

5.1. Related work

Redis [67, 144] and through user-defined operators with custom code accessing external

state via publicly-available KVS client drivers and APIs. Another way is to extend stream-

ing frameworks with general-purpose put/get access to remote stores [164] as supported

by IBM InfoSphere Streams distributed process store, and demonstrated in commercial

use cases [160]. This model also allows to combine ”data-at-rest” (batch processing) and

”data-in-motion” (stream processing) analysis.

Accessing external state in the common path of stream processing is known to be a

cause of overhead (higher latency, as well as protocol overhead). With out-of-core datasets

stored as external state (e.g., user profiles in large Internet services [75, 144, 176] or user

activity [50]), external state is a performance pain point that is not well addressed so far.

Amoeba addresses this challenge through the alignment between tasks managing stream-

processing state and partitions of externally-stored and managed state.

5.1.2 Storage solutions for internal operator state

Stateful operators build state from past inputs. This internal state is ephemeral and is

tightly coupled with the lifecycle of the operator. Modern SPSs follow two directions to

manage the operators internal state: using an embedded data management system such

as RocksDB [67,144], or storing it on external data stores [46,131,139]. An embedded store

results in efficient local data access, while an external data store has the additional benefit

of independent failure modes, although at a cost of higher access latency.

A challenge with internally-managed state is the need to re-organize operator state via

network transfer across nodes during reconfigurations of the SPS, which has led to recent

research in reducing the impact of such reconfigurations [87,112,191]. Using a distributed

storage system to persist internal operator state has the benefit of allowing systems to

quickly recover from failures and to efficiently reallocate stateful operators across several

newly partitioned operators to provide scale out. With certain SPS using external storage

systems for reliability and reconfiguration (elasticity), each processing operator creates pe-

riodic checkpoints that are mirrored to an external distributed storage system (e.g. HDFS).

In case of failure or reconfiguration, the stream processing system can recover its state

103

Chapter 5. Amoeba: Aligning Stream Processing Operators with Externally-Managed
State

from the external store [67, 87, 144, 191]. The external store is not involved in the common

path of stream processing and is only used during the checkpointing or recovery process.

Exposing internal operator state and allowing users to query the state of the streaming

job from the outside has recently been introduced in the Flink SPS via support for querable

state [14]. However, this approach applies to internal job state only and does not extend

to external data whose lifecycle is disconnected from that of a streaming application.

Combining distributed state management solutions to support both external state and

internal operator state via a single platform in modern stream processing frameworks

could lead to efficiency and versatility benefits. However, determining how to effectively

combine the two types of systems remains a challenging research problem, as has also

been pointed elsewhere [181].

5.1.3 Placement/alignment of SPS tasks

Previous work studied improvements in the placement of processing tasks to reduce the

communication overheads between operators, migration of operators and replication [93,

149, 158] or study the checkpoint placement policies [87, 162]. Controlling the placement

of externally-managed state to align with streaming tasks for lower latency, a focus of this

work, has not been made so far. Aligning data and processing partitions on a common

topology to improve data locality is a challenging task. Work on modeling load balanc-

ing, operator instance co-locations and horizontal scaling as one integrated optimiza-

tion problem that can be solved using mixed-integer linear programming (MILP) [141]

are related to Amoeba in that it pursues opportunities for co-location (in this case, op-

erator instances) to improve system performance. Previous research looked into task as-

signment for state sharing [190] and on shared store [139] to support this. This work as

well as previous research on improving SPS state partitioning schemes for load balanc-

ing [97, 123, 143, 165] are orthogonal to our approach.

104

5.2. Design and implementation

get/put
get/put

get/put

SPS placement info and control

Store (KVS) placement info and control

Store Driver SPS Driver

Amoeba
Coordinator

Node 1 Node 2 Node k Node k+1

KVS partition

SPS task
Metadata

Figure 5.1: Amoeba system design. Without any alignment, each SPS task will be ac-
cessing keys from all KVS partitions.

5.2 Design and implementation

In this section we describe the design and implementation of Amoeba, a system for adap-

tive and dynamic alignment of partitioning schemes and assignment of task and data par-

titions to nodes to improve system performance by minimizing data access over the net-

work.

Figure 5.1 shows the Amoeba system design. It functions as a typical autonomic monitor-

analyze-plan-execute (MAPE) loop [77] whose main purpose is to monitor and coordinate

SPS-KVS systems, aiming to achieve efficient SPS access to external state. Amoeba follows

a modular design approach using SPS and data store specific drivers as plugins to commu-

nicate with the underlying systems. Drivers are responsible to discover metadata and to

realize (effect) the aligment plan on the underlying systems.

At the core is the Amoeba Coordinator, whose role is to monitor and control inter-

dependent SPS and KVS platforms and their relationships, through the driver modules

that encapsulate domain-specific knowledge. The Coordinator incorporates a metadata

repository responsible for storing information, such as application descriptions, deploy-

ment topologies of both systems. It periodically contacts SPS and KVS to discover topology

105

Chapter 5. Amoeba: Aligning Stream Processing Operators with Externally-Managed
State

and partition related information (e.g. partition assignment across instances). The coor-

dinator correlates the metadata of both systems to create an alignment plan by a combi-

nation of task/partition migrations and modifications to the partitioning scheme on SPS

and/or KVS, as applicable (§5.2.2). The design of the Coordinator is agnostic to the under-

lying SPS and KVS.

An SPS Driver is a module responsible for interaction with an SPS, incorporating domain-

specific knowledge about discovering information and controlling each SPS via external

management APIs. An SPS Driver discovers streaming application descriptions, physical

deployment topologies (assignment of operator partitions to SPS worker tasks), and how

streaming operators are routing their inputs into partitions of downstream operators. Op-

erators partition their outputs when their downstream operators have multiple instances,

assigning a non-overlapping set of their output (partition) to each instance of each down-

stream operator. The partitioning scheme is usually based on hashing, although it can

also be based on simpler round-robin key distribution approaches or more complex load

balancing methods. Following an alignment plan decided by the coordinator, an SPS may

adapt its partitioning scheme and assign partitions across processing tasks and/or recon-

figure to execute task-migration actions.

A Store Driver is a module responsible for the interactions with a data store (in prin-

ciple any scalable storage system, although scalable KVS are the prevailing technology to-

day), focusing on data partitioning, the assignment of one or more partitions across data-

store instances, and partition migrations. Amoeba plans its actions upon the understand-

ing that data stores may adapt similarly to SPS tasks, i.e. by adapting their partitioning

scheme, re-assign partitions across its instances, as well as via data migration actions.

Naturally, some actions have a higher impact than others, and there may also be con-

straints on what actions are feasible given the configuration of resources on the field. Amoeba

takes these factors into account in proposing actions. Next we focus on details of Amoeba

alignment plans for improving the efficiency of SPS access to external state.

106

5.2. Design and implementation

5.2.1 Amoeba inputs and metadata discovery

Amoeba requires users to provide handles and credentials (access rights) to management

components and APIs of the underlying systems (SPS and KVS) as well as monitoring end-

points. Amoeba discovers (rather than require a human expert to provide) the deployment

topology of the SPS and KVS and the execution graph of streaming applications. Through

static analysis of the application’s code or deployment package, Amoeba may pinpoint

the operators accessing external state. This information is augmented and cross-checked

by dynamic monitoring of data-access requests. For completeness, Amoeba allows appli-

cation owners to augment this information by identifying operators (names) that access

external data along the associated external data tables. The Amoeba coordinator period-

ically communicates with the SPS and data store(s) to draw the above metadata and to

discover opportunities for alignment to improve data locality.

5.2.2 Planning alignment actions

An alignment plan is a collection of alignment actions that aim to improve locality of one

or more operators. Amoeba generates alignment plans in three ways, exemplified in Fig-

ure 5.2, where a processing operator with 3 parallel instances accesses an external data

table split into 2 partitions (shards) (Figure 5.2(a)). Amoeba may adjust the parallelism

of either the SPS or the KVS via elasticity actions to improve the potential for alignment

between the two systems; in Fig. 5.2(b) it creates an additional KVS server on Node 3.

Amoeba may next migrate processing tasks or data partitions, leading to a deployment

that increases co-location between the operators and the corresponding data tables; in

Fig. 5.2(c) it migrates a task from Node 4 to Node 1. Finally, Amoeba improves data lo-

cality by aligning the partitioning schemes of the two systems to exploit the co-location

between processing operators and data tables on Nodes 1-3. Amoeba considers known

global constraints (e.g. data tables not allowed to move to or out of specific nodes) and

resource limitations (e.g. overloaded nodes that cannot host more processing operators

or data shards) in its decision-making process.

Next we describe the process of alignment plan generation and the decisions involved

107

Chapter 5. Amoeba: Aligning Stream Processing Operators with Externally-Managed
State

Node 2

su
bs
tre
am

substream

substream

Node 3

Node 4

Node 1

(a) (b) (c)

su
bs
tre
am

substream

substream
su
bs
tre
am

substream

substream

Processing Task Data partition

Figure 5.2: Example: (a) Initial deployment, (b) creation of new shard, (c) task migra-
tion and partition-scheme change

in more detail (Figure 5.3).

Adjust the parallelism of SPS or KVS: A difference in the degree of parallelism between

the SPS and KVS deployments (as in Figure 5.2(a)) will prohibit full co-location between

the two systems, even after migration and partitioning-scheme changes (described next).

Where possible, Amoeba considers adjusting the parallelism (via elasticity actions) on ei-

ther the SPS or KVS as a way to achieve optimal alignment of the systems. Even when SPS

and KVS may have had the same degree of parallelism at some point in time, this may be

disrupted by an externally triggered elasticity action on one of the two systems (e.g. the

SPS, due to a load surge), without a corresponding action by the other. Amoeba can detect

this and trigger a corresponding elasticity action (when feasible) to realign both systems.

Amoeba prefers scaling up the system with the lower parallelism, as scaling down may

negatively impact overall performance. As elasticity actions may be subject to cross-check

with other systems (such as external elasticity controllers) and management controls (for

billing, etc.), the Amoeba decision process may involve a human operator to explicitly ap-

prove actions.

In Fig.5.2(b), Amoeba adds a new KVS instance on Node 3 so that processing tasks

and data partitions have the same parallelism, and re-balances the KVS. Then, it explores

108

5.2. Design and implementation

potential for more co-location through data or task migrations:

Migrate tasks or data to increase co-location: Where processing operators and data

tables are hosted on separate nodes (as in Nodes 1 and 4 in Fig. 5.2(b)), Amoeba will con-

sider migration actions to increase the co-location. Available options of migrating SPS

partitions or KVS data partitions (shards) are taken into account in deciding the appro-

priate adaptation action. Amoeba selects either SPS or KVS migration depending on the

availability of online, low-impact migration mechanisms [87, 112, 151, 191] in either sys-

tem. Amoeba assumes apriori knowledge of whether such mechanisms are supported in

a SPS or KVS in its metadata catalog. If both support such mechanisms, it defaults to the

SPS. Sometimes there are constraints that do not permit such actions (e.g. no access rights

or limited processing capacity on certain nodes). Amoeba takes into account constraints,

rules, and policies in creating migration plans. If migrating a KVS entirely off of its origi-

nal deployment is not an option, creating new data replicas on the SPS nodes (rather than

effecting a full migration there) may be the best possible middle ground.

In Fig. 5.2(b), Amoeba moves the processing task initially placed on Node 4 to Node 1.

Next, it aligns the partitioning scheme of the systems to fully exploit data locality:

Align SPS/KVS partitioning schemes: In any deployment topology, a key Amoeba step

is to align the partitioning scheme of the systems to improve data locality. Where it finds

that data partitions and processing tasks are already co-located on certain nodes, Amoeba

can trigger changes to the partitioning scheme to improve alignment, i.e. the same stream

and data keys be routed to the same node. This alignment can be realized on the partition-

ing scheme of either the SPS or the KVS. Although it is feasible to dynamically repartition

a scalable KVS [99], it is usually considered a heavyweight task. In addition changes on the

partitioning scheme of the external database may also impact other systems or applica-

tions that access the external data. Thus partition-scheme change on the SPS is typically

preferable. In Fig. 5.2(c), Amoeba detects co-locations on Nodes 1-3 and changes the SPS

partitioning scheme to assigns keys in each KVS shard to the SPS task hosted in the same

node.

Through continuous monitoring, Amoeba analyzes the performance impact of its align-

ment plans and may re-evaluate if needed (e.g. in case there are still remote data accesses),

109

Chapter 5. Amoeba: Aligning Stream Processing Operators with Externally-Managed
State

equal
parallelism

?

KVS
parallelism

lower
?

SPS
scale up
feasible

?

Scale up SPS

co-location
potential

?

Perform migration

migration
feasible

?

compare
alignment

impact

Change KVS
partitioning scheme

Change SPS
partitioning scheme

YES

YES

YES YES

YES

SPS more
lightweight

NO

NONO

NO

NO

Metadata
Input

Alignment
plan complete

YES

NO

migration
feasible

?

Adjust the parallelism of SPS or KVS

Align SPS/KVS partitioning schemes

Migrate tasks or data to increase co-location

YES

KVS more
lightweight

Select migration
target (SPS or KVS)

Perform migration

If SPS migration infeasible, try KVS
or vice versa

Scale up KVS

KVS
scale up
feasible

?

Figure 5.3: Amoeba decision-making process

110

5.2. Design and implementation

similar to previous approaches in online optimization of allocation decisions [51].

Figure 5.3 depicts the Amoeba decision-making process incorporating its three key

mechanisms along with decision points that check on the impact of actions or constraints.

As an alignment of SPS-KVS partitioning schemes is needed after either a migration or

an elasticity action, the decision-making process starts by considering elasticity first, fol-

lowed by migration, and ends with partition-scheme alignment.

In our evaluation we demonstrate the decision-making process of all three key align-

ment mechanisms, namely elasticity actions to adjust parallelism (§5.4.5), data migrations

(§5.4.4) and partitioning scheme alignment (§5.4.2 - §5.4.3)

5.2.3 Prototype implementation specifics

Our prototype implementation of Amoeba includes a Coordinator and drivers for the Flink

SPS and Redis Cluster KVS. The Coordinator incorporates a scheduler that periodically in-

vokes both drivers to discover changes in the deployment topologies. The Flink SPS Driver

contacts the Flink Job Manager and extracts the necessary metadata for the running jobs

(streaming applications), including details on operators and their accessed state, deploy-

ment parallelism, partition placement, etc. The Redis Store Driver is based on the lettuce

Redis client library2. This Redis driver contacts any Redis nodes to get metadata informa-

tion regarding partition assignment across Redis instances. Both Flink and Redis drivers

require no modifications to the underlying platforms.

The Flink and Redis drivers are also used to collect monitoring data exposed by the

underlying platforms. In Flink we use the REST API to access the monitoring data exposed

by the JobManager. We also enriched the Lettuce Redis client library to expose the Redis

requests distribution across nodes to the JobManager metrics. Monitoring is performed

via periodic sampling and thus has low overhead. Amoeba can access the monitoring data

through its Flink driver. An alternative would be to get the access pattern of Redis requests

from the Redis servers directly using the monitor command3.

Elasticity and migration actions. Amoeba discovers nodes joining or leaving the clus-

2https://lettuce.io (retrieved September 2021)
3https://redis.io/commands/MONITOR (retrieved September 2021)

111

Chapter 5. Amoeba: Aligning Stream Processing Operators with Externally-Managed
State

ter on the SPS and can trigger a corresponding KVS action, a Redis cluster rebalance. Redis

splits data horizontally to 16384 partitions, also called shards or slots, mapped to Redis

node instances. Our implementation supports Redis cluster rebalance to a different set

of instances by re-assigning its 16384 partition slots across the available Redis instances.

Amoeba effects elasticity on Flink via its standard mechanism based on savepoints [15].

Data migration is supported by Amoeba via the creation of new replicas and change

of leader within each Redis replica group, as a means to migrate KVS partitions to SPS

nodes. This is one of the options considered when KVS nodes do not have processing

capacity (or are otherwise constrained) to host SPS processing tasks. Redis supports the

leader-follower (master-slave) replication scheme. Every partition has a master replica

that serves all read and write requests and a configurable number of follower replicas that

asynchronously get updated by the leader replica. The Amoeba Redis driver supports data

migration by creating a new follower replica on an appropriate SPS node. When the new

replica catches up with the primary, the driver reconfigures the group, promoting that

replica to primary, allowing for local reads/writes between co-located SPS tasks and KVS

partitions.

Partition-scheme alignment. An important mechanism exercised by Amoeba is chang-

ing the partitioning scheme in either the SPS or the KVS platform (or both) so as to achieve

alignment, namely that external state and operator key routing (and internal state, in case

of stateful operators) are partitioned the same way. Flink uses the KeyBy transformation,

which logically partitions a stream into disjoint partitions based on some field(s) of the

tuples (called partition key) [13]. All records with the same key are assigned to the same

partition. Internally, Flink KeyBy is based on the MurmurHash algorithm4. Since KeyBy

does not allow customization, in our prototype we use the Flink Partitioner API interface5

that allows users to implement their own partitioning method. We have implemented a

remote communication API to the Flink Partitioner API through which the Coordinator

dynamically adapts the partitioning scheme of certain operators according to its align-

ment plan. The communication between the Coordinator and Flink partitioner is carried

4https://en.wikipedia.org/wiki/MurmurHash (retrieved September 2021)
5https://ci.apache.org/projects/flink/flink-docs-master/api/java/org/apache/flink/api/common/

functions/Partitioner.html (retrieved September 2021)

112

https://en.wikipedia.org/wiki/MurmurHash
https://ci.apache.org/projects/flink/flink-docs-master/api/java/org/apache/flink/api/common/functions/Partitioner.html
https://ci.apache.org/projects/flink/flink-docs-master/api/java/org/apache/flink/api/common/functions/Partitioner.html

5.3. Linear Road

over a sockets-based protocol performing data exchange in a simple JSON format. Redis

uses a hash-based sharding scheme based on CRC-32 to distribute data across multiple

instances across nodes [33]. The Redis partitioning method differs from the native Flink

partitioning scheme. Although Amoeba could make use of database repartitioning as an-

other adaptation mechanism, we have not implemented it in this context. However, ways

to dynamically repartition a scalable KVS have been studied in the past [99].

Our prototype offering the above described functionality can support a wide range of

experimental scenarios (§5.4).

5.3 Linear Road

To support our evaluation of Amoeba under a complex stream-processing application, we

selected Linear Road [52], an extensively used performance evaluation benchmark [180].

Linear Road simulates a tolling system on expressways of a metropolitan area based on

variable pricing, i.e., tolls calculated based on dynamic factors such as traffic congestion

and accident proximity. Linear Road processes position reports emitted periodically by

every vehicle containing its position and speed on an expressway. Besides continuously-

evaluated toll pricing and accident detection, the benchmark is also designed to answer

historical queries (e.g., account balance and estimations of travel time) that are issued less

often.

While Linear Road has been implemented in the past [52, 115], no existing implemen-

tation satisfied all requirements we had in this work, namely: (1) Implementation and the

underlying platforms to be available as open-source; (2) able to store and manage shared

tables in an external database or a key-value store; (3) fully leveraging stream-processing

capabilities of the underlying platform (in our case, Flink), e.g., using sliding window oper-

ators where appropriate rather than ad-hoc management of internal state; (4) be as faith-

ful as possible to the original benchmark specification [52]. Since no existing implementa-

tion available to us satisfied all requirements, we decided to develop our own [154]. In the

process this helped us better understand the benchmark’s internals and to better relate

to and explain our results. In Section 5.3.2 we describe Linear Road’s use of internal and

113

Chapter 5. Amoeba: Aligning Stream Processing Operators with Externally-Managed
State

externally-managed state, namely ephemeral operators state (e.g. window buffers) that

are used to produce the application output vs. state of broader interest (such as historical

table data) even beyond the streaming job that should be accessible outside of the SPS.

We also implemented our own data generator that connects to a scalable data inges-

tion service (Kafka) eliminating the need for a separate data driver that reads data files

and delivers it to the SPS. Our generator also supports additional configuration options,

such as number of expressways, duration of the simulation, and number of vehicles in ev-

ery expressway. As we want to produce a high volume of simulation data and stress-test

the SPS, our data generator ensures that there are always 1000 vehicles per expressway by

default, reporting their position every second (new vehicles enter a random segment when

a vehicle leaves the metropolitan area). We plan to make our Linear Road implementation

and data generator available as open source to the community.

5.3.1 Linear Road dataflow graph

In this section we describe our implementation of Linear Road on the Flink SPS, following

published benchmark specifications [52]. We first implemented a data generator follow-

ing the specification of the traffic simulator that is able to produce synthetic data and load

them into Kafka. Flink applications are event-time aware, i.e., each element in the stream

needs to have its event timestamp assigned. In our implementation we extract the simu-

lation time field of each event and use Flink’s TimestampAssigner and WatermarkStrategy

API to mark tuples in the stream [12].

Figure 5.4 depicts the application as a dataflow graph. Operators are annotated with

their type (filter, map, window, etc.) and a name that describes their functionality. Sev-

eral operators access external state on an externally-managed store (KVS) as shown on the

right of Figure 5.4 (in Section 5.3.2 we describe the state management needs of the appli-

cation). The application ingests events from a Kafka topic and deserializes the raw data

into structured event objects through a FlatMap operator (named deserialize). Next the

stream splits into two substreams based on the event type, position report (event Type 0)

or historical query (event Type 1). In what follows we describe the Linear Road application

114

5.3. Linear Road

Kafka
Connector

Flat
Map

Filter Map

Filter Flat
Map

Map

Window
Partition

on vidType = 0

Deserialize VehicleStatus

Toll

crossing

Accident
Manager

SegStats

Flat
Map

Partition
on segID

Filter
Type = 1

Account Balance

Flat
Map

Partition
on vid

External database
(KVS)

Figure 5.4: Linear Road dataflow graph

through the workings of its key operators: VehicleStatus, AccidentManager, SegStats, Toll,

and AccountBalance.

VehicleStatus operator: The position report events sub-stream (upper sub-graph of

Figure 5.4) accounts for 99% of all generated events. The stream is partitioned based on

the vehicle ID (vid) that emitted the position report, and following that, the VehicleSta-

tus operator identifies the status of the vehicle: moving, stopped, or crossing segment. A

vehicle is considered as stopped if four consecutive position reports indicate exactly the

same position identified by the triplet (xway, segment, position within the segment). To

identify the status of a vehicle, the VehicleStatus operator maintains in its internal state

the previous position of the vehicle. The internal state of the operator is maintained using

Flink’s embedded state management system as the lifecycle of the state is coupled with

the operator’s lifecycle (ephemeral state) and there is no need for sharing that state with

other operators (more details on state management in §5.3.2). The operator marks the

corresponding fields in the tuple accordingly and forwards it to its downstream operators.

The output stream of the VehicleStatus operator is partitioned based on the segment ID

(segID). VehicleStatus has three downstream operators consuming its output.

AccidentManager operator: The AccidentManager operator discovers accidents that

occurred or cleared in the segment. An accident occurs when two stopped vehicles emit

reports at the same position at the same time. For every stopped vehicle, the operator ac-

115

Chapter 5. Amoeba: Aligning Stream Processing Operators with Externally-Managed
State

cesses the external database to check whether there is already another stopped vehicle in

the segment and reports a new accident. If this is the first stopped vehicle of the segment,

the operator updates the database accordingly. For every vehicle marked as ”started mov-

ing”, i.e. a vehicle that previously had been marked as stopped, now reports a new position

indicating it has started moving, the AccidentManager updates the external database in or-

der to clear the accident involving the vehicle.

SegStats operator: The application updates the statistics of each segment of the metropoli-

tan area. The statistics include the number of unique vehicles and the average speed of the

moving vehicles in the segment in the last 5 minutes. The statistics are updated on a per-

minute basis and are used to determine toll charges according to the variable tolling sys-

tem. We use a 5-minutes sliding window that slides every 60 seconds emitting its output

to the downstream operator, SegStats to update the external KVS. We use the Flink API to

build a custom process window function for the computation. Process functions in Flink

come at the cost of a surge in performance and resource consumption when the window

closes. The reason behind this is that the elements cannot be incrementally aggregated.

Instead tuples are stored in the window’s internal buffers as they arrive until the window

is considered ready for processing (i.e. when the window trigger fires every 60 seconds).

To avoid a spike in resource consumption when the window closes, we combine the

process function with a custom aggregate function that incrementally aggregates elements

as they arrive in the window, using the corresponding API. However, the aggregate func-

tions do not provide information about the window start and end times, which is needed

to update the external database with the statistics. Combining the process and aggrega-

tion functions allows us to have incremental computation and access to metadata about

the window as the process function will be provided with the aggregated result when the

window closes.

Toll operator: For position reports marked as crossing, i.e. the position report indi-

cates that the vehicle enters a new segment, the Toll operator dynamically calculates toll

charges based on segment statistics and proximate accidents according to the variable

tolling system [52]. The operator gets the information by accessing the external database.

Finally the Toll operator notifies vehicles for the charges and updates the account balance

116

5.3. Linear Road

of the vehicle in the database.

AccountBalance operator: Type 1 queries are events indicating that a vehicle requests

its account balance. The corresponding account balance operator accesses the database

and notifies the vehicle accordingly (bottom of Figure 5.4). Similar to the Aurora imple-

mentation of Linear Road [52], we did not implement travel-time estimation queries and

input for this type of query is ignored.

5.3.2 Linear Road state

Linear Road processes continuous queries and historical queries. According to the specifi-

cation of the benchmark [52], historic data are usually loaded offline into a storage facility

of choice. In processing a historical query request, the system reports an account balance,

a total of all assessed tolls on a given expressway on a given day, or an estimated travel

time and cost for a journey on an expressway. Historic data should naturally be stored in

an external store, accessible and able to be updated by the SPS. The external data store

being a different system from the SPS also allows data to have a lifecycle that is decoupled

from that of the stream-processing job, namely historical data could predate the process-

ing job and should be available after the end of it. In addition, the external store allows

sharing of information across multiple applications/systems. This is a common practice

in production environments where multiple systems involved in real-time data process-

ing including SPSs and data stores (§5.1). The lifecycle of such data should not be tightly

coupled with the lifecycle of a single processing task or job.

The variable tolling system simulated in Linear Road dynamically calculates toll charges

based on the current segment statistics (e.g. number of vehicles, average speed of moving

vehicles, accidents etc.). Statistics are generated by a window operator as described in

Section 5.3.1. Usually such statistics provide useful insights about the metropolitan area

and are often used by multiple systems and applications (e.g. reporting and visualization

tools). In our Linear Road implementation we use an external data store to support the

sharing and exposure of useful information (such as statistics) across operators and mul-

tiple systems. Similar design principles were applied by Jain et al. [115] and others [160].

117

Chapter 5. Amoeba: Aligning Stream Processing Operators with Externally-Managed
State

Redis table Updated by Read by

Segment stats AccidentManager, SegStats Toll

Account balance Toll AccountBalance

Table 5.1: Linear Road external state and its consumers

For operator state that is not shared across operators or between processing jobs and

whose lifecycle is coupled to the lifecycle of the operator, there is no need to use an exter-

nal store (e.g., operator VehicleStatus described in Section 5.3.1).

In our implementation of Linear Road we use Redis as an external key-value store. After

breaking down and analyzing the semantics of Linear Road state we decided to use two

separate Redis tables (summarized in Table 5.1). The first table stores segment statistics,

such as number of vehicles, average velocity, and the occurrence of accidents. This table

is updated periodically by two different operators, Accident Manager and SegStats and is

read by the Toll operator, which calculates the dynamic toll charges. Operator instances

processing the same substream partitions should be placed on the same node to maximize

the benefit of alignment. Flink does this by default in our deployments.

The second Redis table stores the account balance of each vehicle. This structure is up-

dated by the Toll operator and used by the Account Balance operator to answer the corre-

sponding query. These operators consume different substreams, partitioned by different

keys. The corresponding operator instances may be placed on different nodes by the SPS.

This is the case where multiple operators that access the same data partition are placed on

different physical hosts. In this case, Amoeba opts to co-locate the table with the operator

that performs the most frequent access to it, determined based on monitoring data (in this

case, the Toll operator).

5.4 Evaluation

Our evaluation was carried out on the Amazon EC2 cloud. The resources used are sum-

marized in Table 5.2, with all VMs allocated in AWS region us-east-1. Our Linear Road

application ingests data from a 3-node distributed Kafka service deployed on 3 r5ad.large

118

5.4. Evaluation

#VMs VM type #vCores DRAM SSD

Kafka cluster 3 r5ad.large 2 16GB 75GB

Flink Job Mgr 1 c5d.large 2 4GB 50GB

Flink Task Mgr 1-64 c5d.xlarge 4 8GB 100GB

Table 5.2: AWS VM types used in our evaluation

VMs. These nodes also host our data generator. The Kafka topic which Linear Road sub-

scribes to is configured with 64 partitions. The Flink cluster deployment consists of a Flink

Job Manager, hosted on a c5d.large EC2 server and up to 64 c5d.xlarge nodes hosting Flink

task managers. Each node used for the task managers also hosts a Redis instance, part of

the Redis cluster. All selected nodes support up to 10 Gbps of network bandwidth.

In this section we evaluate the performance improvements in various Linear Road de-

ployments and scenarios achieved by Amoeba adaptation actions. In particular, in Sec-

tion 5.4.1 we focus on the impact of unaligned SPS-KVS platforms and demonstrate that

the throughput per node gets worse (if not aligned) with scale from 1 to 64 nodes. In Sec-

tion 5.4.2 we evaluate the impact of alignment (vs. random placement) in deployments of

the SPS and KVS platforms ranging from 1 to 64 AWS nodes. In Section 5.4.3 we focus on

the dynamic alignment between SPS and KVS deployed on the same nodes and demon-

strate the speed at which performance benefits are realized over time. In Section 5.4.4 we

examine a scenario where SPS and KVS are initially deployed on different nodes and thus

Amoeba needs to trigger data migration to co-locate them prior to aligning partitioning

schemes. Finally, in Section 5.4.5 we evaluate Amoeba’s support for coordinating elasticity

actions: From an originally co-located and aligned setup, the SPS triggers an elasticity ac-

tion. To restore an optimized configuration, Amoeba will trigger a matching KVS elasticity

action, followed by partition alignment.

We carefully instrument each operator of the application graph (Figure 5.4) to measure

the throughput (processed tuples per second) and operators processing latency. The latter

metric refers to the duration from the time a tuple enters the operators’ processing task un-

til the corresponding output is produced. For operators accessing external state, process-

ing latency includes the cost of (local or network) data access to the KVS. Our evaluation

119

Chapter 5. Amoeba: Aligning Stream Processing Operators with Externally-Managed
State

4-nodes 8-nodes 16-nodes 32-nodes 64-nodes

24.36% 12.82% 6.04% 3.09% 1.71%

Table 5.3: Local-hit rate per node for different cluster sizes

focuses on the Toll operator, as it is the most heavily-loaded task accessing the external

database, and on the critical path of the application. We thus consider it representative of

overall application performance.

All reported results are the average of at least 5 runs of each experiment with a standard

deviation of <1%.

5.4.1 Unaligned access gets worse with scale

In this section we study the data access pattern from the Flink processing task to Redis

data store partitions. In contrast to the previous sections where we reported the aggregate

throughput for all Toll operator instances, we now focus on each individual node of the

cluster. Each Toll operator instance, hosted on a different node, issues data requests to Re-

dis. Each request can be served by the local (co-located with the Flink task) Redis instance

or by a remote instance hosted on another node in the cluster. We define the local-hit

rate metric as the percentage of the total data-requests issued by an operator instance

towards Redis that are served by the local Redis instance. Without proper partition align-

ment through Amoeba, partitions are randomly placed across cluster nodes. While each

system may individually achieve good load balance, lack of coordination leads to high re-

mote access penalizing overall performance. In this section we study the distribution of

data requests of a single node across all Redis instances and its performance impact.

Both systems use a hash-based approach in their partitioning scheme which is very

popular in many modern data processing systems. Flink’s method is based on MurmurHash

algorithm while Redis uses a CRC-32 based algorithm. Table 5.3 shows the average local-

hit rate per node for different cluster sizes. The local-hit rate closely follows the 1/N prob-

ability distribution with N the number of Redis instances (equivalent to the cluster size).

Figure 5.5 depicts the correlation of the per node local-hit rate and per node through-

120

5.4. Evaluation

 0

 1000

 2000

 3000

 4000

 5000

 0 5 10 15 20 25

64-nodes

32-nodes

16-nodes

8-nodes

4-nodes

T
h
ro

u
g
h
p
u
t
p
e
r

n
o
d
e
 (

tu
p
le

s
 /
 s

e
c
)

Local-hit rate per node

Figure 5.5: Clusters with more nodes result to lower local-hit rate affecting the
throughput per node. Clusters with more than 16 nodes are close to the
worst case where almost all requests are served by remote KVS instances

put for different cluster sizes. While the aggregate throughput increases as the system

scales (Figure 5.7), the data requests of each processing task that happen to be served by

the local Redis instance decrease in inverse proportion to the cluster size, penalizing the

performance of each node. As more Redis instances join the cluster, the probability of

hitting the local instance decreases even more. However, scaling beyond 16 nodes does

not seem to reduce per node throughput further as the local-hit rate is already close to the

worst-case scenario where nearly all requests are served by remote Redis instances.

In contrast, aligning systems through Amoeba results in 100% local hit rate, leading to

high performance of each node.

5.4.2 Benefits of alignment

To evaluate the performance overhead of remote data access we first deploy the applica-

tion with parallelism one, where each operator is deployed as a single instance (single

121

Chapter 5. Amoeba: Aligning Stream Processing Operators with Externally-Managed
State

 0

 2000

 4000

 6000

 8000

 10000

Th/put

2.1x

T
h

ro
u

g
h

p
u

t
(T

u
p

le
s

/
se

c)
remote

local

Latency
 0

 50

 100

 150

 200

 250

-56%

L
at

en
cy

 (
m

ic
ro

se
c)

Figure 5.6: Single-partition deployment. Improving data locality results to 2.1x higher
throughput and 2.2x lower processing time on Toll operator

partition). Redis is also deployed in standalone mode (single node), either on the same

node as Flink (local) or on a different node (remote). Figure 5.6 depicts the throughput

of the Toll operator in the local vs. remote cases. Co-location leads to a 2.1x speedup in

throughput. Figure 5.6 shows also the latency (processing time) of the Toll operator, which

includes the computation as well as the cost of data access. Co-location leads to 56% lower

latency compared to remote data access, avoiding the cost of a network round trip. The

base network latency is measured at 11.25μs using qperf 6.

Next we examine the impact of local vs. remote access to Redis tables in scaled deploy-

ments of 4 to 64 AWS nodes. Each processing operator is partitioned to multiple instances

and each instance is assigned a non-overlapping key range. Each node hosts a Flink task

manager and a Redis instance, with each Flink operator instance and Redis partition in-

stance hosted on a separate node. By default each system follows its own partitioning

scheme and partition assignment method across nodes in the cluster. This leads to cross-

talk communication over the network as some of the data requests are served by the local

(co-located) Redis instance while others are served by remote Redis instances (the proba-

6https://github.com/linux-rdma/qperf (retrieved September 2021)

122

5.4. Evaluation

0*10
0

100*10
3

200*10
3

300*10
3

400*10
3

500*10
3

600*10
3

4 8 16 32 64

1.9x
2.4x

2.6x

2.4x

2.5x

T
h
ro

u
g
h
p
u
t

(t
u
p
le

s
/

se
c)

Parallelism (instances of each operator)

random
local

Figure 5.7: Throughput of Toll (map). Amoeba improves overall throughput consis-
tently for cluster sizes 4-64 AWS nodes

bility of local access is inversely proportional to the number of partitions). Figure 5.7 de-

picts the aggregated throughput of all Toll operator instances as we scale our deployment

from 4 to 64 nodes. The figure compares the unaligned case (random) where each system

uses its own partitioning scheme and partition placement across nodes, to the system re-

sulting from Amoeba partition-alignment (local), re-assigning Flink processing partitions

to operator instances across nodes. We observe that Amoeba coordination more than dou-

bles the achieved throughput in all cases, reaching up to 2.6x improvement. This experi-

ment provides evidence that partition-alignment benefits persist with increasing cluster

sizes.

5.4.3 Dynamic alignment of partition schemes

In this section we demonstrate the ability of Amoeba to dynamically adapt SPS-KVS key

routing based on the partitioning schemes it dynamically receives by the Coordinator. The

123

Chapter 5. Amoeba: Aligning Stream Processing Operators with Externally-Managed
State

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 20 40 60 80 100 120

T
h

ro
u

g
h

p
u

t
(t

u
p

le
s
 /

 s
e

c
)

Timeline (sec)

node 1
node 2
node 3
node 4
node 5
node 6
node 7
node 8

Aggregate

Figure 5.8: Dynamic adaptation: our adaptive SPS partitioner contacts the Amoeba
coordinator and applies its alignment plan improving the throughput dur-
ing the run

Coordinator periodically probes the Flink Job Manager and Redis instances in the cluster

to discover the partitions of each system and their distribution within the cluster. Amoeba

applies its aligning actions whenever it discovers opportunities to improve data locality.

For the sake of this demonstration we configure our adaptive partitioner to contact the

Coordinator for the first time 60 seconds into a run (to demonstrate the impact of adapta-

tion actions during the run) with a Flink-Redis deployment over 8 AWS nodes. Figure 5.8

presents the performance improvement achieved as the adaptive partitioner effects the

optimal alignment between systems at run time. Sixty seconds into the run we see a 2.4x

improvement on the aggregated throughput as well as on the throughput per node in the

8-node cluster. Note that adaptation is seamless, exhibiting no downtime.

Eliminating the cost of data access over the networks, results in higher processing rate

of its input queue and routing its output to the downstream operator. Figure 5.9 depicts

the amount of data transferred in and out of a single node of the cluster and the CPU

124

5.4. Evaluation

 10

 15

 20

 25
 30

 35

 40

 20 40 60 80 100 120

T
h
/p

u
t
(M

B
/s

) out
in

 0

 20

 40

 60

 80

 100

 20 40 60 80 100 120

%
 C

P
U

 u
s
a
g
e

Timeline (sec)

%usr + %sys

Figure 5.9: Network traffic and CPU utilization of a cluster node. Alignment improves
resource utilization

utilization (user and system level) before and after the alignment of the systems. As the

node is able to improve its processing capacity, it exhibits higher resource utilization. All

nodes in the cluster show similar resource usage trends to that depicted in Fig. 5.9.

5.4.4 Combining alignment with data migration

The Amoeba coordinator takes into account topology (placement) metadata of both sys-

tems and possible constraints and generates an alignment plant to improve overall per-

formance (Section 5.2). When systems are co-located in the same set of nodes or if the

system is allowed to move the processing tasks on the nodes hosting the KVS, the adap-

tation is seamless as it usually requires little data migration across nodes. However, this

is not always the case. Here we demonstrate a scenario where the SPS operators and the

KVS partitions are deployed on a disjoint set of nodes, and the nodes hosting the data

125

Chapter 5. Amoeba: Aligning Stream Processing Operators with Externally-Managed
State

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 40 50 60 70 80 90 100 110 120

T
h

ro
u

g
h

p
u

t
(t

u
p

le
s
 /

 s
e

c
)

Timeline (sec)

node 1
node 2
node 3
node 4

Aggregate

Figure 5.10: An alignment plan that includes data migration. Amoeba first migrates
data closer to the processing tasks, then aligns the partitioning scheme
without any downtime

(KVS) are dedicated storage nodes, thus not a target for placing or migrating processing

tasks. Therefore in this case the only option to achieve alignment (locality) is to move KVS

data partitions onto the nodes hosting stream-processing tasks. This experiment focuses

on the 4 nodes that are initially hosting only SPS partitions.

Our Redis driver allows data migration to the SPS nodes without any noticeable ser-

vice disruption by leveraging Redis data-replication mechanisms (available in many other

KVSs). To realize an alignment plan that migrates KVS data close to SPS operators, Amoeba

creates new Redis follower replicas (termed slaves in Redis) on nodes hosting SPS tasks,

and performs state transfer to bring these new replicas up to date. As soon as follow-

ers catch up with primaries, Amoeba triggers a primary-switch [152] promoting followers

to primaries. Having both processing tasks and data shards co-located on the same set

of nodes, the next step of the adaptation plan is to align the SPS partitioning scheme to

achieve locality in data access, as demonstrated in Section 5.4.2.

126

5.4. Evaluation

Figure 5.10 depicts the dynamic adaptation of the system in this scenario. To clearly

demonstrate the impact of each alignment step (data migration, then partition-scheme

alignment) we configured the Amoeba coordinator to start the alignment process 60 sec-

onds into the run and space alignment actions 30-seconds apart. Starting the experiment

using a different set of nodes for processing operators and KVS partitions (interval 0-60

sec), requests are served by remote Redis instances incurring a performance cost for data

accesses to external state over the network. At 60 seconds, the Amoeba coordinator cre-

ates the alignment plan based on the topology metadata and instructs the Redis driver to

create follower replicas on the SPS nodes according to the plan.

In the interval 60-90 seconds, follower nodes catch up with their primaries, and are

then promoted to primaries and start serving requests. There is no service disruption dur-

ing this period, in fact we observe a 23% higher throughput as some of the data requests

are served by a co-located Redis instance (in Section 5.4.1 we saw that local-hit rate is

non-zero even without partition alignment in the systems). However the performance

can be further improved: The final step of the plan is realized 90 seconds into the run,

when our Flink partitioner adapts its partitioning scheme according to the plan, leading

to 100% local-hit rate improving overall performance by 2x compared to the co-located

but unaligned Redis instances (consistent with the results reported in Figure 5.7) or 2.38x

compared to the case of remote Redis nodes.

5.4.5 Coordinating elasticity actions

Amoeba continuously strives to achieve alignment of elasticity actions between SPS and

KVS to preserve locality achieved in previous configurations. Here we demonstrate a sce-

nario where Amoeba notices a change in a fully aligned system that is stired by an elasticity

action decided and effected by the SPS. Amoeba will then respond by triggering a corre-

sponding action for the KVS and then re-adjust the SPS partitioning scheme to restore

data locality.

The initial configuration includes 3 nodes, each hosting a Flink task manager and a

Redis instance. For the sake of demonstration we intentionally space adaptation actions

127

Chapter 5. Amoeba: Aligning Stream Processing Operators with Externally-Managed
State

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 50 100 150 200 250

T
h

ro
u

g
h

p
u

t
(t

u
p

le
s
 /

 s
e

c
)

Timeline (sec)

node 1
node 2
node 3

node 4
Aggregate

Figure 5.11: Amoeba matches elasticity actions of the SPS with corresponding actions
in the KVS to maintain alignment

60 seconds apart. Figure 5.11 depicts the different stages of a run and the impact of align-

ment steps triggered by Amoeba. The experiment starts with 3 nodes (0-60 sec), with no

coordination between systems, with each system using its own partitioning scheme and

placement policy, achieving a throughput of about 17,000 tuples/sec. At 60 seconds the

Amoeba coordinator aligns the key-partitioning scheme of the SPS to that of the KVS, im-

proving overall performance in the 3 node-cluster to 27,000 tuples/sec (60-120 sec).

Next at about 130 seconds, an elasticity controller7 of the SPS (external to Amoeba)

triggers a reconfiguration action, scaling the SPS to 4 cluster nodes (Figure 5.11). This elas-

ticity action is effected on the Flink streaming job by externally triggering a savepoint (a

consistent image of the execution state of a streaming job [15]), then stopping and restart-

ing the job from that savepoint with a new parallelism property. During its elasticity ac-

tion (130-137 seconds in Figure 5.11), the SPS stops processing tuples. Right after the job

resumes processing, the system achieves about 21,000 tuples/sec. Amoeba automatically

7The nature of such a controller is beyond the scope of our work

128

5.5. Summary

discovers that the new Flink configuration disrupts the locality achieved by previous ac-

tions. To re-align the SPS and KVS it first triggers a reconfiguration action on the KVS, cre-

ating a new Redis instance on the new node, and then triggers a background rebalancing

action on the Redis cluster. The rebalancing action does not result in measurable down-

time as Redis can serve requests while there are active data migrations. When the rebalanc-

ing action is over, the system reaches a stable state where both systems have a processing

operator and a KVS instance on each node. In the last step of the alignment plan, Amoeba

instructs the SPS adaptive partitioner to apply the new partitioning scheme improving the

overall system performance (at around 190 seconds), reaching about 35,000 tuples/sec.

Note that had Amoeba actions not been spaced for demonstration, the throughput in-

crease would have happened much more rapidly.

Figure 5.11 also depicts that without coordination, the per node throughput is affected

by the cluster size, i.e. the per node throughput for the 4-node cluster (135-190 seconds)

is lower than the 3-node cluster (0-60 seconds) (as analyzed in Section 5.4.1). Amoeba

discovers changes in the topology and produces alignment plans to preserve locality, re-

sulting in high throughput and stable per-node performance.

As Amoeba’s actions overlap in time with actions of external management systems,

such as the elasticity controller in this experiment, a controller should be aware (via a dis-

tributed policy coordination solution [77]) that Amoeba adaptation actions are in progress

and factor-in their delay when probing the effect of its actions in its control loop.

5.5 Summary

In this chapter we presented a broad investigation of the benefits of Amoeba, a system

we designed and implemented for exploiting data locality between processing tasks (SPS)

and external state (KVS) via dynamic adaptivity actions (appropriate data or task place-

ment, data or task migrations, alignment of partitioning schemes, and coordination of

elasticity actions). Our experimental evaluation of Amoeba coordinating various deploy-

ments of Flink and Redis executing the Linear Road application, demonstrate significant

(up to 260%) performance improvements in large-scale setups of up to 64 AWS nodes by re-

129

Chapter 5. Amoeba: Aligning Stream Processing Operators with Externally-Managed
State

ducing cross-talk between processing tasks and the corresponding external state over the

network. To the best of our knowledge, dynamic adaptation to achieve collocation in this

context has not been explored in previous work. Control over data placement may at times

require adaptation actions requiring state redistribution, as in elasticity actions involving

stateful operators. In our ongoing work we are pursuing the integration and coordination

of efficient elasticity mechanisms for KVSs and SPSs [87,112,151,191] in SPS-KVS systems

managed by Amoeba. We are also exploring the integration of Amoeba into elasticity con-

trollers to achieve concerted actions. Where integration is not feasible or impractical, we

will explore techniques proposed in the context of autonomic computing [77] for the dis-

tributed coordination of resource management policies.

130

Chapter 6
Impact of technology improvements

on the proposed methods

Ever since mankind invented computing devices, technology evolves and computing sys-

tems get ever more advanced. Advances in computer hardware since at least the 1960s

have enabled the evolution of data management from paper-based manual processing

to modern data management systems. This progress in the capabilities of hardware re-

sources is expected to continue in the future. Technology advances are expected to im-

prove the performance of data stores and aid their capacity to support big-data processing,

via more storage capacity, faster access to persistent storage devices, higher processing

power for storing and retrieving data, and faster and more efficient network data trans-

fers [59]. In this chapter we discuss how technology evolution and trends may affect the

challenges we focus on in this dissertation and impact the adaptation mechanisms we

study.

6.1 Incremental elasticity

The data store expansion actions we studied in Chapter 2 involve network data move-

ments across nodes. In preparation of such network transfers, we often observe significant

I/O activity to prepare the data to be shipped. The evolution of storage technology espe-

131

Chapter 6. Impact of technology improvements on the proposed methods

cially on the storage devices (such as Flash-based disks and I/O interfaces (e.g. NVMe [30]),

which will allow high I/O throughput and lower data access latency data transfers, is ex-

pected to reduce I/O overhead in elasticity actions. High-speed network communication

(such as InfiniBand [19]) will also allow for faster and lower-overhead data transfers. Net-

working with minimal processing requirements (such as RDMA [34]) would reduce the

processing cost of data transfers on both senders and receivers. In addition, we expect

significant growth in the per-node processing capacity, even on storage-optimized nodes.

While technology advances are expected to improve data-transfer speeds and to reduce

overheads, there are two factors that support the projection that the conclusions of the the-

sis are expected to persist in the future: First, the amount of data maintained by the data

stores is expected to be ever-increasing, keeping pace with the expected growth in storage,

processing, and networking capacity. Second, one of the key observations and benefits

in the incremental elasticity technique, namely the ordering of data transfers such that

the joining nodes benefit the system as early as possible is still expected to be valid. The

combination of lower-overhead data transfers and more processing capacity available at

joining nodes strengthens the promise of incremental elasticity, providing additional ben-

efits from early serving of data while network transfers are still in progress.

6.2 Replica-group reconfiguration

In Chapter 3 we studied the impact of internal data reorganization and garbage collection

tasks, as well as external background activities such as data backup actions, on the perfor-

mance of replicated data stores. Such background tasks pose high CPU and I/O overheads

on the data stores. Projected improvements in the processing power and/or on the perfor-

mance and overhead of the I/O path is expected to be matched by the anticipated growth

in the amount of data stored, maintaining a sizeable performance impact due to such ac-

tivities. Thus we believe that the proposed replica-group reconfiguration technique would

not be significantly impacted by technology advances in terms of processing, I/O and net-

working, and remain a key adaptation technique to mask the performance overhead of

background activities.

132

6.3. Improving data locality when accessing external state

In Chapter 3 this dissertation further contributes a mechanism for maintaining fresh

read caches in non-read-serving replicas, and demonstrates that the performance benefit

indeed depends on storage technology (SSD vs. hard disk) as measured in recovery time

(time to recover to the pre-reconfiguration performance, Section 4.3). Disruptive technol-

ogy advances that could bridge the performance gap between volatile memory and persis-

tent storage (such as Intel Optane [20]) promise to change the landscape in the memory-

storage hierarchy, significantly reducing the memory-storage performance gap. In this

case, the impact of the mechanism for maintaining fresh read caches in non-read-serving

replicas that was proposed in Chapter 3 may be reduced.

6.3 Improving data locality when accessing external state

In Chapter 5 of this dissertation we built upon the idea that co-location of the process-

ing tasks and data-store partitions can reduce the latency of accessing external state and

thus improve overall performance. We address the need to achieve such co-location and

to maintain it through independent changes within inter-dependent distributed middle-

ware systems via data migration, data replication, and data partitioning mechanisms. The

benefits achieved through these contributions fundamentally rely on the performance gap

between local and remote (network) communication, assuming data are already in mem-

ory (as is typically the case when using in-memory data stores, such as Redis). Projected

improvements in high speed, low latency networking may reduce the cost of remote data

access, especially if one takes into account a possibly slower growth in local-memory ac-

cess speeds. However, baring disruptive technologies that could introduce drastic changes

to network communication (especially in the host and network interface components, as

these typically dominate latency in high-performance networks), we expect that the local

vs. remote network communication performance difference is expected to persist in the

future, sustaining the impact of the contributions described in Chapter 5.

133

134

Chapter 7
Conclusions

Large-scale distributed data stores are essential building blocks of modern application ser-

vices, persisting and managing application state. Such systems have evolved considerably

in recent years along several directions, leading to a number of different data stores pro-

posed and available today. This dissertation focuses on the ability of such systems to adapt

so as to keep up with internal or external changes they face, posing different performance

challenges over their lifecycle. In this dissertation we specifically study a range of chal-

lenges a data store faces and propose novel adaptation mechanisms and improvements

to existing such mechanisms to avoid performance impact and sustain service-level ob-

jectives. The dissertation addresses performance challenges over data-store adaptation

actions during internal or external changes, which had not been addressed so far. The

contributions of this work are primarily driven by the need to sustain or improve system

performance through optimizations that mask overheads, allowing systems to quickly and

smoothly adapt to changes. The mechanisms contributed in this thesis are orthogonal to

and do not affect other system aspects such as data availability, durability or consistency.

Distributed data stores face an additional burden over stateless distributed systems

during changes in system configuration, in that they have to rebalance large amounts of

durable data by migrating them across nodes during elasticity actions. In this dissertation

we study the efficiency of such elasticity actions and challenges in rapidly and efficiently

expanding capacity, which had not been addressed so far. In Chapter 2 we identified per-

135

Chapter 7. Conclusions

formance overheads that can hurt overall performance during data movements. Thus, the

store often fails to achieve its performance-oriented goals while transitioning to the new

configuration. This dissertation advances the state of the art closer towards truly elastic

distributed data stores. In Chapter 2 we proposed incremental elasticity, a new mecha-

nism that orchestrates data movements ensuring that there are fewer nodes involved in

network transfer at any time, reducing the overall performance drop during elasticity. As

there is a trade-off between the total duration of the elasticity action and its impact, our

mechanism ensures that the system progressively benefits by increasing its capacity dur-

ing the reconfiguration. We perform fine-grain data movements ensuring that as soon as

a transfer is over, the associated data are becoming available for access on the new node,

while a subsequent transfer of data takes place. Overall, the system can effectively get ca-

pacity improvements earlier while the performance impact is lower. This is complemen-

tary to solutions that study the provisioning and capacity planning of the system.

This dissertation also contributes to more stable data store performance. In Chapter

3 we studied different internal and external sources of performance overheads that result

in performance variability. As these actions cannot always be avoided or postponed for

too long, they cause significant I/O activity and corresponding CPU overhead. When they

happen and depending on their severity, a system may occasionally fail to sustain the ex-

pected service-level performance objectives. In Chapter 3 we proposed a lightweight adap-

tation action that allows replica-group members to dynamically change roles (i.e. primary

replica, secondary replica) to hide the performance bottlenecks imposed by data store’s in-

ternal and external background tasks, thus reducing performance variability. Even though

other solutions, such as single-node data structure optimizations, may offer alternative

ways to approach this problem, this dissertation explored replica-group reconfiguration

as complementary to solutions that may offer single-node performance improvements.

Replica-group reconfiguration actions occur for many reasons such as performance

enhancements (as we described in Chapter 3) but also due to failures, load balancing and

workload migration. In the course of studying replica-group reconfiguration actions, we

observed a performance glitch that, although small relative to the impact of the challenges

addressed in Chapter 3, nevertheless could have a lasting performance hit in certain cases.

136

Starting from the observation that under certain circumstances practical replicated sys-

tems restrict reads to a few replicas (typically one) to optimize for read-dominated work-

loads, secondary replicas cannot fetch up-to-date contents into their own cache. During

reconfiguration, unprepared replicas suffer from a high cold-cache effect leading to high

latency spikes and throughput drops for significant amounts of time (several minutes).

Chapter 4 studied in depth the performance impact of this observation in replicated data

stores. The proposed solution results in smoother replica-group reorganization actions,

allowing the system to seamlessly transition to a new configuration.

In the course of this dissertation we also observed that an inefficient data-access path

between the application and data-persistence (storage system) tier in multi-tier architec-

tures, forcing expensive network communication between them, can critically affect over-

all system performance. This dissertation contributes novel adaptation processes to achiev-

ing efficient cross-system communication by continuously aligning data stores with dis-

tributed middleware platforms. In Chapter 5 we built upon the idea that the performance

of accessing data can be improved via co-location of the processing tasks and data parti-

tions. In this dissertation we proposed a system that pursues opportunities for data local-

ity as a means to reducing communication overheads by discovering topology metadata

across systems and adapt data distribution across nodes (either via initial data placements

or through data migrations) and aligning data partitioning schemes across systems. Coor-

dinating data stores with application middleware through dynamic partition alignment

reduces communication overheads allowing for a more efficient data-access path.

The work in this dissertation brings us closer to truly elastic data stores with lower

performance impact during system reconfiguration, while the overall data store capacity

progressively increases. Replicated data stores can mask performance overheads imposed

by internal or external background activities that are necessary for continuous system op-

eration over time, by dynamically changing the roles of replica-group members. This dis-

sertation also improved the performance of replica-group reconfiguration actions them-

selves, which under certain circumstances can result in high performance impact during

the transition to the new configuration, as some replicas engaged in the transition are im-

pacted by cold-cache effects. The results of this dissertation allow the system to transition

137

Chapter 7. Conclusions

to a new configuration without noticeable impact. Finally, our work contributes to bet-

ter alignment in the cross-system communication between application middleware and

underlying data store, systems with separate lifecycle and management policies, continu-

ously optimizing the data access path between them.

Overall, the research contributions of this dissertation advance the state of the art in

distributed data stores in the direction of systems that adapt more efficiently and in new

ways through internal and external changes in their lifecycle, making an important step

towards the long-term vision of autonomic systems.

138

Chapter 8
Directions for Future Work

Adaptation in large scale distributed data stores covers a vast research space. The focus

of this dissertation was primarily driven by the need to sustain or improve system perfor-

mance during specific internal or external changes in different phases of the lifecycle of a

data store. Due to the breadth of the research space, there are still several challenges to be

addressed. In this chapter we point to several avenues for further research work.

A basic form of adaptation is via tuning of the configuration settings or customization

knobs offered by a data store. System administrators rely on ”best practice” heuristics,

statistics or trace analysis to improve the system performance. However, this is a tedious

and time consuming process. While there has been significant work on advisors that can

tune the system based on the workload and data characteristics [45, 73] or even choosing

indexes [74,105,185] or partitioning schemes, these settings are usually fixed and do not al-

low dynamic adaptation as the system evolves throughout its lifecycle. Methods for online

adaptation of system configuration is a challenging research area.

In addition, the adaptation options are limited by the set of knobs exposed by each

specific system. Automatic and deep exploration of systems to discover system properties

that allow the customization can bring us closer to autonomous systems. We believe that

adaptation in data stores can go further allowing for adaptation of core components, such

as the internal data representations. Different data structure designs offer efficient data

access paths for specific workload characteristics [56, 113]. Modern state-of-the-art data

139

Chapter 8. Directions for Future Work

stores are designed around a fixed data structure. However, as data stores face diverse

workloads with different access patterns and requirements, they need to be able to adapt

the underlying data structures. Data stores that are flexible to accommodate multiple data

structures and dynamically adapt the storage layout and the access patterns can improve

its performance during its lifespan while the workload access pattern evolves. Materializ-

ing data into different layouts on-the-fly is a challenging task [48,55]. This is an interesting

research area that can lead to results that are complementary to those contributed by this

thesis.

In addition, specific data structures make core design choices to improve the efficiency

of data access. These choices should be driven by the access pattern the data store faces.

State-of-the-art data stores, however, build around generic and static options. Recent

work, limited to certain aspects of specific data structures (LSM-tree), has shown that the

system can improve its performance and resource usage by balancing between the cost of

updates, lookups and the storage space [83, 84].

Data stores could go even further and automatically generate a data structure design

that best fits the workload requirements [114]. This goes far beyond configuring a specific

system, as the combination of design primitives of data structures [113] could lead to cus-

tom data structures and algorithms previously unknown that could improve the systems

performance under the custom workload characteristics it serves.

Data stores can incorporate machine learning techniques to learn and discover op-

portunities for adaptation. Replacing the traditional control-flow computation with data-

dependency-focused computations will allow machine-learning methods to empower sys-

tems. Learning-based models will have more flexibility to explore trade-off and discover

tuning opportunities for significant performance gains [128,129]. Data stores can leverage

the wide adoption of specialized hardware optimized for machine learning.

The research space revolving around adaptivity aspects of distributed data stores has

offered us many exciting endeavors and is not short of more challenges, we thus encourage

further work in this space. We are looking forward to the discovery of new adaptation

mechanisms, hopefully building upon and extending the research results of this thesis,

that allow for autonomic data management systems that guarantee system performance

140

despite the large (and unavoidable) degree of variability in our evolving Internet-driven

world.

141

142

Bibliography

[1] Akamai Online Retail Performance Report: Milliseconds Are Criti-

cal. https://www.akamai.com/uk/en/about/news/press/2017-press/

akamai-releases-spring-2017-state-of-online-retail-performance-report.

jsp. Accessed: 06/2021. (Cited in Section 1.1.)

[2] Amazon DynamoDB. https://aws.amazon.com/dynamodb/. Accessed: 06/2021.

(Cited in Sections 1.3.1 and 2.)

[3] Amazon Found Every 100ms of Latency Cost them

1% in Sales. https://www.gigaspaces.com/blog/

amazon-found-every-100ms-of-latency-cost-them-1-in-sales/. Accessed:

06/2021. (Cited in Section 1.1.)

[4] Amoeba (wikipedia). https://en.wikipedia.org/wiki/Amoeba. (Accessed

06/2021). (Cited in Section 1.)

[5] Basho Riak NoSQL database. https://riak.com/products/riak-kv/. Accessed:

11/2019. (Cited in Sections 1.1, 2, 2.1, and 2.4.)

[6] Bing and Google Agree: Slow Pages Lose Users. http://radar.oreilly.com/2009/

06/bing-and-google-agree-slow-pag.html. Accessed: 06/2021. (Cited in Sec-

tion 1.1.)

143

https://www.akamai.com/uk/en/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp
https://www.akamai.com/uk/en/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp
https://www.akamai.com/uk/en/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp
https://aws.amazon.com/dynamodb/
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
https://en.wikipedia.org/wiki/Amoeba
http://radar.oreilly.com/2009/06/bing-and-google-agree-slow-pag.html
http://radar.oreilly.com/2009/06/bing-and-google-agree-slow-pag.html

Bibliography

[7] Blink: How alibaba uses apache flink. https://www.ververica.com/blog/

blink-flink-alibaba-search. (Accessed 06/2021). (Cited in Section 5.)

[8] Bootstrapping performance improvements for Leveled Compaction.

http://www.datastax.com/dev/blog/bootstrapping-performance-improvements-

for-leveled-compaction. Accessed: 06/2021. (Cited in Sections 2 and 2.3.1.)

[9] Cassandra Basics. https://cassandra.apache.org/_/cassandra-basics.html. Ac-

cessed: 09/2021. (Cited in Section 2.)

[10] Facebook RocksDB. http://rocksdb.org. (Accessed: 06/2021). (Cited in Sec-

tions 1.3.2, 2, 1.4, 3, 3.1, 3.1, and 3.2.)

[11] Falling in and out of love with DynamoDB. https://blog.0x74696d.com/posts/

falling-in-and-out-of-love-with-dynamodb-part-ii/. Accessed: 06/2021.

(Cited in Sections 1.3 and 2.)

[12] Flink event time. https://ci.apache.org/projects/flink/flink-docs-stable/

dev/event_time.html. (Accessed 06/2021). (Cited in Section 5.3.1.)

[13] Flink operators. https://ci.apache.org/projects/flink/flink-docs-stable/

dev/stream/operators. (Accessed Mar 2021). (Cited in Section 5.2.3.)

[14] Flink queryable state (beta). https://ci.apache.org/projects/flink/

flink-docs-stable/dev/stream/state/queryable_state.html. (Accessed

06/2021). (Cited in Section 5.1.2.)

[15] Flink savepoints. https://ci.apache.org/projects/flink/flink-docs-stable/

ops/state/savepoints.html. (Accessed 06/2021). (Cited in Sections 5.2.3

and 5.4.5.)

[16] Google LevelDB. https://github.com/google/leveldb. (Accessed: 06/2021).

(Cited in Sections 3 and 3.1.)

144

https://www.ververica.com/blog/blink-flink-alibaba-search
https://www.ververica.com/blog/blink-flink-alibaba-search
https://cassandra.apache.org/_/cassandra-basics.html
http://rocksdb.org
https://blog.0x74696d.com/posts/falling-in-and-out-of-love-with-dynamodb-part-ii/
https://blog.0x74696d.com/posts/falling-in-and-out-of-love-with-dynamodb-part-ii/
https://ci.apache.org/projects/flink/flink-docs-stable/dev/event_time.html
https://ci.apache.org/projects/flink/flink-docs-stable/dev/event_time.html
https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/operators
https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/operators
https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/state/queryable_state.html
https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/state/queryable_state.html
https://ci.apache.org/projects/flink/flink-docs-stable/ops/state/savepoints.html
https://ci.apache.org/projects/flink/flink-docs-stable/ops/state/savepoints.html
https://github.com/google/leveldb

Bibliography

[17] How are read requests accomplished. https://docs.datastax.com/en/

cassandra-oss/3.x/cassandra/dml/dmlClientRequestsRead.html. Accessed:

09/2021. (Cited in Section 2.3.1.)

[18] How data is distributed across a cluster (using virtual nodes). "https:

//docs.datastax.com/en/cassandra/3.x/cassandra/architecture/

archDataDistributeDistribute.html". Accessed: 06/2021. (Cited in Section 2.1.)

[19] InfiniBand Trade Association. https://www.infinibandta.org. Accessed: 09/2021.

(Cited in Section 6.1.)

[20] Intel® Optane™ Memory - Responsive Memory, Accelerated Performance. https:

//www.intel.com/content/www/us/en/products/details/memory-storage/

optane-memory.html. Accessed: 09/2021. (Cited in Section 6.2.)

[21] Keystone real-time stream processing platform at netflix. https://

netflixtechblog.com/keystone-real-time-stream-processing-platform-a3ee651812a.

(Accessed 06/2021). (Cited in Sections 1.3.4 and 5.)

[22] Leveled compaction. https://github.com/facebook/rocksdb/wiki/

Leveled-Compaction. (Accessed: 06/2021). (Cited in Sections 1.3.2, 3.1, and 3.3.1.)

[23] Mongodb. https://www.mongodb.com. (Accessed 06/2021). (Cited in Sections 1.1,

2, 1.4, 3.1, and 3.2.)

[24] MongoDB Checkpointing Issues. https://goo.gl/idyog2. (Accessed: 06/2021).

(Cited in Section 3.)

[25] Mongodb server manual: Read preference. https://docs.mongodb.com/manual/

core/read-preference/. accessed 06/2021. (Cited in Section 4.3.)

[26] MongoDB Wiki: replication internals. https://github.com/mongodb/mongo/blob/

master/src/mongo/db/repl/README.md. (Accessed: 06/2021). (Cited in Sections 3.1

and 3.2.)

145

https://docs.datastax.com/en/cassandra-oss/3.x/cassandra/dml/dmlClientRequestsRead.html
https://docs.datastax.com/en/cassandra-oss/3.x/cassandra/dml/dmlClientRequestsRead.html
"https://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archDataDistributeDistribute.html"
"https://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archDataDistributeDistribute.html"
"https://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archDataDistributeDistribute.html"
https://www.infinibandta.org
https://www.intel.com/content/www/us/en/products/details/memory-storage/optane-memory.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/optane-memory.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/optane-memory.html
https://netflixtechblog.com/keystone-real-time-stream-processing-platform-a3ee651812a
https://netflixtechblog.com/keystone-real-time-stream-processing-platform-a3ee651812a
https://github.com/facebook/rocksdb/wiki/Leveled-Compaction
https://github.com/facebook/rocksdb/wiki/Leveled-Compaction
https://www.mongodb.com
https://goo.gl/idyog2
https://docs.mongodb.com/manual/core/read-preference/
https://docs.mongodb.com/manual/core/read-preference/
https://github.com/mongodb/mongo/blob/master/src/mongo/db/repl/README.md
https://github.com/mongodb/mongo/blob/master/src/mongo/db/repl/README.md

Bibliography

[27] Mongodump. https://docs.mongodb.com/manual/reference/program/

mongodump/. (Accessed: 06/2021). (Cited in Section 3.3.2.)

[28] Mongorocls. https://github.com/mongodb-partners/mongo-rocks. (Accessed:

06/2021). (Cited in Section 3.2.)

[29] NoSQL, NewSQL and Beyond: The drivers and use-cases for database alternatives.

https://451research.com. Accessed: 06/2021. (Cited in Sections (document)

and 1.1.)

[30] NVM Express. https://nvmexpress.org. Accessed: 09/2021. (Cited in Section 6.1.)

[31] Read repair. "https://docs.datastax.com/en/cassandra/3.0/cassandra/

operations/opsRepairNodesReadRepair.html". Accessed: 11/2019. (Cited in

Section 2.1.)

[32] Redis. https://redis.io. (Accessed 06/2019). (Cited in Sections 1.1 and 1.4.)

[33] Redis cluster specification. https://redis.io/topics/cluster-spec. (Accessed

Mar 2021). (Cited in Section 5.2.3.)

[34] Remote Direct Memory Access (RDMA) over IP Problem Statement. https://

datatracker.ietf.org/doc/rfc4297/. Accessed: 09/2021. (Cited in Section 6.1.)

[35] Riak a successful failure. https://www.slideshare.net/GiltTech/

riak-a-successful-failure-11512791. Accessed: 06/2021. (Cited in Section 2.4.)

[36] Scylladb. https://www.scylladb.com. (Accessed: 06/2021). (Cited in Section 3.)

[37] The Value of a Millisecond: Finding the Optimal Speed of a

Trading Infrastructure. https://research.tabbgroup.com/report/

v06-007-value-millisecond-finding-optimal-speed-trading-infrastructure.

Accessed: 06/2021. (Cited in Section 1.1.)

[38] TPC-C. http://www.tpc.org/tpcc/. accessed 06/2021. (Cited in Sections 4.3

and 4.3.11.)

146

https://docs.mongodb.com/manual/reference/program/mongodump/
https://docs.mongodb.com/manual/reference/program/mongodump/
https://github.com/mongodb-partners/mongo-rocks
https://451research.com
https://nvmexpress.org
"https://docs.datastax.com/en/cassandra/3.0/cassandra/operations/opsRepairNodesReadRepair.html"
"https://docs.datastax.com/en/cassandra/3.0/cassandra/operations/opsRepairNodesReadRepair.html"
https://redis.io
https://redis.io/topics/cluster-spec
https://datatracker.ietf.org/doc/rfc4297/
https://datatracker.ietf.org/doc/rfc4297/
https://www.slideshare.net/GiltTech/riak-a-successful-failure-11512791
https://www.slideshare.net/GiltTech/riak-a-successful-failure-11512791
https://www.scylladb.com
https://research.tabbgroup.com/report/v06-007-value-millisecond-finding-optimal-speed-trading-infrastructure
https://research.tabbgroup.com/report/v06-007-value-millisecond-finding-optimal-speed-trading-infrastructure
http://www.tpc.org/tpcc/

Bibliography

[39] TPC-H. http://www.tpc.org/tpch/. accessed 06/2021. (Cited in Sections 4.3

and 4.3.11.)

[40] Using DynamoDB in production. https://www.dyspatch.io/blog/

using-dynamodb-production/. Accessed: 06/2021. (Cited in Sections 1.3

and 2.)

[41] Why does speed matter? https://web.dev/why-speed-matters/. Accessed:

06/2021. (Cited in Section 1.1.)

[42] Dynamic snitching in cassandra: past, present, and future. https://www.datastax.

com/blog/2012/08/dynamic-snitching-cassandra-past-present-and-future,

accessed 06/2021. (Cited in Section 4.1.)

[43] How are read requests accomplished? https://docs.datastax.com/en/ddac/doc/

datastax_enterprise/dbInternals/dbIntClientRequestsRead.html, accessed

06/2021. (Cited in Section 4.1.)

[44] Riak. load balancing and proxy configuration. https://docs.riak.com/riak/kv/2.

2.3/configuring/load-balancing-proxy, accessed 06/2021. (Cited in Section 4.1.)

[45] Sanjay Agrawal, Vivek Narasayya, and Beverly Yang. Integrating vertical and hor-

izontal partitioning into automated physical database design. In Proceedings of

the 2004 ACM SIGMOD International Conference on Management of Data, SIGMOD

’04, pages 359–370, New York, NY, USA, 2004. Association for Computing Machinery.

(Cited in Section 8.)

[46] Tyler Akidau, Alex Balikov, Kaya Bekiroglu, Slava Chernyak, Josh Haberman, Reuven

Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle. Millwheel: Fault-

tolerant stream processing at internet scale. In Very Large Data Bases, pages 734–746,

2013. (Cited in Sections 5 and 5.1.2.)

[47] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J.

Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry, Eric

147

http://www.tpc.org/tpch/
https://www.dyspatch.io/blog/using-dynamodb-production/
https://www.dyspatch.io/blog/using-dynamodb-production/
https://web.dev/why-speed-matters/
https://www.datastax.com/blog/2012/08/dynamic-snitching-cassandra-past-present-and-future
https://www.datastax.com/blog/2012/08/dynamic-snitching-cassandra-past-present-and-future
https://docs.datastax.com/en/ddac/doc/datastax_enterprise/dbInternals/dbIntClientRequestsRead.html
https://docs.datastax.com/en/ddac/doc/datastax_enterprise/dbInternals/dbIntClientRequestsRead.html
https://docs.riak.com/riak/kv/2.2.3/configuring/load-balancing-proxy
https://docs.riak.com/riak/kv/2.2.3/configuring/load-balancing-proxy

Bibliography

Schmidt, and Sam Whittle. The dataflow model: A practical approach to balanc-

ing correctness, latency, and cost in massive-scale, unbounded, out-of-order data

processing. Proceedings of the VLDB Endowment, 8:1792–1803, 2015. (Cited in Sec-

tions 5 and 5.1.)

[48] Ioannis Alagiannis, Stratos Idreos, and Anastasia Ailamaki. H2o: A hands-free adap-

tive store. In Proceedings of the ACM SIGMOD International Conference on Manage-

ment of Data, Snowbird, Utah, 2014. (Cited in Sections 1.5 and 8.)

[49] Sattam Alsubaiee, Alexander Behm, Vinayak Borkar, Zachary Heilbron, Young-Seok

Kim, Michael J. Carey, Markus Dreseler, and Chen Li. Storage management in aster-

ixdb. Proc. VLDB Endow., 7(10):841–852, June 2014. (Cited in Section 3.)

[50] Rajagopal Ananthanarayanan, Venkatesh Basker, Sumit Das, Ashish Gupta, Haifeng

Jiang, Tianhao Qiu, Alexey Reznichenko, Deomid Ryabkov, Manpreet Singh, and

Shivakumar Venkataraman. Photon: Fault-tolerant and scalable joining of continu-

ous data streams. In Proceedings of the 2013 ACM SIGMOD International Conference

on Management of Data, SIGMOD ’13, pages 577–588, New York, NY, USA, 2013. As-

sociation for Computing Machinery. (Cited in Sections 5 and 5.1.1.)

[51] Eric Anderson, Michael Hobbs, Kimberly Keeton, Susan Spence, Mustafa Uysal, and

Alistair Veitch. Hippodrome: Running Circles Around Storage Administration. In

Proc. of the 1st USENIX Conference on File and Storage Technologies (FAST ’02), USA,

2002. USENIX Association. (Cited in Section 5.2.2.)

[52] Arvind Arasu, Mitch Cherniack, Eduardo Galvez, David Maier, Anurag S. Maskey, Es-

ther Ryvkina, Michael Stonebraker, and Richard Tibbetts. Linear road: A stream data

management benchmark. In Proceedings of the Thirtieth International Conference

on Very Large Data Bases - Volume 30, VLDB ’04, pages 480–491. VLDB Endowment,

2004. (Cited in Sections 1.3.4, 4, 5, 4, 5.3, 5.3.1, 5.3.1, and 5.3.2.)

[53] Masoud Saeida Ardekani and Douglas B. Terry. A self-configurable geo-replicated

cloud storage system. In 11th USENIX Symposium on Operating Systems Design and

148

Bibliography

Implementation (OSDI 14), pages 367–381, Broomfield, CO, October 2014. USENIX

Association. (Cited in Sections 1.1, 1.3.3, 4, 4.1, and 4.3.11.)

[54] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,

Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei

Zaharia. A view of cloud computing. Commun. ACM, 53(4):50–58, April 2010. (Cited

in Section 1.1.)

[55] Joy Arulraj, Andrew Pavlo, and Prashanth Menon. Bridging the archipelago between

row-stores and column-stores for hybrid workloads. In Proceedings of the 2016 In-

ternational Conference on Management of Data, SIGMOD ’16, pages 583–598, New

York, NY, USA, 2016. Association for Computing Machinery. (Cited in Sections 1.5

and 8.)

[56] Manos Athanassoulis, Michael Kester, Lukas Maas, Radu Stoica, Stratos Idreos, Anas-

tassia Ailamaki, and Mark Callaghan. Designing access methods: The rum conjec-

ture. In International Conference on Extending Database Technology (EDBT), Bor-

deaux, France, 2016. (Cited in Section 8.)

[57] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny. Work-

load analysis of a large-scale key-value store. In Proceedings of the 12th ACM

SIGMETRICS/PERFORMANCE Joint International Conference on Measurement and

Modeling of Computer Systems, SIGMETRICS ’12, pages 53–64, New York, NY, USA,

2012. ACM. (Cited in Sections 1.2, 4, and 4.3.6.)

[58] Peter Bailis, Shivaram Venkataraman, Michael J Franklin, Joseph M Hellerstein, and

Ion Stoica. Probabilistically bounded staleness for practical partial quorums. Proc.

VLDB, 5(8):776–787, April 2012. (Cited in Section 4.)

[59] Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ranganathan. Attack

of the killer microseconds. Commun. ACM, 60(4):48–54, March 2017. (Cited in

Section 6.)

149

Bibliography

[60] Luiz André Barroso, Urs Hölzle, and Parthasarathy Ranganathan. The datacenter as

a computer: Designing warehouse-scale machines. Synthesis Lectures on Computer

Architecture, 13(3), 2018. (Cited in Section 4.1.)

[61] Nikos Batsaras, Giorgos Saloustros, Anastasios Papagiannis, Panagiota Fatourou,

and Angelos Bilas. Vat: Asymptotic cost analysis for multi-level key-value stores.

arXiv arXiv:2003.00103, 2020. (Cited in Section 1.3.2.)

[62] Samuel Benz and Fernando Pedone. Elastic paxos: A dynamic atomic multicast pro-

tocol. In 2017 IEEE 37th International Conference on Distributed Computing Systems

(ICDCS), pages 2157–2164, 2017. (Cited in Sections 1.3.2 and 3.)

[63] William J. Bolosky, Dexter Bradshaw, Randolph B. Haagens, Norbert P. Kusters, and

Peng Li. Paxos replicated state machines as the basis of a high-performance data

store. In Proceedings of the 8th USENIX Conference on Networked Systems Design

and Implementation, NSDI’11, pages 141–154. USENIX Association, 2011. (Cited in

Sections 1.3.2, 1.3.3, 4, and 4.1.)

[64] Aaron Brown and David A. Patterson. Towards availability benchmarks: A case study

of software raid systems. In Proceedings of the Annual Conference on USENIX Annual

Technical Conference, ATEC ’00, page 22, USA, 2000. USENIX Association. (Cited in

Section 2.4.)

[65] Navin Budhiraja, Keith Marzullo, Fred B. Schneider, and Sam Toueg. Distributed sys-

tems (2nd ed.). pages 199–216. 1993. (Cited in Sections 1.3.2, 1.3.3, 3.1, 4, and 4.1.)

[66] Pei Cao, Edward W. Felten, Anna R. Karlin, and Kai Li. A study of integrated prefetch-

ing and caching strategies. SIGMETRICS P. E. Rev., 23(1):188–197, 1995. (Cited in

Sections 4.1 and 4.2.1.)

[67] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan Richter, and Kostas

Tzoumas. State management in apache flink®: Consistent stateful distributed

stream processing. Proc. VLDB Endow., 10(12):1718–1729, August 2017. (Cited in

Sections 5, 5.1.1, and 5.1.2.)

150

Bibliography

[68] Maria Chalkiadaki and Kostas Magoutis. Managing service performance in the cas-

sandra distributed storage system. In 2013 IEEE 5th International Conference on

Cloud Computing Technology and Science, volume 1, pages 64–71, 2013. (Cited in

Sections 2.3.3 and 2.4.)

[69] Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. Paxos made live: An

engineering perspective. In Proceedings of the Twenty-sixth Annual ACM Sympo-

sium on Principles of Distributed Computing, PODC ’07, pages 398–407, New York,

NY, USA, 2007. ACM. (Cited in Sections 1.3.2, 1.3.3, 4, and 4.1.)

[70] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,

Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A dis-

tributed storage system for structured data. ACM Transactions on Computer Systems,

26(2):4:1–4:26, June 2008. (Cited in Section 1.1.)

[71] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,

Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A

distributed storage system for structured data. ACM Trans. Comput. Syst., 26(2), June

2008. (Cited in Section 3.)

[72] Bernadette Charron-Bost, Fernando Pedone, and André Schiper, editors. Replica-

tion: Theory and Practice. Springer-Verlag, Berlin, Heidelberg, 2010. (Cited in Sec-

tions 1.1 and 3.)

[73] Surajit Chaudhuri and Vivek Narasayya. Self-tuning database systems: A decade of

progress. In Proceedings of the 33rd International Conference on Very Large Data

Bases, VLDB ’07, pages 3–14. VLDB Endowment, 2007. (Cited in Sections 1.5 and 8.)

[74] Surajit Chaudhuri and Vivek R. Narasayya. An efficient cost-driven index selection

tool for microsoft sql server. In Proceedings of the 23rd International Conference

on Very Large Data Bases, VLDB ’97, pages 146–155, San Francisco, CA, USA, 1997.

Morgan Kaufmann Publishers Inc. (Cited in Sections 1.5 and 8.)

151

Bibliography

[75] Guoqiang Jerry Chen, Janet L. Wiener, Shridhar Iyer, Anshul Jaiswal, Ran Lei, Nikhil

Simha, Wei Wang, Kevin Wilfong, Tim Williamson, and Serhat Yilmaz. Realtime data

processing at facebook. In Proceedings of the 2016 International Conference on Man-

agement of Data, SIGMOD ’16, pages 1087–1098, New York, NY, USA, 2016. Associa-

tion for Computing Machinery. (Cited in Sections 5 and 5.1.1.)

[76] Yong Chen, Surendra Byna, and Xian-He Sun. Data access history cache and associ-

ated data prefetching mechanisms. In Prc. 2007 SC ’07, 2007. (Cited in Section 4.1.)

[77] D. M. Chess and J. O. Kephart. The vision of autonomic computing. Computer,

36(01):41–50, jan 2003. (Cited in Sections 5.2, 5.4.5, and 5.5.)

[78] S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holderbaugh, Z. Liu,

K. Nusbaum, K. Patil, B. J. Peng, and P. Poulosky. Benchmarking streaming com-

putation engines: Storm, flink and spark streaming. In 2016 IEEE International Par-

allel and Distributed Processing Symposium Workshops (IPDPSW), pages 1789–1792,

2016. (Cited in Section 5.)

[79] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti. Making byzantine

fault-tolerant systems tolerate byzantine faults. In Proc. of the 6th USENIX NSDI’09,

Boston, MA, April 2009. (Cited in Section 3.1.)

[80] Vinicius V Cogo, André Nogueira, João Sousa, Marcelo Pasin, Hans P Reiser, and

Alysson Bessani. FITCH: Supporting Adaptive Replicated Services in the Cloud. In

IFIP International Conference on Distributed Applications and Interoperable Systems

(DAIS’13), pages 15–28, 2013. (Cited in Section 4.1.)

[81] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st

ACM Symposium on Cloud Computing, SoCC ’10, pages 143–154, New York, NY, USA,

2010. Association for Computing Machinery. (Cited in Sections 2.3.1, 3.3, and 4.3.)

152

Bibliography

[82] Sudipto Das, Shoji Nishimura, Divyakant Agrawal, and Amr El Abbadi. Albatross:

Lightweight elasticity in shared storage databases for the cloud using live data mi-

gration. Proc. VLDB Endow., 4(8):494–505, May 2011. (Cited in Section 1.2.)

[83] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. Monkey: Optimal navigable

key-value store. In ACM SIGMOD International Conference on Management of Data,

2017. (Cited in Sections 1.5 and 8.)

[84] Niv Dayan and Stratos Idreos. Dostoevsky: Better space-time trade-offs for lsm-tree

based key-value stores via adaptive removal of superfluous merging. In ACM SIG-

MOD International Conference on Management of Data, 2018. (Cited in Sections 1.5

and 8.)

[85] Biplob K. Debnath, David J. Lilja, and Mohamed F. Mokbel. Sard: A statistical ap-

proach for ranking database tuning parameters. In 2008 IEEE 24th International

Conference on Data Engineering Workshop, pages 11–18, 2008. (Cited in Section 1.5.)

[86] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,

Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,

and Werner Vogels. Dynamo: Amazon’s highly available key-value store. In Pro-

ceedings of Twenty-first ACM SIGOPS Symposium on Operating Systems Principles,

SOSP ’07, pages 205–220, New York, NY, USA, 2007. ACM. (Cited in Sections 1.1, 1.1,

1.3.1, 2, 2, 2.1, 2.3.3, 2.4, 3, 4, and 4.1.)

[87] Bonaventura Del Monte, Steffen Zeuch, Tilmann Rabl, and Volker Markl. Rhino:

Efficient management of very large distributed state for stream processing engines.

In Proceedings of the 2020 ACM SIGMOD International Conference on Management

of Data, SIGMOD ’20, pages 2471–2486, New York, NY, USA, 2020. Association for

Computing Machinery. (Cited in Sections 5.1.2, 5.1.3, 5.2.2, and 5.5.)

[88] Thibault Dory, Boris Mej́ıas, PV Roy, and Nam-Luc Tran. Measuring elasticity for

cloud databases. In Proceedings of the The Second International Conference on Cloud

Computing, GRIDs, and Virtualization, pages 37–48. Citeseer, 2011. (Cited in Sec-

tion 1.2.)

153

Bibliography

[89] Thibault Dory, Boris Mejias, Peter Van Roy, and Nam-Luc Tran. Measuring elasticity

for cloud databases. In Proc. of the 2nd International Conference on Cloud Comput-

ing, GRIDs, and Virtualization, Rome, Italy, 2011. (Cited in Section 2.4.)

[90] Jennie Duggan and Michael Stonebraker. Incremental elasticity for array databases.

In Proceedings of the 2014 ACM SIGMOD International Conference on Management

of Data, SIGMOD ’14, pages 409–420, New York, NY, USA, 2014. Association for Com-

puting Machinery. (Cited in Section 2.4.)

[91] Jeremy Elson and Jon Howell. Handling flash crowds from your garage. In ATC’08:

USENIX 2008 Annual Technical Conference on Annual Technical Conference, pages

171–184, Berkeley, CA, USA, 2008. USENIX Association. (Cited in Section 1.3.1.)

[92] Franz Färber, Sang Kyun Cha, Jürgen Primsch, Christof Bornhövd, Stefan Sigg, and

Wolfgang Lehner. Sap hana database: Data management for modern business ap-

plications. SIGMOD Rec., 40(4):45–51, January 2012. (Cited in Section 1.2.)

[93] Y. Feng, N. Huang, and Y. Wu. Efficient and adaptive stateful replication for stream

processing engines in high-availability cluster. IEEE Transactions on Parallel and

Distributed Systems, 22(11):1788–1796, 2011. (Cited in Section 5.1.3.)

[94] Anonymized for the double-blind review process. (Cited in Section 5.)

[95] Marios Fragkoulis, Paris Carbone, Vasiliki Kalavri, and Asterios Katsifodimos. A sur-

vey on the evolution of stream processing systems, 2020. (Cited in Section 5.)

[96] P. Garefalakis, P. Papadopoulos, and K. Magoutis. ACaZoo: A Distributed Key-Value

Store Based on Replicated LSM-Trees. In Proc. of 33rd IEEE Int. Symp. on Reliable

Distributed Systems (SRDS), 2014. (Cited in Sections 3.1, 4.1, and 4.3.11.)

[97] Buğra Gedik. Partitioning functions for stateful data parallelism in stream process-

ing. The VLDB Journal, 23(4):517–539, August 2014. (Cited in Section 5.1.3.)

[98] Lars George. HBase: the definitive guide: random access to your planet-size data.

”O’Reilly Media, Inc.”, 2011. (Cited in Section 3.)

154

Bibliography

[99] M. Ghosh, W. Wang, G. Holla, and I. Gupta. Morphus: Supporting online reconfigu-

rations in sharded nosql systems. IEEE Transactions on Emerging Topics in Comput-

ing, 5(4):466–479, 2017. (Cited in Sections 5.2.2 and 5.2.3.)

[100] Mainak Ghosh, Wenting Wang, Gopalakrishna Holla, and Indranil Gupta. Morphus:

Supporting online reconfigurations in sharded nosql systems. In 2015 IEEE Inter-

national Conference on Autonomic Computing, pages 1–10, 2015. (Cited in Sec-

tion 2.4.)

[101] David K. Gifford. Weighted voting for replicated data. In Proceedings of the Seventh

ACM Symposium on Operating Systems Principles, SOSP ’79, pages 150–162, New

York, NY, USA, 1979. ACM. (Cited in Sections 1.3.2, 1.3.3, 4, and 4.1.)

[102] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consis-

tent, available, partition-tolerant web services. SIGACT News, 33(2):51–59, June 2002.

(Cited in Section 4.1.)

[103] C. Gray and D. Cheriton. Leases: An efficient fault-tolerant mechanism for dis-

tributed file cache consistency. In SOSP’89. (Cited in Section 4.)

[104] Steven D. Gribble, Eric A. Brewer, Joseph M. Hellerstein, and David Culler. Scalable,

distributed data structures for internet service construction. In Proceedings of the

4th Conference on Symposium on Operating System Design & Implementation - Vol-

ume 4, OSDI’00, USA, 2000. USENIX Association. (Cited in Section 2.4.)

[105] H. Gupta, V. Harinarayan, A. Rajaraman, and J.D. Ullman. Index selection for olap.

In Proceedings 13th International Conference on Data Engineering, pages 208–219,

1997. (Cited in Section 8.)

[106] Michael Hammer. Self-adaptive automatic data base design. In Proceedings of the

June 13-16, 1977, National Computer Conference, AFIPS ’77, pages 123—-129, New

York, NY, USA, 1977. Association for Computing Machinery. (Cited in Section 1.5.)

[107] Michael Hammer and Arvola Chan. Index selection in a self-adaptive data base man-

agement system. In Proceedings of the 1976 ACM SIGMOD International Conference

155

Bibliography

on Management of Data, SIGMOD ’76, pages 1–8, New York, NY, USA, 1976. Associa-

tion for Computing Machinery. (Cited in Section 1.5.)

[108] Michael Hammer and Bahram Niamir. A heuristic approach to attribute partition-

ing. In Proceedings of the 1979 ACM SIGMOD International Conference on Manage-

ment of Data, SIGMOD ’79, pages 93–101, New York, NY, USA, 1979. Association for

Computing Machinery. (Cited in Section 1.5.)

[109] Pat Helland. Mind your state for your state of mind: The interactions between stor-

age and applications can be complex and subtle. Queue, 16(3):91–121, June 2018.

(Cited in Section 1.1.)

[110] Nikolas Herbst, Rouven Krebs, Giorgos Oikonomou, George Kousiouris, Athanasia

Evangelinou, Alexandru Iosup, and Samuel Kounev. Ready for rain? a view from

spec research on the future of cloud metrics. https://arxiv.org/abs/1604.03470.

(Cited in Section 1.3.1.)

[111] Nikolas Roman Herbst, Samuel Kounev, and Ralf Reussner. Elasticity in cloud com-

puting: What it is, and what it is not. In Proceedings of the 10th International Confer-

ence on Autonomic Computing (ICAC 13), pages 23–27, San Jose, CA, 2013. USENIX.

(Cited in Section 1.3.1.)

[112] Moritz Hoffmann, Andrea Lattuada, and Frank McSherry. Megaphone: Latency-

conscious state migration for distributed streaming dataflows. Proc. VLDB Endow.,

12(9):1002–1015, May 2019. (Cited in Sections 5.1.2, 5.2.2, and 5.5.)

[113] Stratos Idreos, Konstantinos Zoumpatianos, Manos Athanassoulis, Niv Dayan, Brian

Hentschel, Michael S. Kester, Demi Guo, Lukas Maas, Wilson Qin, Abdul Wasay, and

Yiyou Sun. The periodic table of data structures. Bulletin of the IEEE Computer

Society Technical Committee on Data Engineering, 41(3):64–75, 2018. (Cited in Sec-

tions 3 and 8.)

[114] Stratos Idreos, Konstantinos Zoumpatianos, Brian Hentschel, Michael S. Kester, and

Demi Guo. The data calculator: Data structure design and cost synthesis from first

156

https://arxiv.org/abs/1604.03470

Bibliography

principles, and learned cost models. In ACM SIGMOD International Conference on

Management of Data, 2018. (Cited in Section 8.)

[115] Navendu Jain, Lisa Amini, Henrique Andrade, Richard King, Yoonho Park, Philippe

Selo, and Chitra Venkatramani. Design, implementation, and evaluation of the lin-

ear road benchmark on the stream processing core. In Proceedings of the 2006 ACM

SIGMOD International Conference on Management of Data, SIGMOD ’06, pages 431–

442, New York, NY, USA, 2006. Association for Computing Machinery. (Cited in Sec-

tions 5, 5.3, and 5.3.2.)

[116] Ricardo Jiménez-Peris, Marta Patiño-Mart́ınez, Gustavo Alonso, and Bettina

Kemme. Are quorums an alternative for data replication? ACM Transactions on

Database Systems (TODS), 28(3):257–294, September 2003. (Cited in Section 4.)

[117] Flavio P. Junqueira, Benjamin C. Reed, and Marco Serafini. Zab: High-performance

broadcast for primary-backup systems. In 2011 IEEE/IFIP 41st International Confer-

ence on Dependable Systems Networks (DSN), pages 245–256, 2011. (Cited in Sec-

tions 3.1, 3.2, and 4.)

[118] Asya Kamsky. Adapting TPC-C Benchmark to Measure Performance of Multi-

Document Transactions in MongoDB. Proc. VLDB Endow., 12(12), August 2019.

(Cited in Sections 4.3 and 4.3.11.)

[119] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and

Daniel Lewin. Consistent hashing and random trees: Distributed caching protocols

for relieving hot spots on the world wide web. In Proceedings of the Twenty-Ninth

Annual ACM Symposium on Theory of Computing, STOC ’97, pages 654–663, New

York, NY, USA, 1997. Association for Computing Machinery. (Cited in Sections 2.1

and 2.4.)

[120] M. Karlsson, C. Karamanolis, and X. Zhu. Triage: Performance isolation and differen-

tiation for storage systems. In Proc. of 12th IEEE Int. Workshop on Quality of Service,

IWQOS’04, Montreal, Canada, 2004. (Cited in Section 2.3.3.)

157

Bibliography

[121] Flora Karniavoura and Kostas Magoutis. A measurement-based approach to per-

formance prediction in NoSQL systems. In Proc. of 25th IEEE Int. Symposium on

the Modeling, Analysis, and Simulation of Computer and Telecom. Systems, MAS-

COTS’07, Banff, Canada, 2017. (Cited in Section 2.4.)

[122] Flora Karniavoura and Kostas Magoutis. Decision-making approaches for perfor-

mance qos in distributed storage systems: A survey. IEEE Transactions on Parallel

and Distributed Systems, 30(8):1906–1919, 2019. (Cited in Section 1.2.)

[123] Nikos R. Katsipoulakis, Alexandros Labrinidis, and Panos K. Chrysanthis. A holistic

view of stream partitioning costs. Proceedings VLDB Endowment, 10(11):1286–1297,

August 2017. (Cited in Section 5.1.3.)

[124] J. O. Kephart and D. M. Chess. The vision of autonomic computing. Computer,

36(1):41–50, Jan 2003. (Cited in Section 1.2.)

[125] Nick Kolettis and N. Dudley Fulton. Software rejuvenation: Analysis, module and

applications. In Proceedings of the 25th FTCS’95, 1995. (Cited in Section 4.1.)

[126] Ioannis Konstantinou, Evangelos Angelou, Christina Boumpouka, Dimitrios

Tsoumakos, and Nectarios Koziris. On the elasticity of nosql databases over cloud

management platforms. In Proceedings of the 20th ACM International Conference

on Information and Knowledge Management, CIKM ’11, pages 2385–2388, New York,

NY, USA, 2011. Association for Computing Machinery. (Cited in Section 1.2.)

[127] Ioannis Konstantinou, Dimitrios Tsoumakos, Ioannis Mytilinis, and Nectarios

Koziris. Dbalancer: Distributed load balancing for nosql data-stores. In Proceedings

of the 2013 ACM SIGMOD International Conference on Management of Data, SIG-

MOD ’13, pages 1037–1040, New York, NY, USA, 2013. Association for Computing

Machinery. (Cited in Section 2.4.)

[128] Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H. Chi, Jialin Ding, Ani Kristo,

Guillaume Leclerc, Samuel Madden, Hongzi Mao, and Vikram Nathan. Sagedb: A

158

Bibliography

learned database system. In Conference on Innovative Data Systems Research (CIDR),

2019. (Cited in Section 8.)

[129] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. The case

for learned index structures. In Proceedings of the 2018 International Conference on

Management of Data, SIGMOD ’18, pages 489–504, New York, NY, USA, 2018. Asso-

ciation for Computing Machinery. (Cited in Section 8.)

[130] Jörn Kuhlenkamp, Markus Klems, and Oliver Röss. Benchmarking scalability

and elasticity of distributed database systems. Proc. of the VLDB Endowment,

7(12):1219–1230, August 2014. (Cited in Sections 2.1 and 2.4.)

[131] YongChul Kwon, Magdalena Balazinska, and Albert Greenberg. Fault-tolerant

stream processing using a distributed, replicated file system. Proceedings VLDB En-

dowment, 1(1):574–585, August 2008. (Cited in Section 5.1.2.)

[132] Avinash Lakshman and Prashant Malik. Cassandra: A decentralized structured stor-

age system. SIGOPS Oper. Syst. Rev., 44(2), April 2010. (Cited in Sections 1.1, 1, 1.4,

2, 2, 2.1, 2.4, and 3.)

[133] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169,

May 1998. (Cited in Section 4.)

[134] Butler W. Lampson. How to build a highly available system using consensus. In Proc.

of WDAG ’96, 1996. (Cited in Section 4.)

[135] Edward K. Lee and Chandramohan A. Thekkath. Petal: Distributed virtual disks.

SIGOPS Operating Systems Review, 30(5):84–92, September 1996. (Cited in Sec-

tion 2.4.)

[136] K. Dan Levin. Adaptive structuring of distributed databases. In Proceedings of the

June 7-10, 1982, National Computer Conference, AFIPS ’82, page 691–696, New York,

NY, USA, 1982. Association for Computing Machinery. (Cited in Section 1.5.)

[137] Barbara Liskov and James Cowling. Viewstamped replication revisited. Technical

Report MIT-CSAIL-TR-2012-021, MIT, July 2012. (Cited in Sections 1.3.2 and 3.)

159

Bibliography

[138] S. Liu and M. Vukolic. Leader set selection for low-latency geo-replicated state

machine. IEEE TPDS, 28(7):1933–1946, July 2017. (Cited in Sections 1.3.3, 4, 4.1,

and 4.3.11.)

[139] G. Losa, V. Kumar, H. Andrade, B. Gedik, M. Hirzel, R. Soulé, and K.-L. Wu. Cap-

sule: Language and system support for efficient state sharing in distributed stream

processing systems, 2012. (Cited in Sections 5.1.2 and 5.1.3.)

[140] Christopher R. Lumb. Façade: Virtual storage devices with performance guarantees.

In 2nd USENIX Conference on File and Storage Technologies (FAST 03), San Francisco,

CA, March 2003. USENIX Association. (Cited in Section 2.3.3.)

[141] K. G. S. Madsen, Y. Zhou, and J. Cao. Integrative Dynamic Reconfiguration in a Par-

allel Stream Processing Engine. In Proc. of 33rd IEEE International Conference on

Data Engineering (ICDE), pages 227–230, 2017. (Cited in Section 5.1.3.)

[142] Iulian Moraru, David G Andersen, and Michael Kaminsky. Paxos quorum leases:

Fast reads without sacrificing writes. In Proceedings of the ACM Symposium on Cloud

Computing SOCC’14, 2014. (Cited in Section 4.)

[143] M. A. U. Nasir, G. De Francisci Morales, D. Garcı́a-Soriano, N. Kourtellis, and M. Ser-

afini. The power of both choices: Practical load balancing for distributed stream

processing engines. In 2015 IEEE 31st International Conference on Data Engineer-

ing, pages 137–148, 2015. (Cited in Section 5.1.3.)

[144] Shadi A. Noghabi, Kartik Paramasivam, Yi Pan, Navina Ramesh, Jon Bringhurst, In-

dranil Gupta, and Roy H. Campbell. Samza: Stateful scalable stream processing

at linkedin. Proc. VLDB Endow., 10(12), August 2017. (Cited in Sections 5, 5.1.1,

and 5.1.2.)

[145] Brian M. Oki and Barbara H. Liskov. Viewstamped replication: A new primary copy

method to support highly-available distributed systems. In Proceedings of the Sev-

enth Annual ACM Symposium on Principles of Distributed Computing, PODC ’88,

160

Bibliography

pages 8–17, New York, NY, USA, 1988. Association for Computing Machinery. (Cited

in Sections 3.1, 3.2, and 4.)

[146] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. The Log-

structured Merge-tree (LSM-tree). Acta Inf., 33(4), June 1996. (Cited in Sec-

tions 1.3.2, 2, 2, 2.1, 3, and 3.1.)

[147] Diego Ongaro and John Ousterhout. In search of an understandable consensus algo-

rithm. In 2014 USENIX Annual Technical Conference (USENIX ATC 14), Philadelphia,

PA, 2014. (Cited in Sections 1.3.2, 3, 3.1, and 3.2.)

[148] Diego Ongaro and John Ousterhout. In search of an understandable consensus al-

gorithm. In USENIX ATC’14, Philadelphia, PA, 2014. (Cited in Section 4.)

[149] Beate Ottenwälder, Boris Koldehofe, Kurt Rothermel, and Umakishore Ramachan-

dran. Migcep: Operator migration for mobility driven distributed complex event

processing. In Proceedings of the 7th ACM International Conference on Distributed

Event-Based Systems, DEBS ’13, pages 183–194, New York, NY, USA, 2013. Associa-

tion for Computing Machinery. (Cited in Section 5.1.3.)

[150] Fengfeng Pan, Yinliang Yue, and Jin Xiong. Dcompaction: Delayed compaction for

the lsm-tree. Int. J. Parallel Program., 45(6):1310–1325, December 2017. (Cited in

Section 1.3.2.)

[151] A. Papaioannou and K. Magoutis. Incremental elasticity for nosql data stores. In

2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS), pages 174–183,

2017. (Cited in Sections 5.2.2 and 5.5.)

[152] A. Papaioannou and K. Magoutis. Replica-group leadership change as a perfor-

mance enhancing mechanism in nosql data stores. In 2018 IEEE 38th International

Conference on Distributed Computing Systems (ICDCS), pages 1448–1453, Los Alami-

tos, CA, USA, jul 2018. IEEE Computer Society. (Cited in Sections (document), 4.1,

4.1, 4.3.11, and 5.4.4.)

161

Bibliography

[153] A. Papaioannou and K. Magoutis. Replica-group leadership change as a perfor-

mance enhancing mechanism in nosql data stores. In 2018 IEEE 38th International

Conference on Distributed Computing Systems (ICDCS), July 2018. (Cited in Sec-

tion 4.1.)

[154] Antonis Papaioannou. Linear Road Flink implementation. https://github.com/

antonis-papaioannou/linearRoad, 2021. (Cited in Sections 4 and 5.3.)

[155] R. Hugo Patterson, Garth A. Gibson, and M. Satyanarayanan. A status report on

research in transparent informed prefetching. SIGOPS Oper. Syst. Rev., 27(2):21–34,

April 1993. (Cited in Section 4.1.)

[156] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma, Prashanth

Menon, Todd Mowry, Matthew Perron, Ian Quah, Siddharth Santurkar, Anthony

Tomasic, Skye Toor, Dana Van Aken, Ziqi Wang, Yingjun Wu, Ran Xian, and Tiey-

ing Zhang. Self-driving database management systems. In CIDR 2017, Conference

on Innovative Data Systems Research, 2017. (Cited in Section 1.5.)

[157] Amar Phanishayee, Elie Krevat, Vijay Vasudevan, David G. Andersen, Gregory R.

Ganger, Garth A. Gibson, and Srinivasan Seshan. Measurement and analysis of TCP

throughput collapse in cluster-based storage systems. In Proc. of the 6th USENIX

Conference on File and Storage Technologies, FAST’08, San Jose, California, 2008.

(Cited in Sections 1.3.1 and 2.)

[158] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh, and M. Seltzer.

Network-aware operator placement for stream-processing systems. In 22nd Inter-

national Conference on Data Engineering (ICDE’06), pages 49–49, 2006. (Cited in

Section 5.1.3.)

[159] Nigel Rayner, Donald Feinberg, Massimo Pezzini, and Roxane Edjlali. Hy-

brid transaction/analytical processing will foster opportunities for dramatic busi-

ness innovation. https://www.gartner.com/imagesrv/media-products/pdf/Kx/

KX-1-3CZ44RH.pdf. (Cited in Section 1.2.)

162

https://github.com/antonis-papaioannou/linearRoad
https://github.com/antonis-papaioannou/linearRoad
https://www.gartner.com/imagesrv/media-products/pdf/Kx/KX-1-3CZ44RH.pdf
https://www.gartner.com/imagesrv/media-products/pdf/Kx/KX-1-3CZ44RH.pdf

Bibliography

[160] Roger Rea. Walmart & IBM Revisit the Linear Road Benchmark. https://www.

slideshare.net/RedisLabs/walmart-ibm-revisit-the-linear-road-benchmark,

May 10-11, 2016. (retrieved July 2021). (Cited in Sections 5, 5.1.1, and 5.3.2.)

[161] Reinsel, David and Gantz, John and Rydning, John. The Digitization of the World

From Edge to Core. White paper, IDC, April 2017. (Cited in Section 1.1.)

[162] Y. Robert, F. Vivien, and D. Zaidouni. On the complexity of scheduling checkpoints

for computational workflows. In IEEE/IFIP International Conference on Depend-

able Systems and Networks Workshops (DSN 2012), pages 1–6, 2012. (Cited in Sec-

tion 5.1.3.)

[163] Russell Sears and Raghu Ramakrishnan. blsm: A general purpose log structured

merge tree. In Proceedings of the 2012 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’12, pages 217–228, New York, NY, USA, 2012. ACM.

(Cited in Section 1.3.2.)

[164] Nathan Senthil and Gedik Bugra. Using InfoSphere Streams with memcached and

Redis. In IBM developerWorks, 2013. (Cited in Sections 5 and 5.1.1.)

[165] M. A. Shah, J. M. Hellerstein, Sirish Chandrasekaran, and M. J. Franklin. Flux: an

adaptive partitioning operator for continuous query systems. In Proceedings 19th

International Conference on Data Engineering (Cat. No.03CH37405), pages 25–36,

2003. (Cited in Section 5.1.3.)

[166] Artyom Sharov, Alexander Shraer, Arif Merchant, and Murray Stokely. Take me to

your leader! online optimization of distributed storage configurations. Proc. VLDB

Endow., 8(12):1490–1501, August 2015. (Cited in Sections 1.3.3, 4, and 4.1.)

[167] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge computing:

Vision and challenges. IEEE Internet of Things Journal, 3(5):637–646, 2016. (Cited

in Section 1.1.)

163

https://www.slideshare.net/RedisLabs/walmart-ibm-revisit-the-linear-road-benchmark
https://www.slideshare.net/RedisLabs/walmart-ibm-revisit-the-linear-road-benchmark

Bibliography

[168] A. Shraer, B. Reed, D. Malkhi, and F. Junqueira. Dynamic reconfiguration of prima-

ry/backup clusters. In Proc. 2012 USENIX Annual Technical Conference (ATC 12),

Boston, MA, 2012. (Cited in Sections 1.3.2 and 3.)

[169] Vishal Sikka, Franz Färber, Anil Goel, and Wolfgang Lehner. Sap hana: The evolution

from a modern main-memory data platform to an enterprise application platform.

Proc. VLDB Endow., 6(11):1184–1185, August 2013. (Cited in Section 1.2.)

[170] D. Stamatakis et al. A general-purpose architecture for replicated metadata services

in distributed file systems. IEEE TPDS, 28(10):2747–2759, Oct 2017. (Cited in Sec-

tion 4.1.)

[171] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan.

Chord: A scalable peer-to-peer lookup service for internet applications. In Proceed-

ings of the 2001 Conference on Applications, Technologies, Architectures, and Proto-

cols for Computer Communications, SIGCOMM ’01, page 149–160, New York, NY,

USA, 2001. Association for Computing Machinery. (Cited in Section 2.4.)

[172] Adam J. Storm, Christian Garcia-Arellano, Sam S. Lightstone, Yixin Diao, and

M. Surendra. Adaptive self-tuning memory in db2. In Proceedings of the 32nd In-

ternational Conference on Very Large Data Bases, VLDB ’06, page 1081–1092. VLDB

Endowment, 2006. (Cited in Section 1.5.)

[173] David G. Sullivan, Margo I. Seltzer, and Avi Pfeffer. Using probabilistic reasoning

to automate software tuning. SIGMETRICS Perform. Eval. Rev., 32(1):404–405, June

2004. (Cited in Section 1.5.)

[174] Roshan Sumbaly, Jay Kreps, Lei Gao, Alex Feinberg, Chinmay Soman, and Sam Shah.

Serving large-scale batch computed data with project voldemort. In Proceedings of

the 10th USENIX Conference on File and Storage Technologies, FAST’12, pages 18–18,

Berkeley, CA, USA, 2012. USENIX Association. (Cited in Section 1.1.)

[175] Roshan Sumbaly, Jay Kreps, Lei Gao, Alex Feinberg, Chinmay Soman, and Sam Shah.

Serving large-scale batch computed data with project voldemort. In Proceedings

164

Bibliography

of the 10th USENIX Conference on File and Storage Technologies, FAST’12, page 18,

USA, 2012. USENIX Association. (Cited in Sections 2, 2.1, and 2.4.)

[176] Roshan Sumbaly, Jay Kreps, and Sam Shah. The big data ecosystem at linkedin. In

Proc. of the 2013 ACM SIGMOD International Conference on Management of Data

(SIGMOD’13), 2013. (Cited in Sections 5 and 5.1.1.)

[177] Lalith Suresh, Marco Canini, Stefan Schmid, and Anja Feldmann. C3: Cutting tail la-

tency in cloud data stores via adaptive replica selection. In 12th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 15), pages 513–527, Oak-

land, CA, May 2015. USENIX Association. (Cited in Sections 1.3.2, 1.3.3, and 4.1.)

[178] The Borealis Team. Borealis application programmer’s guide [white paper].

http://cs.brown.edu/research/borealis/public/publications/borealis_

application_guide.pdf. (Accessed 06/2021). (Cited in Section 5.1.)

[179] Wenhu Tian, Pat Martin, and Wendy Powley. Techniques for automatically sizing

multiple buffer pools in db2. In Proceedings of the 2003 Conference of the Centre for

Advanced Studies on Collaborative Research, CASCON ’03, pages 294–302. IBM Press,

2003. (Cited in Section 1.5.)

[180] R. S. Tibbetts. Linear Road: Benchmarking Stream-Based Data Management Systems.

PhD thesis, 2003. (Cited in Sections 1.3.4, 4, 5, 4, and 5.3.)

[181] QC. To, J. Soto, and V. Markl. A survey of state management in big data processing

systems. The VLDB Journal, 27:847–872, 2018. (Cited in Sections 1.3.4 and 5.1.2.)

[182] D. Tsoumakos, I. Konstantinou, C. Boumpouka, S. Sioutas, and N. Koziris. Auto-

mated, elastic resource provisioning for nosql clusters using tiramola. In 2013 13th

IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing, pages

34–41, May 2013. (Cited in Sections 1.3.1 and 2.4.)

[183] Sandeep Uttamchandani, Kaladhar Voruganti, Sudarshan Srinivasan, John Palmer,

and D Peace. Polus: Growing storage qos management beyond a ”four-year old kid”.

165

http://cs.brown.edu/research/borealis/public/publications/borealis_application_guide.pdf
http://cs.brown.edu/research/borealis/public/publications/borealis_application_guide.pdf

Bibliography

In 3rd USENIX Conference on File and Storage Technologies (FAST’04), 2004. (Cited

in Section 1.5.)

[184] Sandeep Uttamchandani, Li Yin, Guillermo A Alvarez, John Palmer, and Gul A Agha.

Chameleon: A self-evolving, fully-adaptive resource arbitrator for storage systems.

In USENIX Annual Technical Conference, General Track, pages 75–88, 2005. (Cited

in Section 1.5.)

[185] G. Valentin, M. Zuliani, D. Zilio, G. Lohman, and A. kelley. Db2 advisor: an optimizer

smart enough to recommend its own indexes. In Proceedings 16th International

Conference on Data Engineering, pages 101–110, 2000. (Cited in Sections 1.5 and 8.)

[186] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. Automatic

database management system tuning through large-scale machine learning. In Pro-

ceedings of the 2017 ACM International Conference on Management of Data, SIG-

MOD ’17, pages 1009–1024, New York, NY, USA, 2017. Association for Computing

Machinery. (Cited in Section 1.5.)

[187] R. van Renesse and F. B. Schneider. Chain replication for supporting high through-

put and availability. In OSDI’04, San Francisco, CA, 2004. (Cited in Sections 3.1

and 4.)

[188] Gerhard Weikum, Christof Hasse, Axel Mönkeberg, and Peter Zabback. The com-

fort automatic tuning project. Information Systems, 19(5):381–432, 1994. (Cited in

Section 1.5.)

[189] Ouri Wolfson, Sushil Jajodia, and Yixiu Huang. An adaptive data replication algo-

rithm. ACM J. TDS, 22(2), June 1997. (Cited in Sections 1.3.3, 4, and 4.1.)

[190] S. Wu, V. Kumar, K.-L. Wu, and B. C. Ooi. Parallelizing stateful operators in a dis-

tributed stream processing system: How, should you and how much? In Proc. of

the 6th ACM International Conference on Distributed Event-Based Systems (DEBS’12),

pages 278–289, 2012. (Cited in Section 5.1.3.)

166

Bibliography

[191] Y. Wu and K. Tan. Chronostream: Elastic stateful stream computation in the cloud.

In Proc. of 31st IEEE International Conference on Data Engineering (ICDE’15), 2015.

(Cited in Sections 5.1.2, 5.2.2, and 5.5.)

[192] Lianghong Xu et al. Reducing replication bandwidth for distributed document

databases. In Proc. of the 6th SoCC ’15, 2015. (Cited in Sections 4.2.1 and 4.3.10.)

[193] Shanhe Yi, Cheng Li, and Qun Li. A survey of fog computing: Concepts, applica-

tions and issues. In Proceedings of the 2015 Workshop on Mobile Big Data, Mobidata

’15, pages 37–42, New York, NY, USA, 2015. Association for Computing Machinery.

(Cited in Section 1.1.)

[194] C. T. Yu, Cheing-mei Suen, K. Lam, and M. K. Siu. Adaptive record clustering. ACM

Trans. Database Syst., 10(2):180–204, June 1985. (Cited in Section 1.5.)

[195] Zigang Zhang, Yinliang Yue, Bingsheng He, Jin Xiong, Mingyu Chen, Lixin Zhang,

and Ninghui Sun. Pipelined compaction for the lsm-tree. In 2014 IEEE 28th Interna-

tional Parallel and Distributed Processing Symposium, pages 777–786, 2014. (Cited

in Section 1.3.2.)

167

168

Appendix A
Publications

The research activity related to this thesis has so far produced the following publications

(ordered by publication date):

1. Antonis Papaioannou and Kostas Magoutis, 2017. Incremental elasticity for NoSQL

data stores. In the 37th IEEE International Conference on Distributed Computing

Systems (ICDCS 2017), Atlanta, GA, USA, June 2017, (two page proceedings paper

accompanying a poster)

2. Antonis Papaioannou and Kostas Magoutis, 2017. Incremental elasticity for NoSQL

data stores. In the 36th IEEE International Symposium on Reliable Distributed Sys-

tems (SRDS 2017), Hong Kong, China, September, 2017

3. Antonis Papaioannou and Kostas Magoutis, 2018. Replica-group leadership change

as a performance enhancing mechanism in NoSQL data stores. In the 38th IEEE In-

ternational Conference on Distributed Computing Systems (ICDCS 2018), Vienna,

Austria, July, 2018

4. Aris Chronarakis, Antonis Papaioannou and Kostas Magoutis, 2018. On the impact of

log compaction on incrementally checkpointing stateful stream-processing operators.

In the 38th IEEE International Symposium on Reliable Distributed Systems Work-

shops (SRDSW), Lyon, France, October, 2019

169

Appendix A. Publications

5. Antonis Papaioannou, 2020. Novel adaptation mechanisms for distributed data stores.

In the 14th EuroSys Doctoral Workshop (EuroDW 2020), Heraklion, Greece, April

2020

6. Antonis Papaioannoui, Chrysostomos Zeginis and Kostas Magoutis, 2020. The Case

for Better Integrating Scalable Data Stores and Stream-Processing Systems. In the IEEE

Cluster Conference 2020, Kobe, Japan, (two page proceedings paper accompanying

a poster)

7. Antonis Papaioannou and Kostas Magoutis. Addressing the read-performance impact

of reconfigurations in replicated key-value stores. In IEEE Transactions on Parallel

and Distributed System (TPDS), (accepted)

8. Antonis Papaioannou and Kostas Magoutis, 2021. Amoeba: Aligning Stream Process-

ing Operators with Externally-Managed State. In the 14th IEEE/ACM International

Conference on Utility and Cloud Computing (UCC 2021), Leicester, UK, December,

2021

170

	Abstract
	Abstract in Greek
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	The profound need for scalable data storage
	Adapting to internal or external changes
	Challenges and Assumptions
	Expanding storage service capacity
	Hiding the overhead of internal or external background activities
	Improving performance during replica-group reorganization
	Aligning data store partitions with distributed middleware tasks

	Contributions
	Related work on autonomous storage systems
	Outline of Dissertation

	Incremental elasticity
	Elasticity mechanisms in data stores
	Design and implementation
	Evaluation
	Experimental testbed and methodology
	Analysis of experimental results
	Response time

	Related work
	Summary

	Replica-group leadership change as a performance enhancing mechanism
	Background
	Design and Implementation
	Evaluation
	LSM-tree compactions
	Data backup

	Summary

	Addressing the read-performance impact of replica-group reconfigurations
	Background and Related Work
	Design and Implementation
	Capturing and dissemination of read hints
	Read-hints buffer properties
	Consistency

	Evaluation
	Performance impact during reconfiguration
	Multi-shard deployments on AWS EC2
	Effect of cache size on time to restore performance
	Effect of cache access pattern
	Read-write workload
	Re-electing a past primary
	Performance overhead
	Selectively applying read hints
	Space overhead
	Optimizations to reduce read-hints buffer size
	TPC workloads

	Summary

	Amoeba: Aligning Stream Processing Operators with Externally-Managed State
	Related work
	Storing and accessing external data
	Storage solutions for internal operator state
	Placement/alignment of SPS tasks

	Design and implementation
	Amoeba inputs and metadata discovery
	Planning alignment actions
	Prototype implementation specifics

	Linear Road
	Linear Road dataflow graph
	Linear Road state

	Evaluation
	Unaligned access gets worse with scale
	Benefits of alignment
	Dynamic alignment of partition schemes
	Combining alignment with data migration
	Coordinating elasticity actions

	Summary

	Impact of technology improvements on the proposed methods
	Incremental elasticity
	Replica-group reconfiguration
	Improving data locality when accessing external state

	Conclusions
	Directions for Future Work
	Bibliography
	Publications

