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Abstract— Emotional stress detection can be performed an-
alyzing different facial parameters. This paper focuses on
the automated identification of facial Action Units (AU) as
quantitative indices in order to discriminate between neu-
tral and stress/anxiety state. Thus, a model for automatic
recognition of facial action units is proposed being trained
in two available annotated facial datasets, the UNBC and
the BOSPHORUS datasets. Facial features, both geometric
(non-rigid deformations of 3D shape of AAM landmarks) and
appearance (Histograms of Oriented Gradients) were extracted.
The intensity of each AU was regressed using Support Vector
Regression (SVR). The corresponding models of each dataset
were fused to a combined model. This combined model was
applied to the experimental dataset (SRD’15) containing neutral
states and inducing stressful states related to four types of stress.
The results indicate that there are specific AU relevant to stress
and the AU intensity are significant increased during stress
leading to a more expressive human face.

I. INTRODUCTION

There are different indices associated with the stress
response of the human body to stressful stimuli and sit-
uations. Among different physiological measures (such as
biomarkers, laboratory exams, psychometric scales, etc), the
emotional stress can be assessed analyzing different facial
parameters. Even though facial expressions can be sup-
pressed or manipulated, however, it is not always possible to
be suppressed and they convey significant information related
to affective states. Especially, during stress conditions, there
are semi-voluntary facial cues or micro-expressions.

Facial expressions are associated with emotions and type
of affect, thus the research community pursuits to find
reliable techniques to decode their presence or the combi-
nation of their presence in the human face. Besides, it is
arguable whether the AU intensity may be estimated and
how their accurate and reproducible measurement can be
performed. There are some coding systems addressing this
issue, the most widely adopted of which is the notion that
face expresses facial Action Units (AU) which can be coded
according to the Facial Action Coding System (FACS) [1]
[1]. A recent review summarizes techniques of facial AU
analysis, not concluding to specific guidelines but delineating
good practices in facial action units analysis [2].

There are some recent studies, investigating facial cues
[3] and facial expressions’ behaviour during stress condi-
tions [4], [5]. However, there are neither specific guidelines
which AU are implicated in stress state nor a consistent

model describing the stress manifestation on specific facial
expressions.

In this paper, an AU recognition model is established using
publicly available training datasets and the combined model
is applied to a thorough stress experimental dataset. Besides,
the AU implicated in stress are investigated as a response
to different types of stressors (related to social exposure,
emotional recall, mental strain and stressful videos stimuli)
in experimental conditions.

II. METHODS

This study focuses on automatic stress identification
from the intensity of facial AU that are estimated from
trained SVM models trained in two annotated databases.
The procedure has 3 phases: preprocessing (including face
detection, AAM facial landmark estimation, face align-
ment/normalization, face warping), feature extraction (shape
and appearance features), AU classification (including PCA
on appearance features, Support Vector Regression (SVR)
training and AU intensity estimation). The AU recognition
procedure flowchart depicting the 3 phases (preprocessing,
feature extraction, classification) is shown in Figure 1.

TABLE I
SUMMARY OF THE AU, THEIR FACS NAME AND MUSCULAR BASIS

INVESTIGATED IN THIS STUDY

AU FACS name Muscular basis
AU1 Inner brow raiser frontalis (pars medialis)
AU2 Outer brow raiser frontalis (pars lateralis)
AU4 Brow lowerer depressor glabellae, depressor super-

cilii, corrugator supercilii
AU5 Upper lid raiser levator palpebrae superioris, superior

tarsal muscle
AU6 Cheek raiser orbicularis oculi (pars orbitalis)
AU7 Lid tightener orbicularis oculi (pars palpebralis)
AU9 Nose wrinkler levator labii superioris alaeque nasi
AU10 Upper lip raiser levator labii superioris, caput infraor-

bitalis
AU12 Lip corner puller zygomaticus major
AU14 Dimpler buccinator
AU15 Lip corner depressor depressor anguli oris (triangularis)
AU17 Chin raiser mentalis
AU23 Lip tightener orbicularis oris
AU25 Lips part depressor labii inferioris, or relaxation

of mentalis or orbicularis oris
AU26 Jaw drop masseter; relaxed temporalis and inter-

nal pterygoid



Fig. 1. Flowchart of the system for facial AU presence following the phases of preprocessing, feature extraction (geometric and appearance), SVM
classification and AU estimation.

A. Facial Action Coding System

The Facial Action Coding System (FACS) [1][6] is a
system that initially developed by a Swedish anatomist and
updated by Ekman and Friesen in 1978 [6] and 2002 [1] re-
spectively. It systematically categorizes human facial muscle
movements and expressions based on anatomic functions.

Additionally, it encodes actions related to eye gaze, head
pose and other actions. The AU that are investigated in this
study in order to reveal associations with types of stress are
presented in Table I.

B. Preprocessing

The face area is detected from the input image using
the Viola-Jones detector described in [7]. Then, the facial
landmarks are estimated (68 points mark-up) using Active
Appearance Models (AAM) [8]. Then, the preprocessing
phase is applied which includes the removal of rigid in-
formation and the face alignment/normalization. This step
is significant for the subsequent analysis as aligning the
faces into a common reference frame will lead to features
that correspond to the same facial areas, thus conveying the
same semantic information [2]. The alignment and warping
to the mean base (neutral) facial shape was performed with
Delaunay triangle-based affine warp [9].

C. Feature extraction

In this study, both geometric and appearance features were
extracted in order to enhance the estimation of the AU under
investigation.

For the geometric features, the non-rigid 3D landmarks
were estimated because they provide the most reliable infor-
mation as in this way the shape displacements are caused
only from facial expressions and not head inclinations,
nods, etc. A linear model called a Point Distribution Model
(PDM) [10], [11] provides a parametric representation of the
deformable shapes given by the expression

x = a ·R(X̄ + Φp) + T

where x : (xi, yi) is the 2D landmarks, a is the scale factor,
R the rotation matrix, T : (tx, ty), the 3D mean value of
the PDM in the 3D reference frame, and p the non-rigid
shape parameters. The non-rigid 3D landmarks are used as
geometric features. Regarding the appearance features, we
use Histograms of Oriented Gradients (HOG) [12] on the
aligned/warp face according to the base face shape extracting
dimensional histograms of blocks with a cell size of 2x2
and 8x8 pixels. In order to reduce high dimensionality, we
apply Principal Component Analysis (PCA) and the retained
components (explaining the 95% of the total data variability)
form the appearance features vector.

Both geometric and appearance features form a vector
that is the input in the Support Vector Regression model
(SVR) [13]. The SVR performs regression on the data and
its corresponding labels which are annotated AU intensities.

D. Training datasets

In this study, we used two available facial datasets in
order to train the SVR model, the UNBC-McMaster Shoulder
Pain Expression Archive Database (UNBC) [14] and the
Bosphorus database (BOSPHORUS) [15].

The UNBC dataset contains 200 sequences across 25
subjects (total 48,398 images) annotated according to FACS
code and their corresponding AU intensity in a scale [0
5] where 0 corresponds to AU non-existence whereas 5
corresponds to the maximum AU intensity. It contains an-
notated information for the AU [6, 7, 9, 10, 12, 25, 26].
The BOSPHORUS dataset contains 105 subjects with total
4666 facial images annotated according to FACS code and
their corresponding AU intensity in a scale [0 5]. It contains
annotated information for the AU [1, 2, 4, 5, 6, 7, 9, 10, 12,
14, 15, 17, 20, 23, 25, 26, 43]. The common features from



TABLE II
EXPERIMENTAL TASKS EMPLOYED IN THIS STUDY

Experimental task Duration Affective
(min) State

Social Exposure
1.1 Neutral (reference) 1 N
1.2 Interview 2 S
Emotional recall
2.1 Neutral (reference) 1 N
2.2 Recall anxious event 1 S
2.3 Recall stressful event 1 S
Stressful images/Stroop task
3.1 IAPS stressful images 2 S
3.2 Stroop Colour-Word Test (SCWT) 2 S
Stressful videos
4.1 Neutral (reference) 1 N
4.2 Calming video 2 R
4.3 Adventure video 2 S
4.4 Psychological pressure video 2 S
Note: Intended affective state N:neutral,S:stress,R:relaxed)

the two training datasets are combined and provided with
other non-common features to the SVM model.

E. Features relevance

The most relevant/important AU features are investigated
and selected in order to state their relevance with stress and
to improve the performance of the stress model. The ranking
of feature importance was performed using the minimum Re-
dundancy Maximum Relevance (mRMR) selection algorithm
[16]. This algorithm evaluates the features’ importance rank-
ing based on maximal relevance and minimum redundancy
optimizing in terms of the Mutual Information Quotient
(MIQ) criterion [17]. The number of retained features was
determined by minimizing the misclassification error using
10-fold SVM discrimination accuracy between neutral and
stress states.

F. Experimental procedure

The experimental procedure used in this study aims to
induce stress states to participants employing different types
of stressors. These stressors are categorized into 4 different
phases (social exposure, emotional recall, mental workload
tasks, stressful videos) corresponding to different stress types
were determined. The experimental procedure is presented
in .Table 2 Each of the participants was seated in front of a
computer monitor. The camera was placed on a tripod at
the back top of the monitor and at a distance of 90 cm
with its field of view covering the participant’s face and
possible movements during the experiment. At the beginning
of the procedure, participants were informed about the whole
procedure as well as about the terms of anxiety and stress.

G. Experimental Dataset (SRD’15)

The population of this study were 24 participants (7
women, 17 men) with age 47.3±9.3 years. The study was ap-
proved by the North-West Tuscany ESTAV (Regional Health
Service, Agency for the Technical-Administrative Services of
Wide Area) Ethical Committee. Data were recorded during
the second data acquisition campaign (SRD’15) of a research

project aiming at the development of computational platform
monitoring cardio-metabolic risk [18].

III. RESULTS

A. Training datasets validation

The SVM model was trained following the procedure
described in sections -II.B.II.D The training effectiveness
was assessed validating the model after the training phase.
A 10-fold cross-validation technique was used for model
validation using an SVM classifier. The model’s performance
was assessed using the measures

Acc =
TP + TN

TP + TN + FN + FP

F 1 =
2 · precision · recall
(precision + recall)

However, the F1 measure was considered more appropri-
ate, as there are great time segments where there is no AU
present (neutral face). The results of the validation phase are
presented in Table 3 and Table 4. It can be observed that
the combined model in most cases of AU outperforms the
individual models because it achieves better generalizability.

B. AU intensity extraction

The intensity (scale 0-5) of each of the 15 AU features
(AU1, AU2, AU4, AU5, AU6, AU7, AU9, AU10, AU12,
AU14, AU15, AU17, AU20, AU23, AU25, AU26) from the
FACS which described in section II Awere extracted per
frame. Typical timeseries of an AU (AU17) for a neutral
and a stressful task (adventure video) is presented in Fig. 2.

The AU present different patterns between neutral and
stress states, which in most cases the AU’s intensity is
significantly higher during stress conditions indicating a
more expressive face as it is discussed in section III.C

Fig. 2. Plot showing the AU17 intensity temporal evolution over 20 sec of
one subject. A neutral state (task 4.1) denoted in blue line and the adventure
video (task.4.3) denoted in red line



TABLE III
ACCURACY MEASURE USING 10-FOLD CROSS VALIDATION TECHNIQUE FOR THE UNBC, BOSPHORUS, AND THE COMBINED MODEL

(UNBC+BOSPHORUS)

Model AU01 AU02 AU04 AU05 AU06 AU07 AU09 AU10 AU12 AU14 AU15 AU17 AU23 AU25 AU26
UNBC 0.78 0.87 0.91 0.99 0.78 0.79 0.69
BOSPHORUS 0.74 0.74 0.87 0.75 0.82 0.77 0.95 0.80 0.92 0.88 0.75 0.82 0.79 0.78 0.92
Combined model 0.77 0.75 0.88 0.82 0.62 0.82 0.88 0.86 0.74 0.82 0.84 0.81 0.91 0.82 0.65

TABLE IV
F1 MEASURE USING 10-FOLD CROSS VALIDATION TECHNIQUE FOR THE UNBC, BOSPHORUS, AND THE COMBINED MODEL

(UNBC+BOSPHORUS)

Model AU01 AU02 AU04 AU05 AU06 AU07 AU09 AU10 AU12 AU14 AU15 AU17 AU23 AU25 AU26
UNBC 0.44 0.20 0.15 0.71 0.51 0.21 0.48
BOSPHORUS
Combined model 0.46 0.42 0.65 0.55 0.32 0.42 0.15 0.51 0.47 0.41 0.33 0.52 0.4 0.28 0.28

C. Statistical analysis

The dataset was checked for normality for each AU and
each task according to the Kolmogorov-Smirnov (KS) test. In
most cases, data samples under consideration follow the nor-
mal distribution. An initial statistical evaluation (dependent
samples t-test or the corresponding non-parametric Wilcoxon
signed rank test respectively) was performed and the results
of selected features are presented in Table V.

Increased AU intensities can be observed along all stress-
ful tasks meaning that the face tends to be more “expressive”,
i.e. manifesting more intense AU during stress conditions.
Only during emotional recall phase, there were not signifi-
cant widespread differences.

D. AU involvement in stress conditions

The AU most implicated in stress conditions were also
investigated. Towards this end, the mRMR and random forest
(RF) were employed. The top-ranked features were inserted
iteratively in the feature subset evaluating each candidate
subset’s performance in terms of 10-fold SVM classification
accuracy used as the objective function. The results are
presented in Table VI.

This procedure revealed that for the AU stress detection
problem under investigation, a subset of 5 or 6 most relevant
features may differentiate effectively the two states. It should
be noted that there is a consistent selection of relevant
features along the 3 algorithms used.

E. Application of the trained model on stress detection

Then, the model was tested in the experimental SRD’15
dataset. The videos were the input of the system and were
grouped according to the label of the task in 2 groups (no
stress, stress states). All the AU under investigation were
extracted from the trained combined model that was used as
the initial features matrix. The most relevant features were
assessed using traditional Machine Learning classification
schemes in terms of their ability to discriminate between the
two classes (no stress, stress) for all experimental phases.
A 10-fold cross-validation scheme on was used utilizing the
classifiers k nearest neighbours (KNN), Generalized Linear

Model (GLM), Naı̈ve Bayes (NVB), Linear Discriminant
Analysis (LDA), Support Vector Machines (SVM). The
results are shown in Table VII. The results of Table VII
indicate that the SVM outperforms all other classification
schemes with a classification accuracy of 74.6%. It should
be noted that the results would be accounted fair, considering
they are subject-independent because of the normalization
that performed in the face alignment and the removal of the
rigid information. Besides, except for the interview task, the
other tasks do not include intense facial expressions.

IV. DISCUSSION

This paper presents a system for facial Action Units (AU)
detection that was applied for stress recognition. This system
was trained on two publicly available datasets, the UNBC
and BOSPHORUS, fusing them in a combined model. It was
shown that in most cases the combined model present better
performance in comparison to the individual performance
of each model. There is the belief that the inclusion of
more datasets in the model would probably enhance its
generalizability that should be checked. The most efficient
AU tracking is observed for the AU09 (Nose wrinkle),
AU10 (Upper lip raiser), AU04 (Brow lowerer), AU23 (Lip
tightener), AU14 (Dimpler).

Regarding the application of the model on stress dataset
(SRD’15), the AU that implicated in stress conditions were
in vestigated, leading to the notion that the ones that are
modulated and are able to discriminate the two emotional
states are the AU17 (Chin raiser), AU25 (Lips part), AU1
(Inner brow raiser), AU7 (Lid tightener), AU26 (Jaw drop).
An interesting conclusion is that stressful tasks lead to
significant increased AU intensities, i.e. a more “expressive”
face. This is in accordance with the increased head motility
during stress conditions [19] and reduced motility according
to the levels of depression severity [20]. It is notable that
the most efficient classification accuracies are observed, as
expected, on experiment phases where the participant was
asked to be more communicative such as interview and
Stroop Colour Word task.



TABLE V
SUMMARY OF AU STATISTICS ALONG EXPERIMENTAL TASKS PRESENTING SIGNIFICANT DIFFERENCES DURING STRESS CONDITIONS

AU Interview Recall anxious Recall stressful IAPS Stroop CWT Adventure video Psychological pressure
event event video

p diff p diff p diff p diff p diff p diff p diff
AU01 0.000 ↑ 0.004 ↑ 0.000 ↑ 0.017 ↑ 0.006 ↑
AU02 0.000 ↑ 0.016 ↑ 0.000 ↑ 0.035 ↑
AU04 0.029 ↓ 0.009 ↑ 0.000 ↑ 0.001 ↑ 0.001 ↑
AU05 0.000 ↑ 0.015 ↑ 0.005 ↑ 0.006 ↑
AU06 0.000 ↑ 0.001 ↑
AU07 0.000 ↑ 0.02 ↑ 0.003 ↑
AU09 0.000 ↑ 0.000 ↑ 0.005 ↑
AU10 0.000 ↑ 0.001 ↑
AU12 0.000 ↑ 0.006 ↑
AU14 0.012 ↑ 0.041 ↑
AU15 0.000 ↑ 0.019 ↑
AU17 0.000 ↑ 0.007 ↑ 0.000 ↑ 0.01 ↑ 0.016 ↑
AU20 0.000 ↑ 0.026 ↑ 0.000 ↑
AU23 0.000 ↑ 0.003 ↑ 0.000 ↑
AU25 0.000 ↑ 0.011 ↑ 0.000 ↑
AU26 0.000 ↑ 0.017 ↑ 0.000 ↑ 0.049 ↑
AU45 0.001 ↑ 0.023 ↓
↑/↓ significant increase/decrease during stress conditions
ns: non-significant difference

Results indicate that during stress conditions there are
specific AU that are differentiated from the normal state.
In fact there some facial areas that appear motility leading
to what is considered micro-expressions which is sometimes
the result of nervousness and irritability. There were some
clear patterns in AU during stress A good research question
is how the AU implicated most in stress conditions are
combined in order to form complex facial expressions and
how they are manifested in the human face that would be the
subject of future research. The dataset that was investigated
in this study had framerate of 30 and surely a better temporal

TABLE VI
RELEVANT FEATURES IMPLICATED IN STRESS CONDITIONS USING

MRMR, RF AND FISCHER RATIO ALGORITHMS AND THEIR

CORRESPONDING OBJECTIVE FUNCTION ACCURACY

Algorithm Relevant features Classification
Accuracy (10-fold)

mRMR AU17, AU25, AU01, AU07, 0.73
AU26

RF AU01, AU17, AU20, AU25, 0.71
AU26

Fischer ratio AU25, AU17, AU01, AU23, 0.67
AU26, AU02, AU05

TABLE VII
CLASSIFICATION RESULTS OF THE 10-FOLD CROSS VALIDATION SVM

METHOD ON THE COMBINED TRAINED MODEL (UNBC+BOSPHORUS)
APPLIED ON THE EXPERIMENTAL DATASET (SRD’15)

Classifier Classification Sensitivity Specificity
Accuracy (%) (%) (%)

KNN 68.2 92.3 61.5
GLM 69.7 88.6 37.5

Naı̈ve Bayes 57.7 72.7 40.0
LDA 58.0 83.3 40.0
SVM 74.6 83.3 50.0

resolution would reveal more cues coming from micro-
expressions that in this resolution remain hidden. In general,
facial expression as represented through facial AU are a
promising approach to face analysis related to the affective
state estimation.
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