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1 Proof of Proposition 1

Let T (x) = Rθx denote the rotation of the image coordinates x, with Rθ being the

rotation matrix. Applying the chain rule to the Jacobian matrix we have that

J{u ◦ T } (x) = Ju (T (x))Rθ, (1)

where ◦ denotes the composition of functions. Now, we write the structure tensor as

SK {u ◦ T } (x) = R
T
θ

(

K ∗
(
(Ju (T (x)))T Ju (T (x))

)

︸ ︷︷ ︸

(h◦T )(x)

)

Rθ. (2)

Since the convolution kernel K is rotationally symmetric, it holds that

{K ∗ (h ◦ T )} (x) = {K ∗ h} (T (x)) . (3)

Thus, we have

SK {u ◦ T } (x) = R
T
θ SK {u} (T (x))Rθ. (4)

The structure tensor, evaluated at coordinates x, is real and symmetric. Therefore, it

admits an eigendecomposition where we can always choose the corresponding eigen-

vectors to be rotation matrices. This implies that the rotation of the image coordinates

leaves untouched the eigenvalues of the structure tensor and affects only its eigenvec-

tors. Since the proposed energy functionals depend only upon the eigevnalues, and since

we are integrating over the whole domain, the energy will be preserved despite the trans-

formation of the coordinate system, i.e., Ep (u ◦ T ) = Ep (u).

The contrast covariance property can be verified by noting that a scaling of the

image intensities by a positive factor a, corresponds to a scaling of
√
λ± by the same

factor. We further use that all ℓp norms are one-homogeneous, which completes the

proof.
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2 Proof of Proposition 2

To find the adjoint of the discrete weighted Jacobian operator, we exploit the relation

of the inner products of the spaces RNM and X , R
N×(LM)×2

〈Y , JKu〉
X
= 〈J∗

KY , u〉2 . (5)

Using the definition of the inner product in X ,

〈X , Y 〉
X
=

N∑

n=1

tr
(
Y T
n Xn

)
(6)

we can equivalently write (5) as

N∑

n=1

tr
(

[JKu]
T

n Yn

)

=

M∑

m=1

N∑

n=1

[um]n [J
∗
KY ](n,m) . (7)

We then expand the l.h.s of (7), to obtain

N∑

n=1

M∑

m=1

L∑

l=1

[Pyl
◦Dhum]

n
Y ((m−1)L+l,1)
n + [Pyl

◦Dvum]n Y
((m−1)L+l,2)
n

=

N∑

n=1

M∑

m=1

L∑

l=1

[um]n

([

D∗
h ◦ P∗

yl
◦ Y ((m−1)L+l,1)

]

n
+
[

D∗
v ◦ P∗

yl
◦ Y ((m−1)L+l,2)

]

n

)

=

M∑

m=1

N∑

n=1

[um]n

(
L∑

l=1

−div
[

P
∗
yl
◦ Y ((m−1)L+l,:)

]

n

)

, (8)

where div is the discrete divergence4 and P∗ is the adjoint of the shift operator P . Note

that Y
(i,j)
n with 1 ≤ n ≤ N , 1 ≤ i ≤ LM , and 1 ≤ j ≤ 2, corresponds to a single

element of Y ∈ X , while Y
(i,:)
n is a vector whose elements correspond to those of the

ith row of the nth matrix componentYn ∈ R
(LM)×2 of Y . Now, by comparing the r.h.s

of (7) to the r.h.s expansion of (8), it is straightforward to verify that the adjoint of the

discrete weighted Jacobian operator is indeed computed according to the formula given

in Proposition 2.

3 Proof of Proposition 3

The proof of Proposition 3 is straightforward and it is based on the special structure

of the patch-based Jacobian. First, we introduce the variables zm,1, zm,2 and zm,3,

4 The exact formula for the discrete divergence depends on the discretization scheme one uses

for the gradient. For example, in our implementation we used a commonly used discretiza-

tion that uses forward differences, as in [1]. In this case, the adjoint operator is the discrete

divergence that is defined using backward differences (see [1] for details).
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defined as

zm,1 [xn] = (Dh {um} [xn])2 (9a)

zm,2 [xn] = Dh {um} [xn] ·Dv {um} [xn] (9b)

zm,3 [xn] = (Dv {um} [xn])2 . (9c)

Next, by using the definition of the patch-based Jacobian we have

[JKu]
T

n [JKu]n =







M∑

m=1

L∑

l=1

w [yl]
2
zm,1 [xn − yl]

M∑

m=1

L∑

l=1

w [yl]
2
zm,2 [xn − yl]

M∑

m=1

L∑

l=1

w [yl]
2
zm,2 [xn − yl]

M∑

m=1

L∑

l=1

w [yl]
2
zm,3 [xn − yl]







=







M∑

m=1

L∑

l=1

K [yl] zm,1 [xn − yl]
M∑

m=1

L∑

l=1

K [yl] zm,2 [xn − yl]

M∑

m=1

L∑

l=1

K [yl] zm,2 [xn − yl]
M∑

m=1

L∑

l=1

K [yl] zm,3 [xn − yl]







= K ∗







M∑

m=1
zm,1 [xn]

M∑

m=1
zm,2 [xn]

M∑

m=1
zm,2 [xn]

M∑

m=1
zm,3 [xn]







= K ∗







M∑

m=1
(Dh {um} [xn])2

M∑

m=1
Dh {um} [xn] ·Dv {um} [xn]

M∑

m=1
Dh {um} [xn] ·Dv {um} [xn]

M∑

m=1
(Dv {um} [xn])2







= [SKu]n . (10)
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4 MFISTA Framework for General Linear Inverse Problems

A detailed description of the overall algorithm for solving general linear inverse

problems of the form

argmin
u∈RNM

1

2
‖Au− z‖22 + τEp (u) + ιC (u)

︸ ︷︷ ︸

ψ(u)

, ∀p ≥ 1, (11)

is provided in Algorithm 2. We note that the proposed minimization strategy depends

on the evaluation of the proximal map of the regularizer ψ (u). This evaluation takes

place using the proposed method described in Algorithm 1.

Algorithm 2 : Numerical algorithm for solving general linear inverse problems.

Input: y, A, τ > 0, p ≥ 1, α >
∥
∥ATA

∥
∥, ΠC.

Initialization: v1 = u0, t1 = 1, c1 = ψ (u0).

while stopping criterion is not satisfied do

zn ← prox τ

α
ψ

(
vn + α−1AT (y −Avn)

)
;

tn+1 ←
1+
√

1+4t2
n

2
;

cn+1 = ψ (zn);

if cn+1 > cn then

cn+1 = cn;

un+1 ← un;

vn+1 ← un +
tn
tn+1

(zn − un);

else

un+1 ← zn;

vn+1 ← zn +
(
tn−1

tn+1

)

(zn − un);

end

n← n+ 1;

end

return un;
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