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This paper addresses the task of recovering the geoacoustic parameters of a shallow-water
environment using measurements of the acoustic field due to a known source and a neural network
based inversion process. First, a novel efficient “observable” of the acoustic signal is proposed,
which represents the signal in accordance with the recoverable parameters. Motivated by recent
studies in non-Gaussian statistical theory, the observable is defined as a set of estimated model
parameters of the alpha-stable distributions, which fit the marginal statistics of the wavelet subband
coefficients, obtained after the transformation of the original signal via a one-dimensional wavelet
decomposition. Following the modeling process to extract the observables as features, a radial basis
functions neural network is employed to approximate the vector function that takes as input the
observables and gives as output the corresponding set of environmental parameters. The
performance of the proposed approach in recovering the sound speed and density in the substrate of
a typical shallow-water environment is evaluated using a database of synthetic acoustic signals,
generated by means of a normal-mode acoustic propagation algorithm.
© 2007 Acoustical Society of America. �DOI: 10.1121/1.2772232�
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I. INTRODUCTION

Inverse problems in underwater acoustics are associated
with measurements of the acoustic field performed in the
frequency or in the time domain. In this framework, a set d
of observables is defined, which forms the input parameters
of the inverse problem. The observables are related to the
recoverable environmental parameters m through a linear or
nonlinear vector equation of the form T�d ,m�=0.

The inversion procedure is based on the properties of the
relationship between m and d, and it is considered to be
more efficient if even small variations of the environmental
parameters are associated with observables which can be
clearly discriminated via the mapping T�· , · �. Since the per-
formance of a specific inversion procedure is directly related
to the selected observables, defining observables which are
easily identifiable and as sensitive as possible to changes of
the environmental parameters, constitutes an important task.

Determining the sea-bed parameters from acoustic mea-
surements obtained in the water column is among the most
interesting inverse problems in underwater acoustics.1–4 It
should be noted that most of the inversion procedures and
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the associated observable identification �feature extraction�
are based on deterministic approaches. In recent work,5,6 we
proposed a novel observable for acoustic signals, based on a
symmetric alpha-stable �S�S� statistical modeling of the co-
efficients obtained after a transformation of the original sig-
nal using the one-dimensional �1D� dyadic wavelet transform
�DWT�. Then, a classification scheme was designed by com-
bining the extracted features, that is, the estimated S�S pa-
rameters at each wavelet subband, with a closed-form ex-
pression of the Kullback-Leibler divergence �KLD� between
S�S distributions. First results based on synthetic data
showed that the proposed scheme provided a very accurate
classification of a recorded acoustic signal in the true un-
known environment, specified by several sets of parameters
�e.g., sound speed profiles in the water and/or bottom do-
mains, layer thicknesses and densities, source location, etc.�.

Based on the above, in this paper we treat the inverse
problem as a function approximation problem. In particular,
we consider a nonlinear mapping T with arguments the esti-
mated S�S parameters and output the set of the correspond-
ing environmental parameters. Our goal is to find an accurate
approximation of T. An efficient approximation of such a
mapping between an acoustic field and its corresponding
geoacoustic parameters is achieved using neural network-
based approaches. In previous studies,7,8 the inversion pro-

cess was carried out by employing multilayer feed-forward
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neural networks. In the present work, a neural network-based
approach is employed using radial basis functions �RBF�,
since it is well known that RBF neural networks provide a
suitable approximation to nonlinear functions in an efficient
way. In particular, we propose a modified version of the stan-
dard RBF neural network, by replacing the Euclidean dis-
tance function, which measures the similarity between the
input vectors and the centers of the hidden neurons, with the
KLD between S�S distributions.

The paper is organized as follows: In Sec. II, the statis-
tical modeling via S�S distributions is described, and the
procedure for the design of the modified RBF network based
on the KLD between S�S distributions is analyzed in detail.
In Sec. III, the proposed RBF neural network is applied to a
database of simulated acoustic signals generated in a shallow
water environment to evaluate the inversion performance.
Finally, we conclude in Sec. IV giving some future research
directions.

II. THEORETICAL BACKGROUND

In the following, we introduce the main mathematical
background of the proposed inversion scheme.

A. Statistical modeling via S�S distributions

The proposed geoacoustic inversion process is per-
formed in two steps: First, a feature extraction procedure is
applied, which represents the information content of a given
acoustic signal with an appropriate set of features and sec-
ond, the extracted features are used to build a RBF neural
network.

During the feature extraction step, the acoustic signal is
decomposed into several levels through a multiresolution
analysis employing the 1-D DWT. This transform works as
follows: Starting from the given signal s�t�, two sets of co-
efficients are computed at the first level of decomposition, �i�
approximation coefficients A1 and �ii� detail coefficients D1.
These vectors are obtained by convolving s�t� with a low-
pass filter for approximation and with a high-pass filter for
detail, followed by dyadic decimation. At the second level of
decomposition, the vector A1 of the approximation coeffi-
cients is decomposed in two sets of coefficients using the
same approach replacing s�t� by A1 and producing A2 and
D2. This procedure continues in the same way, namely at the
kth level of decomposition we filter the vector of the ap-
proximation coefficients computed at the �k−1�th level.
Thus, when s�t� is decomposed in L levels, we obtain a set of
L detail subbands �containing the high-frequency content�
and one approximation subband �containing the low-
frequency content�.

For short-time, pulse shallow-water acoustic signals, the
1-D DWT seems to be a powerful modeling tool, providing a
natural arrangement of the wavelet coefficients into multiple
levels representing the frequency content of the signal in
consecutive bands.9 Besides, it has been pointed out that the
wavelet transforms of signals which present such a transient
behavior tend to be sparse, resulting in a large number of
coefficients with small magnitude and a small number of

10
large magnitude coefficients. This property gives rise to
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peaky and heavy-tailed non-Gaussian marginal distributions
of the wavelet subband coefficients.10

Following the acoustic signal decomposition, an accu-
rate fitting of the tails of the marginal distribution of the
wavelet coefficients at each subband is achieved by model-
ing them as S�S random variables. A S�S distribution is best
defined by its characteristic function:11

��t� = exp�i�t − ���t��� , �1�

where � is the characteristic exponent, taking values 0��
�2, ��−� ��� � � is the location parameter, and ���
�0� is the dispersion of the distribution. The characteristic
exponent is a shape parameter, which controls the “thick-
ness” of the tails of the density function. The smaller the �,
the heavier the tails of the S�S density function. The disper-
sion parameter determines the spread of the distribution
around its location parameter, similar to the variance of the
Gaussian.

In our previous work,5 the content of an underwater sig-
nal was accurately represented with a set of features, which
is much smaller in size than the signal itself or any other
representation in the frequency or wavelet domain. This set
contains the maximum likelihood �ML� estimated parameters
�� ,�� of the S�S distribution at each wavelet subband.

Thus, for a given acoustic signal S, decomposed in L
levels, its feature vector d is given by the following set of
L+1 pairs:

S � d = ���1,�1�,��2,�2�, . . . ,��L+1,�L+1�� , �2�

where ��i ,�i� are the estimated model parameters of the ith
subband, using the consistent ML method described by
Nolan,12 which gives reliable estimates and provides the
tightest confidence intervals. Note also that we follow the
convention that i=1 corresponds to the detail subband at the
first decomposition level, while i=L+1 corresponds to the
approximation subband at the Lth level.

B. Inversion using a RBF neural network

As we demonstrated in a recent work,5 the KLD13 is
capable of distinguishing between two distinct acoustic sig-
nals, since the KLD between two signals generated in similar
shallow-water environments is almost zero, whereas it in-
creases when the signals are obtained from different environ-
ments. Thus, the function T, which maps the estimated S�S
parameters d to the corresponding environmental parameters
m, is a well-defined nonlinear vector function. We also as-
sume that T defines a one-to-one correspondence between d
and m.

This observation yields that there is a nonlinear vector
function T :A�Rn, where A�R2�L+1� contains the esti-
mated parameters ���1 ,�1� , . . . , ��L+1 ,�L+1�� of each signal
and n is the number of the environmental parameters we are
interested in. In this paper, the shallow-water environment is
modeled as a two-layered medium, with the first layer repre-
senting the water column and the second semi-infinite layer
representing the substrate. Then, we focus on the recovery of
the sound speed in the substrate, csb, and the substrate den-

sity 	sb. That is, the function T maps the S�S parameters in
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R2, and particularly in vectors of the form m= �csb ,	sb�. Note
that a similar problem can be defined for each set of recov-
erable environmental parameters. In our previous work,5 it
was shown that the KLD is capable of performing the iden-
tification of the parameters characterizing the sound speed
profile in the water column as well.

Working in this framework, we proceed by converting
the inverse problem into a function approximation problem.
In particular, if we were able to approximate accurately the
function T, then we would be able to find a solution to the
inverse problem, since the insertion of the estimated S�S
parameters of a signal, recorded in an unknown environment,
into T, would result in the computation of the vector m
= �csb ,	sb� with elements the substrate parameters of the un-
known environment.

An efficient process to solve the above-mentioned func-
tion approximation problem is achieved by using a RBF neu-
ral network,14 as it is well known that such a network is
suitable for the approximation of a nonlinear function. A
RBF network consists of two layers: a hidden radial basis
layer of N1 neurons, and an output linear layer of N2 neurons.
In the test case described in Sec. II C, N1 can be at most
equal to the number of training samples �M� and N2=2, since
we are interested in recovering the two environmental pa-
rameters �csb ,	sb�.

Figure 1 shows the model of a single radial basis neuron
in the hidden layer. In particular, the net input, n, to the
transfer function is the vector distance between its center c
and the input vector d, multiplied by the bias b. Thus, the
output of the radial basis neuron, a, is equal to the value of
the selected transfer function evaluated at b · �d−c�.

Figure 2 shows the general architecture of a RBF net-
work. Each radial basis neuron of the hidden layer is denoted
by using its corresponding transfer function �i, i=1, . . . ,N1,
while each neuron of the output linear layer is denoted by Lj,
j=1, . . . ,N2. Following the notation of Fig. 1, the output of a
single hidden radial basis neuron is given by ai=�i�bi · �d
−ci � �, where bi and ci are the bias and the center of the ith
radial basis neuron, respectively. Then, the output of a neu-
ron in the linear layer is given by m j =	i=1

N1 wi,jai+bj. In a
common RBF network, the �dist� box in Fig. 1 measures the
Euclidean distance between the input vector d and the center
of the ith neuron, ci. The transfer function for a radial basis
neuron is ��n�=e−n2

, which has a maximum of 1 when its
input is 0. As the distance between ci and d decreases, the

FIG. 1. The radial basis neuron model.
output increases. Thus a radial basis neuron acts as a detector
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which produces 1 whenever the input d is identical to its
center ci. Besides, the bias bi allows the sensitivity of the ith
radial basis neuron to be adjusted. For example, if a neuron i
had a bias of 0.1 its transfer function �i�n� would output 0.5
for any input vector d at vector distance of 8.326 �0.8326/bi�
from its center ci.

Thus, the jth component, m j, of the vector function T is
approximated as a linear combination of the set of radial
basis functions:

T̃ j�d� 
 m̃ j = 	
i=1

N1

wi,j�i�d� + bj =
bj=w0,j

	
i=0

N1

wi,j�i�d� , �3�

where wi,j is equal to the weight of the edge connecting the
ith radial basis neuron with the jth output of the network �see
Fig. 2�. In Eq. �3�, the auxiliary radial basis function �0�d� is
the constant function �0�d�=1. The most common form of
basis function used is the Gaussian

�i�d� 
 �i�bi · �d − ci�� = exp�−
�d − ci�2

2
i
2 � ,

where ci and 
i are the mean and standard deviation of the
basis function, respectively. This basis function is of the
form e−n2

with n=bi · �d−ci�, where bi=1/2
i. A hidden
neuron is more sensitive to input vectors near its center. This
sensitivity may be tuned by adjusting the widths �spread pa-
rameters� 
i. For a given input vector, typically only a few
hidden units will have significant activations. Besides, the
spread parameters should be chosen large enough so that
neurons respond strongly to overlapping regions of the input
space, but they should not be too large so that each neuron
would effectively respond in the same large area of the input
space.

In the following, we study an inversion scheme based on
two different kinds of RBF networks. The first one employs
the standard RBF network architecture described so far, that
is, the �dist� in Fig. 1 is the common Euclidean distance and
the transfer functions �i are Gaussians. The second novel
scheme is based on a modification of the standard RBF ar-
chitecture. In particular, we are interested in exploiting the
results of our previous work,5 where it was illustrated that
two distinct acoustic signals represented by their correspond-

FIG. 2. The general architecture of a RBF network.
ing feature vectors can be discriminated very accurately by
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employing a version of the KLD between two S�S distribu-
tions. Motivated by these results, we modify the standard
RBF network by replacing the similarity measure between
the input layer and the hidden radial basis layer, namely, by
replacing the Euclidean distance with the KLD between S�S
distributions.

C. Modified RBF network

In the modified RBF network the similarity measure-
ment between an input vector d and the ith radial basis neu-
ron’s center ci is carried out by employing the KLD between
two S�S distributions. In our previous study,5 we showed
that a chain rule can be applied in order to combine the
KLDs from the multiple wavelet subbands. In particular, the
overall distance between two acoustic signals S1 and S2,
which are represented by the feature vectors d1 and d2 given
by Eq. �2�, respectively, has the following expression:

D�S1,S2� 
 D�d1,d2� = 	
k=1

L+1

D��q̂S1,k�q̂S2,k� , �4�

where D�q̂S1,k � q̂S2,k� is the KLD between the kth wavelet
subbands of the two signals, which is evaluated using the
estimated S�S parameters ��1,k ,�1,k� and ��2,k ,�2,k�, respec-
tively. This marginal KLD is given by

D��q̂S1,k�q̂S2,k� = ln� l2,k

l1,k
� −

1

�1,k

+ ��2,k

�1,k
��2,k

·

���2,k + 1

�1,k
�

�� 1

�1,k
� , �5�

with li,k, i=1,2, being a normalizing factor, which is equal to

li,k =

2�� 1

�i,k
�

�i,k�i,k
, �6�

where ��·� is the gamma function.
We modify the standard radial basis neuron model,

shown in Fig. 1, by replacing the Euclidean distance �com-
puted by the �dist� box� with the overall KLD between vec-
tors containing estimated S�S parameters �4�. Accordingly,
the modified output of a single hidden radial basis neuron is
given by

ai
mod = �i�bi · D�d,ci�� , �7�

where D�d ,ci� is the overall KLD between the input vector d
and the center ci of the ith radial basis neuron. The transfer
functions ��i�·��i=1,. . .,N1

have the form,

�i�d� 
 �i�bi · D�d,ci�� = exp�− bi · �D�d,ci��2� ,

where again the bias bi is inversely proportional to the spread
of the radial basis function, that is, bi�1/
i. Note that the
KLD is always non-negative, D�d1 ,d2��0, with an equality
if and only if the corresponding S�S parameter pairs are
equal, ��1,k ,�1,k�= ��2,k ,�2,k�, k=1, . . . ,L+1. Thus, the trans-

fer function of the ith neuron has an output equal to 1 if and
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only if its center ci is equal to the input vector d.
Notice that the KLD between S�S distributions, given

by Eq. �4�, is not an actual distance function, since it does
not satisfy the property of symmetry. However, we can de-
fine a symmetrized version of the KLD as follows:

Dsym�d1,d2� = D�d1,d2� + D�d2,d1� . �8�

It can be easily verified that Dsym�· , · � satisfies all the prop-
erties of a distance function. In the subsequent illustrations,
we will also test the performance of a RBF network based on
the symmetrized KLD, that is, whose radial basis transfer
functions have the form

�i�d� = exp�− bi · �Dsym�d,ci��2� .

D. Training process

In our proposed scheme, the �standard or modified� RBF
network is trained using two different processes, namely, an
exact and a more efficient one �let P1 and P2 denote the
exact and the efficient process, respectively�. The exact train-
ing process computes the weights �wi,j�i=1,. . .,N1,j=1,. . .,N2

and
the biases �bj� j=1,. . .,N2

, such that the produced network
achieves zero error on the training vectors. Besides, the exact
process creates as many radial basis neurons as there are
input vectors, where the ith input vector is used as the center
ci of the corresponding neuron. The drawback of the exact
process is that it produces a large network when many input
vectors are needed to properly define a network.

On the other hand, the second and more efficient train-
ing process produces the RBF network iteratively, by adding
one neuron at a time, starting with a single neuron. At each
iteration, the input vector that will result in lowering the
network error the most is used to create a radial basis neuron.
The error of the new network is checked, and if it is low
enough the training process terminates. Otherwise, the next
neuron is added. Neurons are added to the network until the
sum-squared error �SSE� falls below a specified error thresh-
old or a maximum number of neurons is reached. Given a
network with K radial basis neurons and input-output pairs
��dk ,mk��k=1,. . .,K, the SSE is given by

SSE = 	
k=1

K

�T̃�dk� − mk�2, �9�

where T̃�dk� is the approximation of the function T at the
input point dk, obtained at the output of the RBF network.

In both of the above-presented training processes it is
important that the spread parameter of the transfer function
of each radial basis neuron be large enough so that the neu-
rons respond to overlapping regions of the input space. This
also results in a better generalization for new input vectors
occurring between input vectors used in the training process.
However, the spread parameter should not be too large that
all the neurons respond in essentially the same manner.

For the standard transfer function, ��n�=e−n2
, the bias,

bi, of the ith radial basis neuron is related to the spread, 
i, of
the corresponding transfer function with the expression: bi
= −ln�0.5� /
i. This means that if the neuron’s center ci is at
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a distance of 
i from the input vector d, then the output of
the transfer function will be 0.5. In the subsequent illustra-
tions, the influence of the exponent value of the transfer
function is also studied. In particular, we design RBF net-
works whose transfer function has the general form ��n�
=e−nr

, where r is a positive integer, which is also known as a
sharpness parameter. In this case, the bias is related to the
spread parameter via the expression: bi=r −ln�0.5� /
i.

A common heuristic for the selection of the spread pa-
rameter of a radial basis neuron is the following: Choose a
spread constant larger than the distance between adjacent
input vectors, so as to get good generalization, but smaller
than the distance across the whole input space. Thus, in the
standard RBF network it should be ensured that dE,min�
i

�dE,max, where dE,min and dE,max are the minimum and maxi-
mum Euclidean distances between the training input vectors,
respectively. Similarly, in the modified RBF network one
should ensure that dKLD,min�
i�dKLD,max, where dKLD,min

and dKLD,max are the minimum and maximum KLDs between
the entraining input vectors, respectively, given by Eq. �4� or
�8�.

III. APPLICATION OF THE INVERSION SCHEME
USING SYNTHETIC DATA

In this section, the efficiency of the proposed inversion
scheme for shallow-water acoustic transmissions is evaluated
using synthetic signals, based on the range independent and
axially symmetric environment described in Table I. Figure 3
shows the sea environment of the experimental setup consist-
ing of a shallow-water layer and a semi-infinite bottom �the
substrate�, which are considered fluid. The sound speed pro-
file may vary with depth in the water layer, while it is con-
stant in the substrate. Here, a linear sound speed profile in
the water column is considered. For simplicity, the density of
both layers is assumed to be constant.

As an attempt to simulate a geoacoustic inversion ex-
periment, we consider a low-frequency sound source, with
central frequency f0=100 Hz and bandwidth f =40 Hz. The
source excitation function is modeled as a Gaussian, placed
at a known depth of 100 m. A single receiver is placed at a

TABLE I. The shallow water environment.

Water Depth �H� 200 m
Range �R� 5 km
Central frequency �f0� 100 Hz
Bandwidth �f� 40 Hz
Source/receiver depth 100 m
Sound speed profile in the water:
cw�0� 1500 m/s
cw�min� 1490 m/s
cw�H� 1515 m/s
d �depth of min cw�z�� 50 m
Semi-infinite substrate: �varying parameters�
csb �1550, 1650� m/s
	sb �1170, 1240� kg/m3
distance of 5 km from the source and at the same depth. The
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experiment is aiming at the identification of the sea bed,
characterized by the sound speed and density of the sub-
strate.

We constructed a database by generating a set of syn-
thetic signals according to the environmental parameters
shown in Table I. The sound speed in the substrate varies in
the interval �1550, 1650� m/s with a step size equal to
5 m/s and the substrate density varies in the interval
�1170, 1240� kg/m3 with a step size equal to 1 kg/m3, re-
sulting in a set with a total of 1491 synthetic acoustic signals.
The signals are calculated using the Normal-Mode program
MODE1 developed at FO.R.T.H-I.A.C.M. Then, the obtained
data are provided as input to the inverse discrete Fourier
transform to yield the signals in the time domain. Each of the
time-domain signals is decomposed by implementing a
three-level 1D DWT using the db4 wavelet function and,
thus, each signal is represented by a vector d with 2�L+1�
=8 elements given by Eq. �2�. The experimental results in
our recent work5 showed that the best classification perfor-
mance is obtained for the db4 wavelet function and using the
estimated S�S parameters of the detail subbands only. Thus,
in the subsequent illustrations each signal is represented by a
vector d with 2L=6 parameters. In addition, the training set
for the design of the RBF networks consists of 500 �out of
the 1491� signals, obtained from distinct speed and density
environmental parameters.

A. Inversion performance using the exact design
process P1

In this section, we study the performance of a RBF net-
work designed using the exact process P1. The RBF network
is constructed using the estimated S�S parameters of a subset
containing M � �50:50:300� signals chosen from the train-
ing set. Besides, N1=M since the RBF network is designed
using the exact process. As mentioned before, the selection
of the spread parameters �
i�i=1,. . .,N1

is crucial for an im-
proved performance of the inversion scheme. In the proposed
method, we assume that all the radial basis neurons have
equal spread parameter, that is, 
i=
, ∀i.

For the determination of 
, the heuristic described in
Sec. II D is followed. In particular, in the case of the standard

FIG. 3. The shallow water sea environment used in the present study.
RBF network, an efficient design is ensured when 0�
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�0.231, where 0 and 0.231 are the minimum and maximum
Euclidean distances, respectively, between the S�S param-
eter vectors of all the signals in the database. Similarly, in the
case of the modified RBF network, the value of 
 should be
selected such that 2.2204�10−16�
�252.59, where
2.2204�10−16 and 252.59 are the minimum and maximum
KLDs, respectively, given by Eq. �4�, between the S�S pa-
rameter vectors of all the signals in the database. Finally,
when the modified RBF network employs the symmetrized
KLD as a distance function, one should choose 8.8818
�10−16�
�259.49, where 8.8818�10−16 and 259.49 are
the minimum and maximum values of the symmetrized
KLDs, respectively, given by Eq. �8�.

The inversion performance is evaluated using several
values of 
, as well as of the sharpness parameter r of the
general transfer function ��n�=e−nr

. In particular, in the case
of the standard RBF network, the value of 
 varies in the
interval �0.05, 5�, while in the case of the modified RBF it
varies in the interval �0.001, 275�. In both cases, r belongs to
the set �1, . . . ,5�. For a given training size M and for fixed r
and 
, we run 100 Monte Carlo iterations, where in each

FIG. 4. Mean absolute error, given by the standard RBF network, as a
function of the spread parameter 
 and the number of training samples M
for: �a� the sound speed csb and �b� the substrate density 	sb.
iteration a new RBF network is designed by randomly select-
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ing a training subset of size M from the training set. In the
subsequent figures and tables, the results have been obtained
using a sharpness parameter r=2, otherwise, the value of r
will be mentioned explicitly.

Figures 4�a� and 4�b� show the total mean absolute error
�MAE� of the estimated sound speed csb and substrate den-
sity 	sb values, respectively, over the whole test set, given by
the standard RBF network, as a function of the spread pa-
rameter 
 and the number of training samples M. First, it can
be seen that in both cases, for a relatively large number of
training samples, the minimum MAE is achieved for a value
of 
 satisfying the corresponding inequality 0�
�0.231.
The second observation is that, as expected, in this region the
performance is improved, that is, the MAE decreases, as M
increases, while out of this region this rule is not valid, es-
pecially for the estimation accuracy of csb.

Figures 5�a� and 5�b�15 show the total MAE of the esti-
mated csb and 	sb values, respectively, over the whole test
set, given by the modified RBF network employing the stan-
dard KLD as a “distance” function, versus the spread param-

FIG. 5. Mean absolute error, given by the modified RBF network employing
the standard KLD, as a function of the spread parameter 
 and the number
of training samples M for: �a� the sound speed csb and �b� the substrate
density 	sb.
eter 
 and for various training sample sizes M. It is clear that
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for both environmental parameters and a relatively large
number of training samples, the minimum MAE is achieved
for a value of 
 satisfying the corresponding inequality

FIG. 6. Mean absolute error, given by the modified RBF network employing
the symmetrized KLD, as a function of the spread parameter 
 and the
number of training samples M for: �a� the sound speed csb, and �b� the
substrate density 	sb.
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2.2204�10−16�
�252.59. Besides, it can be seen that the
MAE decreases as M increases, as expected. Also note that
in both cases, csb and 	sb, and for a fixed M, the performance
of the modified RBF network stabilizes for 
�50. Finally,
Figs. 5�a� and 5�b� show that as M increases, the correspond-
ing value of 
, which minimizes the MAE, decreases. This
should be expected, since as the number of training samples
increases, the input space can be covered using radial basis
functions with a smaller spread.

Figures 6�a� and 6�b� show the total MAE of the esti-
mated csb and 	sb values, respectively, over the whole test
set, given by the modified RBF network employing the sym-
metrized KLD as a distance function. The first observation is
that for both environmental parameters, the MAE is too
large, compared with the performance of the other two RBF
networks. Besides, the behavior of this network does not
follow the rule that the MAE decreases as the number of
training samples increases. In particular, there is a region on
the x axis ��0,50��, where the MAE is minimized when the
network is trained with a very small number of samples. On
the other hand, similar to the case of the previous RBF net-
work, which employs the standard KLD, the behavior of the
MAE stabilizes for 
�50, but the minimum MAE is still
achieved for M =50.

An explanation for this unexpected behavior of the
modified RBF network based on the symmetrized KLD is
shown in Fig. 7. Consider the simple case of a RBF network
consisting of two hidden units with centers cA=dA and cB

=dB, respectively, where the vectors dA and dB contain the
estimated S�S parameters of two signals SA, SB recorded in
two very distinct sea environments. Also assume that the
same vectors, dA and dB, are given as inputs in the RBF
network. As can be seen in Fig. 7, when the standard KLD is
employed, the network outputs are different, D�dA ,dB�
�D�dB ,dA�, since the standard KLD is not symmetric. On
the other hand, if the symmetrized KLD is employed, we
observe that the network gives the same output, although the
input vectors correspond to two very distinct environments.
Subsequently, the linear layer will result in an increased es-
timation error of the environmental parameters csb, 	sb.

Table II shows the average performance and the corre-
sponding optimal design parameters for the three types of

FIG. 7. Comparison between the output of the hidden
radial basis layer obtained by employing the standard
and the symmetrized KLD.
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RBF networks. It is clear that the proposed modified RBF
network, based on the standard KLD, outperforms the stan-
dard RBF network, based on the Euclidean norm, as well as
the modified RBF network based on the symmetrized KLD.
Besides, the increased estimation performance with respect
to the substrate density becomes more evident, if we recall
that the substrate density is one of the most difficult environ-
mental parameters to be estimated by the majority of the
previously developed inversion schemes. One should also
note that distinct optimal 
 parameters are necessary for es-
timating each environmental variable csb, or 	sb. Hence, for

TABLE II. Average error performance and optimal
�r=2�.

csb

RBF type M 
 MAE

Standard 250 0.4 0.579
Modified with D�· , · � 300 0.006 0.248
Modified with Dsym�· , · � 50 0.006 7.646

FIG. 8. Mean absolute error of the estimated csb values, as a function of the
spread parameter 
 and the sharpness parameter r, corresponding to: �a� the
standard RBF network and �b� the modified RBF network employing the

standard KLD.
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optimal performance, two different single-output networks
should be designed, one for each environmental parameter,
using the corresponding optimal spread parameter. Of
course, in this case there is a trade-off between the increased
approximation accuracy and the computational complexity.

As mentioned before, we are also interested in studying
the influence of the sharpness parameter �r� of a radial basis
function, on the average performance of the proposed inver-
sion scheme. Figure 8�a� shows the MAE of the estimated csb

values using the standard RBF network, versus the spread 
,

n parameters for the three types of RBF networks

	sb�kg/m3�

Std of error 
 MAE Std of error

1.8933 0.45 4.4230 11.5974
0.7579 50 3.5687 2.5640
3.4814 0.001 45.7241 25.4485

FIG. 9. Number of neurons as a function of the spread parameter 
 and for
several error thresholds �, corresponding to: �a� the standard RBF network
desig

�m/s�

2
1
2

and �b� the modified RBF network based on the standard KLD.
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for various values of the sharpness parameter r. As can be
seen, the performance is almost independent of the value of
r. Figure 8�b� shows the average performance when the
sound speed is estimated using the modified RBF network
based on the standard KLD. It is clear that this network
exhibits a higher degree of independence, with respect to the
value of r, in comparison to the standard RBF network.
Similar behavior was also found for both network types in
the case of the substrate density estimation.

B. Inversion performance using the efficient design
process P2

In this section, we study the performance of a network
designed using the efficient process P2. The RBF network is
constructed using the estimated S�S parameters of a subset
containing M =300 signals chosen from the training set. Be-
sides, let � denote the error threshold, which we vary in the
interval �0.5, 5�. In addition, the maximum number of neu-
rons constituting the RBF network, if the error threshold is
not achieved, is set equal to M =300. In the case of the stan-
dard RBF network, the value of 
 varies in the interval �0.05,
3�, while in the case of the modified RBF based on the stan-
dard KLD, it varies in the interval �0.001, 275�. In both
cases, the value of the sharpness parameter is set to r=2. For
a given error threshold � and for a fixed 
, we run 100
Monte Carlo iterations, where in each iteration a new RBF
network is designed by randomly selecting a training subset
of size M =300 from the training set.

Figure 9�a� shows the number of neurons in the standard
RBF network, as a function of 
 and for several values of the
error threshold �. We can see that for each value of �, the
maximum number of neurons is required to meet the corre-
sponding error threshold, when the spread parameter is
greater than 0.1. On the other hand, the number of neurons
required to achieve the error threshold decreases as the value
of � increases, for 
�0.1. This behavior should be expected,
since we need more neurons in order to achieve an increased
resolution of the input space, for a given value of 
.

Figure 9�b� shows the number of neurons in the modi-
fied RBF network employing the standard KLD, as a func-

TABLE III. Comparison between the optimal number of neurons �N1
opt�

required to achieve a predetermined error threshold �, for the standard and
modified RBF networks �r=2�.

N1
opt

� Standard Modified with D�· , · �

0.5 290 251
1 289 240
1.5 287 233
2 279 229
2.5 278 229
3 275 227
3.5 274 223
4 272 219
4.5 270 215
5 269 210
tion of 
 and for several values of the error threshold �. We

J. Acoust. Soc. Am., Vol. 122, No. 4, October 2007 Tzagkarak
can see that for each value of �, the optimal number of neu-
rons required to meet the corresponding error threshold does
not follow the linear behavior as in the case of the standard
RBF, but it strongly depends on the value of 
. However, the
general rule that the number of neurons required to achieve
the error threshold decreases as the value of � increases, for
a fixed 
, is still valid. Besides, by comparing Figs. 9�a� and
9�b�, we can see that the proposed modified RBF network
consists of less neurons than the standard RBF network, for
the same error threshold �. Table III SHOWS THE OPTI-
MAL number of neurons required to achieve the same error
threshold, for both the standard and the modified RBF net-
works. It is clear that the proposed novel modified RBF net-
work reduces significantly the number of hidden neurons,
compared with its standard version. This reduction is impor-
tant, since the number of hidden neurons affects the compu-
tational complexity of a neural network.

Finally, Figs. 10�a� and 10�b� show the true and esti-
mated values for the substrate density and the sound speed,
respectively, for a set of synthetic signals of our database
�the horizontal axis is simply the signal index and, thus,
omitted�.16 The estimated values were obtained using the
proposed modified RBF network based on the standard KLD,

FIG. 10. True and estimated values of: �a� the substrate density and �b� the
sound speed, obtained using the modified RBF network based on the stan-
dard KLD, with the optimal parameters of Table II.
which is designed using the optimal parameters of Table II.
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As was expected, the estimation accuracy of the sound speed
is higher than the accuracy of the estimation of the substrate
density.

IV. CONCLUSIONS

In this paper, an inversion scheme for acoustic signals
recorded in shallow water was presented and evaluated,
based on a S�S modeling of the coefficients of the 1D wave-
let decomposition, followed by use of a novel RBF neural
network. In particular, we demonstrated that the parameters
of the S�S distributions constitute an effective set of features
that can be employed for building a RBF neural network,
which exploits the KLD between S�S distributions. This
modified RBF network recovers efficiently the unknown en-
vironmental parameters of the recorded signal, achieving a
decreased average error compared with the standard RBF
network. Besides, our proposed RBF network requires less
hidden neurons to achieve the same error threshold with its
standard version. Our future work consists of testing the pro-
posed scheme in real shallow-water environments, when the
received signal is contaminated with noise. We also plan to
study other neural network structures in order to achieve an
even better performance of the inversion scheme.
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