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Abstract

Alpha-stable distributions have recently been rec-
ognized in the signal processing community as sim-
ple, yet very accurate, two-parameter statistical
models for signals and noises that contain an im-
pulsive component of various degrees of severity.
On the basis of this finding, several signal pro-
cessing problems have been addressed and solved
within the framework of alpha-stable distributions
and with the use of fractional, lower-order statis-
tics. In this paper, we attempt to popularize these
new signal processing tools within the radar com-
munity. In particular, we evaluate the goodness-of-
fit of alpha-stable models in the radar environment
and test the performance of new signal processing
algorithms for signal detection and classification on
real radar, sea-clutter data.
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1. Introduction

The design of radar systems constitutes a highly
challenging problem, characterized by very weak
signal levels and strong interferences from either
unintentional (clutter) or intentional (jammers)
sources. In this highly unfavorable, nonstation-
ary, and unpredictable environment, complex tasks
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need to be performed by the radar sensors, such
as detection and classification of very weak targets
(embedded in clutter, noise, and intentional jam-
ming), robust beamforming to null interference (es-
pecially in constantly changing environments with
minimal signal knowledge, moving arrays, and un-
certain element location and response), and auto-
matic image analysis, segmentation, and classifica-
tion.

One main prerequisite for the efficient accom-
plishment of the above tasks is the development of
proper statistical models for the interference that
is present in radar returns and attains the form of
spikes, due to clutter sources such as ocean waves,
and glints, due to reflections from large, flat sur-
faces such as buildings or vehicles. The presence of
these spikes obscurs the target detection capability
of the radar and significantly degrades its perfor-
mance. Usually, the K-distribution is considered
as the model for the amplitude statistics of sea-
clutter {10, 1]:

fr(e,viz) = I‘?Ic/) (cz)"K,—1(2¢cz).

In the above equation, K,(z) is a modified Bessel
function, cis a scale parameter, and v is a shape pa-
rameter. The K-distributed model for radar clut-
ter arises from the assumption that the radar re-
turn consists of the sum of a large number of inde-
pendent returns (“speckle”) that vary in intensity
with time. Other models that have been proposed
to statistically describe clutter include the Weibull
and the log-normal. Target detection is usually
done using either a bank of coherent detectors or a
bank of quadratic energy detectors [24]. However,
in very spiky sea-clutter, the number of false alarms

can be very high and cannot be reduced by varying
the detection threshold [24]. Recently, the prin-
ciples of higher-order statistics (HOS) have been



used to propose tests to detect deterministic and
non-Gaussian stochastic signals in Gaussian noise
[4, 8, 11]. However, the success of these methods in
combatting the spiky nature of the interference has
been very limited, especially for short observations
[11, 20].

On many occasions [25], the empirical data indi-
cate that the probability density functions (pdfs) of
the associated noise processes maintain a similar-
ity to the Gaussian pdf, being bell-shaped, smooth,
and symmetric, but at the same time have signif-
icantly heavier tails. For example, atmospheric
noise may be considered as arising from a super-
position of many statistically independent sources
so that central limit theorems are applicable in the
evaluation of its pdf. The empirical fact [25] of
algebraic (inverse power) tails in the pdf of atmo-
spheric noise naturally leads to the assumption of
a stable pdf. On the other hand, a certain class of
non-Gaussian pdfs was considered in [7], which was
parameterized in such a way that the Gaussian pdf
was obtained at a certain limit. A similar param-
eterization of the class of stable random processes,
in the characteristic function domain, is possible
[6] in a manner that the Gaussian pdf is again in-
cluded as a certain special case. The above evi-
dence, combined with a recent, increasing interest
in the application of the theory of stable random
variables and processes in statistical signal process-
ing [14, 16], clearly suggests that possible quite ac-
curate models for large classes of impulsive noise in
communication links may be the stable pdfs [15].
Very recently, it was also theoretically shown that,
under general assumptions, a broad class of impul-
sive noise follows a stable distribution [15]. The
stable model was then tested with a variety of real
data and was found to match the data with excel-
lent fidelity [9], at least equal to that of the Mid-
dleton models.

The performance of optimum and suboptimum
receivers in the presence of SaS impulsive interfer-

ence was examined in [21], both theoretically and
via Monte-Carlo simulation, and a method was pre-
sented for the real time implementation of the opti-
mum nonlinearities. From this study, it was found
that the corresponding optimum receivers perform
in the presence of SaS impulsive interference quite
well, while the performance of Gaussian and other
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suboptimum receivers is unacceptably low. It was
also shown that a receiver designed on a Cauchy
assumption for the first order distribution of the
impulsive interference performed only slightly be-
low the corresponding optimum receiver, provided
that a reasonable estimate of the noise dispersion
was available, which for real-time signal processing
purposes could be obtained via the fast algorithms
in [19].

The study in [21] was, however, limited to co-
herent reception only, in which the amplitude and
phase of the signals is assumed to be exactly
known. The optimum demodulation algorithm for
reception of signals with random phase in impulsive
intereference and its corresponding performance
was derived in [22] and tested against the tradi-
tional incoherent Gaussian receiver [13, Ch. 4]. Fi-
nally, the performance of asymptotically optimum
multichannel structures for incoherent detection of
amplitude-fluctuating bandpass signals in impul-
sive noise modeled as a bivariate, isotropic, sym-
metric, alpha-stable (BISaS) process was evaluated
in [23]. In particular, our attention in [23] was di-
rected to detector structures in which the differ-
ent observation channels corresponded to spatially
diverse receiving elements. However, our general
findings hold for communication receivers of arbi-
trary diversity. We derived the proper test statis-
tic, by generalizing the detector proposed by Izzo
and Paura [5] to take into account the infinite vari-
ance in the noise model, and showed that exact
knowledge of the noise distribution was not re-
quired for almost optimum performance. We also
showed that receiver diversity did not improve the
performance of the Gaussian receiver when operat-
ing in non-Gaussian impulsive noise and, therefore,
a non-Gaussian detection algorithm could substi-
tute for receiver diversity.

The present paper is devoted to an appraisal of
the applicability of the alpha-stable model in the
radar environment. More specifically, we evaluate
the goodness-of-fit of the alpha-stable models in
the radar environment and test the performance of
the recently proposed new algorithms on real radar
sea-clutter data. OQur goal is twofold: (i) To pop-
ularize the concepts of alpha-stable distributions
and fractional, lower-order statistics, as well as the
basic signal processing algorithms that have been



developed so far, among the radar community and
(i1) To test the proposed algortihms on real radar,
sea-clutter data. In particular, the paper is orga-
nized as follows: Section 2 summarizes the key def-
initions and properties of Fractional, Lower-Order
Moments of SaS processes. In Section 3, we evalu-
ate moment tests for random signal detection prob-
lems. We summarize the paper in Section 4, in
which we also draw conclusions and suggest possi-
ble future research topics of interest to the radar
community.

2. Fractional, Lower-Order

Statistics

We consider a random variable { such that its frac-
tional, lower-order pth moment is finite

E{ICIP} < oo, ey

where 0 < p < oo. We will call { a pth-order
random variable. Let us now consider two pth-
order random variables, { and . We define their
pth-order fractional correlation as [3]

< ¢, >p= E((n)®IY, (2)

where

()ED =177 sgn(:)

for real-valued random variables and

(3)

(.)(p—l) = }(p—%@ (4)
for complex-valued random variables. In Egs.(3)
and (4), sgn(-) denotes the signum function, while
the overbar denotes complex conjugation, respec-
tively.

The above definitions are clearly seen to reduce
to the usual SOS and HOS in the cases where
those exist and can be easily extended to include
random processes and their corresponding frac-
tional correlation sequences. For example, if { Xy},
k=1,2,3,..., is a discrete-time random process,
we can define its fractional, pth-order correlation
sequence as

Pp(nv m) =< Xp, Xom >p= g{Xn(Xm)(p—l)}7 (5)

which, for p = 2, gives the usual autocorrelation
sequence.
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A pth-order random process {X;}, k
1,2,3,..., will be called pth-order stationary if
its corresponding pth-order correlation sequence
pp(n,m) in Eq.(5) depends only on the difference
I = m—n of its arguments. Sample averages can be
used to define the FLOS of an ergodic stationary
observed time series {X;}, £ = 1,2,3,.. ., similarly
to ensemble averages:

N
3 Xe(Xes)®V, (6)

=-N

. 1
rp(l) = Jim o ¥1,

The basic properties of the FLOS of SaS pro-
cesses are summarized as

P.1 For any ¢; and (;, we have

< a1+ a2Q2,m >p= a1 < (1,07 >p +az < (2,7 >y

()

P.2 If ¢ and n are independent, then

< ¢, n>,=0, (8)

while the converse is not true.

P.3 If n; and 73 are independent, then

<aim + agn, a1 + agne >p= 9)
la1]? < m,m >p +Haol? < n2,m2 >, (10)

P.4 For a stationary pth-order random process
{Xr}, k=1,2,3,..., its pth-order correlation and
the corresponding sample average satisfy

pe(l) < (11

pp(0),
[=0,+1,42,....

rp(1) rp(0), (12)

<

Moment Methods for Ran-
dom Signal Detection

3.

In this section, we look at moment-based methods
for random signal detection and classification. As
an illustrative example, we consider the detection



of a stochastic, FIR signal in clutter. More specif-
ically, we consider the hypothesis testing problem:
Hy

Ty = wy

1=0,1,2,..., M(13)
H,y

4
2 Z SgU—k + Wi,

k=0

where {uy} is a sequence of iid SaS random vari-
ables, {sx}, ¥ = 0,1,2,...,¢, is a known signal
sequence, and {wg} is a sequence of SaS random
noise variables independent of the FIR signal. Fi-
nally, we are going to assume that M > g. For the
dependence structure of the signal and the noise,
we are not making any assumptions beyond those
stated above.

FLOS detector: solid line

SOS detector: dotted line < -

HOS detector: dashed fine -
B P

Probability of Detection

107 0? o 10°
Probability of False Alarm

Figure 1: ROC of FLOS- (solid line), SOS- (dotted

line), and HOS- (dashed line) based detector.

We propose [20] a detection rule that consists of
computing the test statistic

M
1
Tp = _A_J‘Zlynlpy < 0‘/2 (14)
n=0

where y, = Y1 84-1%n-; is the observed se-
quence filtered with a filter matched to {sz}, k =
0,1,2,...,q. If the test statistics exceeds a thresh-
old, hypothesis Hy is declared, otherwise hypoth-
esis Hg is declared. This proposed test statistic
is a direct generalization of the SOS-based energy
detector [12] and HOS-based detectors [4].
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The performance of our proposed FLOS-based
detector relative to its SOS- and HOS-based coun-
terparts is illustrated with the following exam-
ple. The test signal is the stochastic FIR signal
z; = 0.3u; + 0.2u;—7 — 0.1u;—o + 0.1u;_3, where
the variables {u;} are iid, Laplace-distributed ran-
dom variables of unit variance and the sequence
{w;} are sea-clutter samples. We chose M = 100
samples per block, a FLOS of order p = 1, and
a HOS statistic based on fourth-order cumulants
[4]. The ROCs of the three detectors are shown in
Fig. 1. Clearly, the performance of the fourth-order
cumulant-based detector is the lowest of the three,
while the proposed FLOS-based detector gives the
highest performance. '

4. Summary, Conclusions, and

Possible Future Research

In this paper, we evaluated the performance of new
algorithms that we recently proposed on the real
data and examined the case of detection of ran-
dom signals using moment-based methods. We
found that the new algorithms outperformed ex-
isting ones, especially at the low probabilities of
false alarm that any realistic radar would operate.

Thus, further research seems to be due in the
design of new radar systems, in which the signal
processors are designed on the basis of the alpha-
stable models. Other specific radar signal process-
ing issues that need to be addressed within the
framework of alpha-stable distributions and frac-
tional, lower-order statistics include beamforming
and bearing estimation [18, 17], time-frequency dis-
tributions, application of alpha-stable fractals in
radar, and radar image processing. Another av-
enue that also needs to be explored is that of devel-
oping robust classifiers based on existing and new
features extracted from radar signals [2]. This and
similar research is currently underway and its re-
sults will be announced shortly.
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