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ABSTRACT

E�cient stochastic data processing preassumes proper
modeling of the statistics of the data source� This paper
addresses the issues that arise when the data to be pro�
cessed exhibits statistical properties which depart signi��
cantly from those implied under the Gaussianity assump�
tion� This type of data has been found to be encountered
in image� speech and other compression applications� For
the cases under consideration� techniques based on the sta�
tistical theory of alpha�stable distributions have been found
to give the most proper solution to the modeling problem�
Furthermore� an alternative to the common mean�square
error �MSE� quantizer for the e�cient� by means of distor�
tion minimization� scalar quantization of heavy�tailed data
is presented� The proposed quantizer is based on a par�
ticular member of the family of alpha�stable distributions�
namely the Cauchy distribution� The results of the perfor�
mance of this quantizer when applied to simulated as well
as real data are also presented�

�� INTRODUCTION

The problem of processing data in digital form is intrinsi�
cally convolved with the problem of quantization� The pre�
cise formulation of this problem was �rst addressed in the
literature by Max in 	
� for the case of the MSE criterion�
Equivalent results are reported in 	��� These reports include
the necessary conditions for the design of the optimal quan�
tizer� by means of the minimization of theMSE� They also
present the thresholds for the optimal quantizer in the case
of data following the Gaussian distribution� The su�cient
conditions for the optimal MSE quantizer were �rst inves�
tigated in 	� and further examined for a broader class of
optimization criteria in 	��� In general� two approaches have
been so far proposed in the literature for the solution of the
optimal quantization problem� The �rst is based on an
itiretative method for the solution of a system of equations�
determining the stationary points of the distortion measure�

The work in this paper was supported by the O�ce of Naval

Research underContract N���������J���	�and by the Advanced

Research Project Agency under Contract DABT
	����C������

which results in a locally optimum quantizer 	
� ��� The sec�
ond method is based on a computationally heavily demand�
ing search� using dynamic programming 	��� It is also worth
noting that non symmetric quantization schemes have been
found to be optimal for certain symmetric distributions and
for symmetric error weighting functions 	�� ���

Although the optimal quantization problem has been
completely solved for data following certain distributions
such as Gaussian� Laplacian or Rayleigh� there exist cases
when the data does not follow any of these distributions�
following instead a so�called heavy�tailed marginal distribu�
tion� This type of data have been observed in such diverse
�elds as telecommunications� �nance and economics� radar
and sonar� and speech and image compression� Examples
include �le lengths� cpu time to complete a job� inter�arrival
times between packets in network communications 	�� ���
stock returns and interest rate movements in economics 	���
clutter returns in radar 	
�� 

�� and coe�cients in state�of�
the�art image coders based on wavelets�

The problem of the optimal quantization of heavy�tailed
data is still open and is being addressed in this paper� We
demonstrate that alpha�stable distributions are su�ciently
�exible and rich to appropriately model wavelet coe�cients
in image coding applications� Our modeling results give
rise to new and challenging problems in information theory
in general and quantization theory in particular and open
new areas of mathematical research in rate distortion the�
ory within the alpha�stable framework� In Section �� we
present some necessary preliminaries on alpha�stable pro�
cesses and results on the modeling of wavelet coe�cients
by means of stable distributions� In Section �
� we for�
mulate the quantization problem of heavy�tailed data and
introduce the Cauchy Quantizer for sources following the
Cauchy density� In Section ��� we compare the perfor�
mance of our proposed scheme with the performance of the
Gaussian and Laplacian quantizers by means of simulated
and real data� Finally� in Section �� we discuss some of
the many issues that need to be addressed concerning the
information theoretic aspects of the alpha�stable family�



�� DATA MODELING WITH ALPHA�STABLE

DISTRIBUTIONS

In this section� we introduce the statistical model that will
be used to describe sources of a heavy�tailed nature� The
model is based on the class of symmetric ��stable �S�S� dis�
tributions and is well�suited for characterizing distributions
which exhibit heavy tails� A review of the state of the art on
stable processes from a statistical point of view is provided
by a collection of papers edited by Cambanis� Samorod�
nitsky and Taqqu 	
��� while textbooks in the area were
written by Samorodnitsky and Taqqu 	
�� and by Nikias
and Shao 	
���

The appeal of S�S distributions as a statistical model
for signals derives from some important properties� Namely�
stable processes satisfy the stability property which states
that linear combinations of jointly stable variables are in�
deed stable� They arise as limiting processes of sums of
independent� identically�distributed random variables via
the generalized central limit theorem� They are described
by their characteristic exponent �� taking values � � � � ��
Gaussian processes are stable processes with � � � while
Cauchy processes result when � � 
� In fact� no closed�form
expressions for the general S�S probability density function
�pdf� are known except for the Gaussian and the Cauchy
members� Stable distributions have heavier tails than the
normal distribution� possess �nite pth order moments only
for p � �� and are appropriate for modeling signals with
outliers�

The symmetric ��stable �S�S� distribution is best de�
�ned by its characteristic function

���� � exp����� �j�j��	 �
�

where � is the characteristic exponent restricted to the val�
ues � � � � �� � ��� � � ��� is the location parameter�
and � �� 
 �� is the dispersion of the distribution� For
values of � in the interval �
	 ��� the location parameter
� corresponds to the mean of the S�S distribution� while
for � � � � 
� � corresponds to its median� The disper�
sion parameter � determines the spread of the distribution
around its location parameter �� similar to the variance of
the Gaussian distribution� The characteristic exponent � is
the most important parameter of the S�S distribution and
it determines the shape of the distribution�

Although the S�S density behaves approximately like
a Gaussian density near the origin� its tails decay at a lower
rate than the Gaussian density tails� While the Gaussian
density has exponential tails� the stable densities have al�
gebraic tails� The smaller the characteristic exponent � is�

the heavier the tails of the S�S density� This implies that
random variables following S�S distributions with small
characteristic exponents are highly impulsive�

Figures 
 and � show results on the modeling of the
statistics of wavelet coe�cients by means of the Gaussian�
Laplacian� and S�S distributions� The heavy�tailed nature
of the data is obvious in Figure 
 which shows the wavelet
coe�cients for a given subband of the Lena image� The es�
timation of the parameters of the stable distribution from
the coe�cients was achieved by methods based on fractional
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Figure 
� Wavelet coe�cient series�

lower�order moments� as described in 	
��� For the particu�
lar case shown here� the characteristic exponent of the S�S
distribution which best �ts the data was calculated to be
� � 
�� Figure � demonstrates that the S�S distribu�
tion is superior to the Gaussian or Laplacian distribution
for modeling the particular wavelet coe�cient data under
study�

�� QUANTIZATION OF A CAUCHY SOURCE

���� Problem Formulation

In its general form� the problem of optimum scalar quantiza�
tion can be considered as the task of de�ning the decision
levels d� � d� � � � � � dM and the reconstruction levels
r� � r� � � � � � rM � in order to form the following parti�
tioning of the data dynamic range R � 	L	U� �

	L	U� �

M���
k��

	dk	 dk���	 ���

and represent all the data values x lying within the sub�
range 	dk	 dk��� with the reconstruction level rk so that a
distortion measure D�e� is minimized� where e is the quan�
tization error� de�ned by�

e � x� rk � ��

In other words� e is the di�erence of the reconstruction level
from the data value� which it represents� For stochastic
data� the distortion measure is de�ned as the expected value
of an error weighting function�

D�e� � E	f�e�� �

Z U

L

f�e� p�x� dx	 ���

where p�x� is the pdf of the data distribution and f�e� is
the error weighting function� For the speci�c case under
consideration� of data following a S�S distribution with

 � � � �� in order to de�ne completely the quantization
problem one has to determine p�x� as well as f�e��

Given that the pdf of a general non�Gaussian S�S dis�
tribution cannot be de�ned in closed form� except for � � 
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Figure �� PDF comparison �top�� stars� empirical� dash�
dotted� Gaussian �� � ������� dashed� S�S �� � 
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�
�� dotted� Laplacian � � ������� Amplitude
probability density �APD� comparison �bottom�� solid� em�
pirical�

the only available choice for p�x� is the Cauchy probability
density function�

p�x� �



�

�

�� � �x� ���
	 ���

where � is the location parameter and � is the dispersion�
Note that if a Cauchy random variable �r�v�� X follows the
distribution described by ���� then X��

�
is also a Cauchy

r�v� with location parameter equal to zero and dispersion
equal to one�

On the other hand� the choice of f�e� is constrained by
the fact that for Cauchy random variables� only moments
of order less than one can be de�ned� Furthermore� f�e�
should be a symmetric and monotonically increasing func�
tion of e� For our analysis we have set

f�e� �
p
jej	 ���

which is a choice that satis�es the above mentioned condi�
tions� An additional condition that the quantizer should be
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Figure � Plot of the distortion D as a function of the re�
construction level r� for N � � �relate with Table 
��

symmetric has been set� so that the mean of the quantiza�
tion error for S�S random variables with � 
 
 is always
zero� Note that for a Cauchy r�v� �� � 
� the mean is
not de�ned� For the symmetric quantizer due to the corre�
sponding symmetry of p�x� and f�e� one decision level has
to be set at zero and moreover the problem can be reduced
to de�ning the quantizer for only positive values of data�
The complete quantizer� having N � �M reconstruction
levels� can be obtained by mirroring the de�ned thresholds
�dk and rk� with respect to the y�axis�

Taking the above considerations into account� the quan�
tization problem for S�S random variables can be formu�
lated as follows� For a given number of levels M � determine
the decision levels d� � d� � � � � � dM and the reconstruc�
tion levels r� � r� � � � � � rM so that

D �

MX
k��

Z dk

dk��

p
jx� rkj 


�





 � x�
dx ���

where d� � �	 dM ��� is minimized�
The quantization problem� as de�ned in ���� is a highly

nonlinear optimization problem� The stationary points of
the cost function D�e� are given by the conditions�

�D

�dk
� �	 k � 
	 � � � 	M � 


�D

�rk
� �	 k � 
	 � � � 	M� ���

It can be easily seen� that these conditions result respec�
tively in the following relationships for dk and rk�

dk �
rk � rk��

�
	 k � 
	 � � � 	M � 
 ���

Z rk

dk��


p
rk � x





 � x�
dx�

Z dk

rk


p
x� rk





 � x�
dx � �	

�
��
for k � 
	 � � � 	M�

Equation �
�� is a nonlinear integral equation for rk�
Hence� numerical iterative methods have been applied for
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Table 
� Parameters for the Quantizer�

the solution of the highly nonlinear system of equations ���

��� The resulting values of the thresholds �dk and rk�� for
various values of the total number of reconstruction levels
N � �M � are shown in Table 
� This table shows also
the values of the distortion D� as well as the entropy H
achieved by the presented quantization schemes� It should
be noted that the values of both the decision and recon�
struction levels of this quantizer are signi�cantly greater in
absolute value than the corresponding levels of the Lloyd�
Max quantizer for the Gaussian distribution� as they ac�
count for the much heavier tails of the Cauchy distribution�

The values of thresholds in Table 
 have been found to
provide a locally optimal quantizer� This is indicated in
Figure  as well as in Figure �� When N � �� the dis�
tortion D is a function of three variables� namely the two
reconstruction levels r� and r� as well as the decision level
d�� Setting d� � �r� � r���� yields according to ��� all the
candidate triplets �r�	 r�	 d�� for being the optimal points�
By these means distortion D can be considered as a func�
tion of just the two variables r� and r�� Figure � depicts
the contour plot of this function D�r�	 r�� indicating the
local minimum for the values of r� and r� given at Table 
�
It must be pointed out that further theoretical investiga�
tion is needed in order to determine whether the presented
quantization schemes are also absolutely optimal�

���� Experimental Results

In the experimental part� the performance of the above pre�
sented quantizer was tested in comparison with the per�
formance of both the optimal Mean Square Error �MSE�
Gaussian and Laplacian quantizers� when applied on the
same data�

Given that the Cauchy�based quantizer �hereto denoted
as Cauchy Quantizer for simplicity� has been constructed
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with reference to data following S�S distributions� at a �rst
stage� simulated data were generated for � � 
	 
�
	 � � � 	 ��
In each case the statistical parameters of the generated
data� namely the mean and the standard deviation� as well
as the location parameter and the dispersion� were esti�
mated and the thresholds of the three quantizers for the
standard distributions were scaled and translated in order
to �t the data distribution� The data was then quantized
according to each of the three quantization schemes� using
quantizers with N � 
� levels� Based on the quantized data
and the original data the following measures of distortion
were computed�

� Mean Square Error �MSE�� de�ned as�

MSE �



L

LX
i��

�xi � �xi�
�	 �

�
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Figure �� MAE for simulated data�
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Figure �� MSRAE for simulated data�

� Mean Absolute Error �MAE�� de�ned as�

MAE �



L

LX
i��

jxi � �xij	 �
��

� Mean Square Root Absolute Error �MSRAE�� de�ned
as�

MSRAE �



L

LX
i��

p
jxi � �xij	 �
�

where �xi is the quantized value of the data value xi and
L is the number of generated data� The results for each
quantization scheme� for each distortion measure� and for
each value of � for L � ����� are shown in Figures �� ��
and ��

At a second stage� instead of simulated� the wavelet
coe�cient data shown in Figure 
 were quantized using
the Cauchy� Gaussian and Laplacian quantizers with N �
�	 �	 �	 
� reconstruction levels� Once again the above men�
tioned three distortion measures were computed in each
case� The results are shown in Figures �� �� and 
��
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Figure � is mainly determined by the fact that S�S
r�v��s with � � � have in theory in�nite variance� This
results in the great order of magnitude forMSE� especially
for � � 
�� for the three quantization schemes� This �gure
implies thatMSE is not a suitable measure of distortion for
S�S r�v��s with � � �� However� note that the optimality
of the Gaussian MSE quantizer is evident for � � ��

Figure � on the other hand shows that the Cauchy quan�
tizer achieves better performance� with respect to MAE�
for S�S distributions which signi�cantly depart from the
Gaussian case �i�e� for values of � � 
���� Note that MAE
is well de�ned for � 
 
� since S�S r�v��s with � 
 
 have
�nite �rst moments� Moreover� MAE seems to be a more
objective measure of distortion than MSE and MSRAE�
since it weights all errors with the same factor� On the con�
traryMSE overestimates errors with absolute value greater
than one and underestimates errors with absolute value less
than one� while MSRAE performs in exactly the opposite
way�

Figure � shows the better performance of the Cauchy
quantizer with respect to MSRAE for the same range of
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� as in the MAE case� One should note that for � � 
��
Gaussian MSE quantizer achieves the best performance�
which implies that optimality is determined by the distri�
bution and not by the error weighting function� that was
used in the design of the quantizer�

Coming to the real data� Figure � implies that our data
lack the presence of very extreme outliers� resulting in more
modest values for the MSE� However� the non Gaussian
nature of the data is evident in the failure of the Gaus�
sian quantizer to achieve a good performance� especially
for N � � and N � 
�� In Figure �� it is shown that de�
spite the lack of very extreme outliers� the Cauchy quantizer
achieves a very good performance� with respect to MAE�
for every number of reconstruction levels� Figure 
� depicts
the MSRAE and the superiority of the Cauchy quantizer
is one more indication of the non Gaussian nature of the
data�

�� DISCUSSION

As shown through the experiments with simulated as well
as real data� the so�called Cauchy Quantizer appears to be
a useful tool for discretizing data which follow distributions
close to S�S with � signi�cantly less than two�

There are certainly some further issues that should be
addressed in future work� As already mentioned� theoreti�
cal issues concerning the uniqueness of the solutions of the
highly nonlinear system of equations ���
�� and the abso�
lute optimality of the quantizer are still open� Furthermore�
from a practical point of view� the performance of the three
examined quantization schemes should be also subjectively
evaluated through the reconstruction of the images� after
the quantization of their wavelet coe�cients�

Another important issue to be examined concerns the
e�ects of the use of other error weighting functions for the
Cauchy quantizer� having the general form f�e� � jejp	 � �
p � 
 �we have examined the case for p � �

�
�� especially

for values of p close to one� Finally� the comparison of the
Cauchy quantizer with the MAE�based �instead of MSE�
based� Gaussian and Laplacian quantizers would also be

useful� in order to examine the relative importance of the
error weighting function and the probability density func�
tion in determining the values of the thresholds�
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