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ABSTRACT

Accurate indoor localization is a significant task for many ubiq-
uitous and pervasive computing applications, with numerous solu-
tions based on IEEE802.11, bluetooth, ultrasound and infrared tech-
nologies being proposed. The inherent sparsity present in the prob-
lem of location estimation motivates in a natural fashion the use of
the recently introduced theory of compressive sensing (CS), which
states that a signal having a sparse representation in an appropriate
basis can be reconstructed with high accuracy from a small num-
ber of random linear projections. In the present work, we exploit
the framework of CS to perform accurate indoor localization based
on signal-strength measurements, while reducing significantly the
amount of information transmitted from a wireless device with lim-
ited power, storage, and processing capabilities to a central server.
Equally importantly, the inherent property of CS acting as a weak
encryption process is demonstrated by showing that the proposed
approach presents an increased robustness to potential intrusions of
an unauthorized entity. The experimental evaluation reveals that
the proposed CS-based localization technique is superior in terms
of an increased localization accuracy in conjunction with a low
computational complexity when compared with previous statistical
fingerprint-based methods.

1. INTRODUCTION

Location estimation systems have a great potential in several dis-
tinct areas, such as in navigation, transportation, medical commu-
nity, security, and entertainment. With the wide deployment of
mobile wireless systems and networks, location-based services are
made possible on mobile devices. The existing communication
technology is employed in such environments, with characteristic
examples being the IEEE802.11 [1], as well as infrared [2], ultra-
sonic [3], bluetooth [4] or touch sensors in order to estimate the
position of a mobile user. There are also systems that combine opti-
cal, acoustic, and signal-strength measurements, along with motion
attributes for location estimation [5].

Due to the wide deployment of wireless local area networks
(WLAN), specifically referred to the IEEE802.11 infrastructure,
many indoor positioning systems make use of WLANs for estimat-
ing the position of a user. Received signal-strength (RSS) values
is a typical metric used in WLAN positioning systems, as it can be
obtained directly from access points (APs) by any device that uses
a network adapter. The IEEE802.11 infrastructure does not require
any specific hardware or installation costs. However, due to the na-
ture of the indoor environment, transient phenomena, such as shad-
owing and multipath fading, lead to radio channel obstructions and
variations of the RSS. This makes the design of accurate positioning
systems a difficult task and location estimation a challenging area
of research.

This work was partially funded by the Marie Curie IAPP “CS-ORION”
(PIAP-GA-2009-251605) grant within the 7th Framework Program of the
European Community.

The RSS-based location estimation systems can be classi-
fied in two categories, namely, the fingerprint- or map-based and
prediction-based architectures. The fingerprint-based techniques
consist of two distinct phases. First, during a training phase a wire-
less device that listens to a channel receives the beacons sent by APs
periodically and records their RSS values at known positions of the
physical space [1, 6]. In a subsequent runtime phase the system
also records the RSS values from the received beacons but at ran-
dom unknown positions. In both phases the wireless client scans all
the available channels. The cell with a training signature that has the
smallest distance from the runtime signature is reported as the esti-
mated position. On the other hand, the prediction-based techniques
employ RSS and radio-propagation models to find the distance of a
wireless user (peer) from an AP (or landmark), (e.g., CLS) [7].

However, due to the unpredictable nature of the RSS measure-
ments most of the fingerprint-based systems have increased compu-
tational cost. On the other hand, the inherent sparsity of the physical
space motivated in a natural fashion the use of the recently intro-
duced theory of compressive sensing (CS) [8, 9] in the problem of
target localization [10]. CS states that signals which are sparse or
compressible in a suitable transform basis can be recovered from a
highly reduced number of incoherent random projections, in con-
trast to the traditional methods dominated by the well-established
Nyquist-Shannon sampling theory.

In a recent work [11], a CS-based localization method was in-
troduced. In particular, the location estimation algorithm is carried
out on the mobile device by using the average RSS values in or-
der to construct the transform basis. Our proposed work differs
from the previous one in several aspects, from the way we acquire
the compressed set of measurements to the way we perform the
location estimation. For instance, in contrast to [11] where the es-
timation is performed by the wireless device with the potentially
limited resources, in our system the computational burden is put
on the server, where increased storage and processing resources are
available. Besides, in the proposed localization technique the CS
approach is applied directly on the raw RSS measurements and not
on their average as in [11], and thus exploiting their time-varying
behavior. Equally importantly, the inherent property of CS acting as
a weak encryption module is exploited to guarantee with high prob-
ability that the communication between the device and the server is
secured against potential intrusions of an unauthorized entity.

The paper is organized as follows: Section 2, overviews re-
lated fingerprint-based positioning systems for mobile computing.
In Section 3, the proposed CS-based WLAN localization method is
analyzed in detail, while in Section 4 the encryption capability of
CS is introduced. In Section 5, the performance of the proposed
method is compared with recent fingerprint-based algorithms. Fi-
nally, Section 6 summarizes our main results and gives directions
for future work.



2. OVERVIEW OF RECENT FINGERPRINT-BASED
LOCATION ESTIMATION METHODS

In the following, we introduce in brief some recent fingerprint-
based localization techniques, which were shown to be efficient in
several indoor environments, and with which we compare the per-
formance of the proposed CS-based architecture.

A region-based algorithm was introduced in [12], which im-
proved the location estimation accuracy against previous methods
by developing a statistical method based on a multivariate Gaus-
sian (MvG) model to fit the statistics of the received RSS measure-
ments. More specifically, the physical space is discretized first in a
grid consisting of cells with known coordinates. Then, a statistical
signature is extracted for each cell in the training phase by model-
ing the RSS values received from a set of APs using a multivari-
ate Gaussian distribution. In the runtime phase, a similar statistical
signature is generated at the unknown position, which is then com-
pared with the training signatures by means of a statistical similarity
measure, namely, the Kullback-Leibler divergence (KLD). The es-
timated location [x∗R,y

∗
R] is given by the coordinates of the i∗-th cell

that minimizes the KLD, that is,

i∗ = arg min
i=1,...,C

D(pR||pi,T ) , (1)

where C is the number of cells, while pR and pi,T correspond to the
multivariate Gaussians in the runtime and training phase (for the
i-th cell), respectively. The accuracy of the algorithm is improved
through an iterative scheme applied in multiple spatial scales (re-
gions), where the fingerprint of each region is generated by employ-
ing all the RSS measurements from all APs collected at positions
within that region. Then, a refinement step is employed by compar-
ing the signature of the unknown cell with the signatures of the cells
in the best-matched region. This process reduces the likelihood of
selecting a single false region/cell over the correct one. The closest
region is found by minimizing the following KLD,

s∗ = arg min
s=1,...,S

D(pR||Gs,T ) , (2)

where S is the number of regions and Gs,T denotes the total mul-
tivariate Gaussian whose parameters are estimated over all cells of
the s-th region during the training phase.

Another common approach in location estimation problems is
the use of the k-Nearest Neighbor algorithm (kNN) [13], where an
RSS map is constructed by averaging separately the signal-strength
values received from each AP. Let µR = [µ1, . . . ,µP] be the sig-
nature vector of the unknown runtime cell cR, where µi is the av-
erage RSS received from the i-th AP (i = 1, . . . ,P). Similarly, let
νT,c = [νc

1 , . . . ,ν
c
P] be the signature vector of the cell c extracted

during the training phase. Then, the algorithm computes the Eu-
clidean distance between the runtime and all the training cells,
d(cR,c) = ‖µR − νT,c‖2 (c = 1, . . . ,C), and reports the k closest
neighbors by sorting the distances in increasing order. The final
estimated position is given by computing the centroid of these k
closest neighbors.

In a recent work [14], the problem of location estimation was
treated in a framework that also takes advantage of the spatial spar-
sity. In particular, the location estimation is formulated as a con-
strained `1-norm minimization problem based on a suitably learned
dictionary. A signature is associated to each AP by averaging the
RSS measurements which would be received by the AP from each
potential cell of the discrete spatial domain. Then, the system builds
the dictionary by concatenating the signatures from all APs. A sim-
ilar signature is generated at the unknown runtime cell, which is
then projected on the dictionary to form the vector of measurements.
However, the lack of a random measurement matrix required when
working in the framework of CS may decrease the system’s per-
formance under unpredictable environmental conditions, while also
the communication of the projected measurements from the wire-
less device to the APs, where the localization takes place, could
pose undesired security issues.

3. CS-WLAN ARCHITECTURE

Let Ψ ∈ RN×N be a matrix whose columns correspond to a trans-
form basis. In terms of signal approximation it has been demon-
strated [8, 9] that if a signal x ∈ RN is K-sparse in basis Ψ (mean-
ing that the signal is exactly or approximately represented by K ele-
ments of this basis), then it can be reconstructed from M = rK� N
non-adaptive linear projections onto a second measurement basis,
which is incoherent with the sparsity basis, and where r > 1 is a
small overmeasuring constant. The measurement model in the orig-
inal space-domain is written as

g = Φx , (3)

or via its equivalent transform-domain representation,
g = ΦΨw , (4)

where g ∈ RM is the measurement vector, Φ ∈ RM×N denotes the
measurement matrix, and w denotes the sparse vector of transform
coefficients. Examples of measurement matrices, which are inco-
herent with any fixed transform basis with high probability (univer-
sality property [9]), are the random matrices with independent and
identically distributed (i.i.d.) Gaussian or Bernoulli entries.

By employing the M compressive measurements and given the
K-sparsity property in the transform basis, the original signal can
be recovered by taking a number of different approaches. The ma-
jority of these approaches solve constrained optimization problems,
while a number of recently introduced CS methods proceed in a
Bayesian framework. In the first case, commonly used approaches
are based on convex relaxation [8, 16], and greedy strategies (e.g.,
Orthogonal Matching Pursuit (OMP) [17, 18]). The CS methods of
the second class proceed by formulating a posterior probability dis-
tribution for the unknown sparse signal and then by seeking for its
maximum. Characteristic examples of Bayesian CS (BCS) methods
are the standard BCS [19] and a recently introduced BCS approach
based on Gaussian Scale Mixtures (GSM) [20], which yielded a su-
perior performance compared with the standard BCS by employing
a GSM as a sparsity-enforcing prior. In the subsequent analysis,
methods from both classes are tested for the experimental evalua-
tion of the proposed localization algorithm.

As it was mentioned before, a common characteristic of all
RSS-based fingerprint methods is their implementation in two dis-
tinct phases, namely, a training phase (off-line), where the central
server is mainly involved, and a runtime phase (on-line), which con-
cerns the wireless device to be localized. When working in a CS
framework, several requirements should be specified individually
for the two phases, and this is the issue described in the following
two subsections. Besides, for convenience the following notations
are used in the subsequent derivations: i) yT denotes any quantity y
that is related with the training phase, ii) yR denotes that y is associ-
ated with the runtime phase.

In a localization scenario, the area of interest is first divided into
a set of C non-overlapping cells of predetermined size xs× ys, and
then it is covered with P access points (AP). The inherent sparsity
in the problem of location estimation comes from the fact that the
device to be localized can be placed in exactly one of these cells.
Let w = [0 0 · · · 0 1 0 · · · 0]T ∈ RC be an indicator vector with
its j-th component being equal to “1” if the device is located in the
j-th cell. Thus, in the framework of CS, the problem of localization
is reduced to a problem of recovering the sparse vector w.

3.1 Training phase
During the training phase, a set of RSS samples is collected at each
cell from each AP. Let ψ i

T, j ∈Rn j,i denote the vector of training RSS
measurements received at cell j from the AP i. In general n j,i 6=
n j′,i′ for j 6= j′, i 6= i′. Then, these vectors are collected from all
cells by a central server, which forms a single matrix Ψ

i
T ∈ RNi×C

for the i-th AP by concatenating the corresponding C vectors. In
general, the length of these vectors varies from cell to cell, thus
in our implementation we set Ni = min j{n j,i}, i = 1, . . . ,P, j =
1, . . . ,C.



The reconstruction performance of a CS method is highly af-
fected by the choice of an appropriate sparsifying transformation
represented by the matrix Ψ. In several signal processing applica-
tions common choices for the Ψ are the Discrete Cosine Transform
(DCT) and the Discrete Wavelet Transform (DWT). However, in
our case the degree of sparsity can be improved by selecting Ψ

i
T as

a transform matrix. This is motivated by the intuition that the vec-
tor of RSS measurements at a given cell j received from AP i will
be closer to the corresponding vectors of its neighboring cells, and
thus it could be expressed as a linear combination of a small subset
of the columns of Ψ

i
T .

Moreover, a measurement matrix Φ
i
T ∈ RMi×Ni must be asso-

ciated with each transform matrix Ψ
i
T , where Mi is the number of

CS measurements (Mi � Ni). In the proposed algorithm a stan-
dard Gaussian matrix with its columns normalized to unit Euclidean
norm is employed to acquire the measurements, while in general
Mi 6= Mi′ , i 6= i′. The overall measurement model associated with
the i-th AP is given by

gi = Φ
i
T Ψ

i
Tw . (5)

3.2 Runtime phase
A similar process to the one described in the previous section is fol-
lowed during the runtime phase. More specifically, at the current
unknown cell c the device collects a number of RSS measurements
from all the APs. Let ψ i

R,c ∈ Rnc,i be the vector of RSS measure-
ments received from the i-th AP. Notice that, since the acquisition
time interval during the runtime phase is smaller than that in the
training phase, a reduced amount of RSS readings is acquired, that
is, nc,i < n′c,i, where n′c,i denotes the length of the corresponding
RSS vector generated at the same cell during the training phase.
The CS measurement model associated with the cell c and AP i is
written as

gc,i = Φ
i
Rψ

i
R,c , (6)

where Φ
i
R ∈ RMc,i×nc,i denotes the corresponding measurement ma-

trix during the runtime phase.
For simplicity let us consider the case of a single AP. In the

ideal case, if c∗ is the true location and ψ i
R,c∗ is among the columns

of Ψ
i
T , then the inversion of (5), given the operator Φ

i
T Ψ

i
T and the

measurements gc∗,i, would yield a one-sparse vector w with the “1”
placed exactly at its c∗-th component. However, due to the vary-
ing environmental conditions between the training and the runtime
phase, as well as the differences in the dimension of the received
RSS measurement vectors mentioned above, the best we could ex-
pect is the vector ψ i

R,c∗ to be close to ψ i
T,c∗ .

In order to overcome the dimensionality constraints, while
maintaining the robustness of the reconstruction procedure, we se-
lect Φ

i
R to be a subset of Φ

i
T with an appropriate number of rows

such as to maintain equal measurement ratios, Mi
Ni

=
Mc,i
nc,i

. For this
purpose, the wireless device requests from the server the corre-
sponding measurement sub-matrix by transmitting the dimension
of the received RSS vector. Then, the measurement vector gc,i is
formed for each AP i according to (6) and transmitted to the server,
where the reconstruction takes place. We emphasize at this point the
significant conservation of the processing and bandwidth resources
of the wireless device, by computing only low-dimensional matrix-
vector products to form gc,i (i = 1, . . . ,P) and then transmitting a
highly reduced amount of data (Mc,i � nc,i). Then, the CS recon-
struction is performed at the server for each AP independently and
the final location estimate is the centroid of the estimated cells. The
reason is that, due to the network configuration, the RSS values are
received independently.

The amount of transmitted data is further reduced in the pro-
posed implementation by selecting to process the RSS readings of
only the top P′ strongest APs, that is, the APs with the highest mean
RSS value of the corresponding vectors ψ i

R,c. An additional advan-
tage of this process is that in many cases we discard the potentially

Figure 1: Flow diagram of the proposed CS-WLAN localization
scheme.

confusing information from APs from which either there was not
any reception at all, or there was a link failure with the device dur-
ing the runtime phase. The experimental evaluation presented in
the next section reveals an increased estimation accuracy of the pro-
posed CS localization algorithm. Finally, the overall system archi-
tecture is shown in Fig. 1.

4. CS AND SECURITY

Due to their acquisition process, CS measurements can be viewed
as “weakly encrypted” for an attacker without knowledge of the
measurement matrices Φ

i
T . CS-based encryption provides both sig-

nal compression and encryption guarantees, without the additional
computational cost of a separate encryption protocol and thus it
could be useful in location estimation, where the implementation
of an additional software layer for cryptography could be costly.
The encryption property of a CS approach relies on the fact that
the matrix Φ

i
T is unknown to an unauthorized entity, since Φ

i
T can

be generated using a (time-varying) cryptographic key that only the
device and the server share. An attack could be considered as the
attempt to estimate the key by trying to find the special structure of
the Φ

i
T matrix [21].

In our proposed approach no cryptographic key is required,
since it is based only on the matrices Φ

i
T (i = 1, . . . ,P). More

specifically, the server extracts the sub-matrix Φ
i
R from Φ

i
T and

then permutes its lines forming a new Φ
i
R,p, which is then sent

to the wireless device, where the associated measurement vector
gc,i = Φ

i
R,pψ i

R,c is computed. A potential attacker has two options,
either to try capturing Φ

i
R,p by intercepting the server→device di-

rection, or by acquiring gc,i by intercepting the opposite direction.
In the first case, modern network cryptographic protocols could
guarantee that the decryption of Φ

i
R,p is almost infeasible in prac-

tice due to the combinatorial nature of the inverse problem. In the
second case, as it will be illustrated in the next section, even the
exact knowledge of gc,i is insufficient, resulting in a significantly
increased estimation error, when the attacker does not achieve the
exact estimate of Φ

i
R,p.
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Figure 2: Performance comparison of previous fingerprint-based lo-
calization methods for the INRIA dataset.

5. EXPERIMENTAL RESULTS

In this section, the performance of the proposed CS-WLAN local-
ization method is evaluated and compared with previous fingerprint-
based algorithms.

The dataset used in the present evaluation was acquired in the
building 21 of INRIA, at Rocquencourt campus (Paris)1. The wire-
less coverage is achieved by employing an infrastructure consisting
of five IEEE802.11 APs. The area used in the formation of the RSS
map is discretized in cells of equal dimensions 0.76 m× 0.76 m.
The RSS map consists of measurements from different cells and for
an average number of five APs per cell. The time intervals during
the acquisition in the training and runtime phase were set to 90 sec
and 30 sec, respectively.

The estimation accuracy of the methods tested hereafter is eval-
uated in terms of the localization error, which is defined as the Eu-
clidean distance between the centers of the estimated cell and the
true cell where the mobile user is located at runtime. Runtime mea-
surements in 32 distinct cells are employed in the subsequent eval-
uation.

Fig. 2 presents the localization error of the three methods in-
troduced briefly in Section 2 (region-based MvG, kNN (k = 3), and
spatial sparsity-based). The median error is equal to 1.99 m and
2.34 m for the kNN, and the spatial sparsity-based methods, re-
spectively, while the MvG approach results in a median error of
1.56 m. Fig. 3 shows the estimation error for the proposed CS-
based method, averaged over 100 Monte-Carlo runs, where in each
run a distinct measurement matrix is generated. The reconstruc-
tion performance is compared between several widely-used norm-
based techniques and Bayesian CS algorithms. More specifically,
the following methods are employed2: 1) `1-norm minimization
using the primal-dual interior point method (L1EQ-PD), 2) Orthog-
onal Matching Pursuit (OMP), 3) Stagewise Orthogonal Matching
Pursuit (StOMP), 4) LASSO, 5) BCS, and 6) BCS-GSM [20]. As
it can be seen, the BCS and BCS-GSM methods outperform the
others with a median error of 1.89 m and 1.78 m, respectively (`1
2 m, OMP 2.03 m, StOMP 2.01 m, and Lasso 2.30 m). In this ex-
periment only 8% of the total runtime RSS measurements vector is
employed.

1The proposed method has been also evaluated by generating simulated
RSS sequences using an appropriate propagation model in a more compli-
cated indoor environment. Due to space limitations, the results and the sim-
ulated database can be found in [22].

2For the implementation of methods 1)-5) the MATLAB codes can
be found in: http://sparselab.stanford.edu/, http://www.
acm.caltech.edu/l1magic, http://people.ee.duke.edu/

˜lcarin/BCS.html
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Figure 3: Performance evaluation of the CS-WLAN localization
method for several reconstruction algorithms.

The effect of the number of CS measurements in the estimation
accuracy is further examined for the top two candidates, namely, the
BCS and BCS-GSM. Fig. 4 shows the corresponding localization
error as a function of the percentage of the number of RSS measure-
ments (M = rN with r ∈ {5%,10%,15%,20%}). As we expected,
the localization accuracy increases by increasing the number of CS
measurements, and for 15% of the RSS values the proposed ap-
proach outperforms the MvG method, which was the best among
the previous fingerprint-based techniques.
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Figure 4: Localization accuracy of CS-WLAN using BCS and BCS-
GSM, as a function of the number of CS measurements.

Fig. 5 compares the location error of the MvG and the BCS-
GSM (with 25% of RSS measurements) methods, as a function
of the input SNR. Each RSS vector is corrupted by additive white
Gaussian noise with the SNR varying from 10 to 40 dB. As it can be
seen, the proposed CS-based approach presents a clear superiority
against MvG, especially for lower SNR values.

Finally, Fig. 6 illustrates the encryption capabilities of the pro-
posed CS localization method for the BCS and BCS-GSM al-
gorithms. In particular, the average localization error (over 100
Monte-Carlo runs) is shown as a function of the percentage of per-
muted lines ({0% : 20% : 100%}) of the true matrices Φ

i
R, where the

reconstruction is performed by considering exact knowledge of the
measurement vectors gc,i. The results agree with our intuition that
as the complexity of the permutation increases, the estimation ac-
curacy decreases without an exact estimate of the true measurement
matrix.
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Figure 5: Localization accuracy of the MvG and BCS-GSM meth-
ods for varying input SNR.
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Figure 6: Evaluation of CS-WLAN encryption property using BCS
and BCS-GSM, for a varying number of permuted lines of Φ

i
R.

6. CONCLUSION

This paper introduced an indoor localization method based on CS
RSS fingerprints. The experimental results revealed that both BCS
and BCS-GSM approaches achieve a higher estimation accuracy
when compared with other CS recovery schemes, as well as with
previous fingerprint-based methods. The enhanced encryption ca-
pabilities of the proposed CS-WLAN architecture, without the ad-
ditional computational cost of a separate encryption protocol, were
also evaluated. In the present work, the unknown location was
estimated by performing separate reconstruction for each AP. A
straightforward extension will be the use of the joint sparsity struc-
ture of the indicator vector w among the APs for the simultaneous
location estimate. Moreover, a more thorough study should be car-
ried out for the robustness of the inherent encryption property in
terms of the several network parameters.
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