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Abstract. As environmental resources utilization becomes more and
more crucial, Wireless Sensor Networks (WSNs) are introduced in order
to capture the variation of diverse parameters. However, limitations such
as network connectivity, power consumption, and storage capacity lead to
missing measurements from such networked sensors. To address this prob-
lem, we investigate the potential of recovering high dimensional environ-
mental signals from small sets of observations. To account for the dimen-
sionality of the data, we invoke tensor modelling and we propose a low-rank
tensor recovery formulation. Experimental results using real WSN data
from an indoor industrial environment as well as from an outdoor natural
environment demonstrate that the estimation of missing measurements is
much better addressed when structural information is considered.

1 Introduction

Monitoring of environmental signals is critical for understanding the dynamics
and for controlling chemical and other processes. For instance, as water resource
utilization is becoming more and more crucial, the deployment of Smart Water
Networks (SWNs) is of utmost importance in our attempt to efficiently organize
these resources. To support the necessity of continuous and dependable monitor-
ing, Wireless Sensor Network (WSN) technologies are introduced. While WSNs
can provide automated, robust, and easy-to-deploy monitoring, they are also
characterized by severe limitations including limited power supply, packet loses,
and noisy measurements.

From a WSN perspective, increased sampling rates can lead to more statisti-
cally robust results, at the cost of a dramatic decrease in network lifetime, since
acquisition, storage, and transmission are associated with high power consump-
tion. As a result, systems are often forced to operate at less than ideal sampling
rates. Furthermore, missing measurements in WSNs are often attributed to com-
munication failures, where packets are lost, or to de-synchronization of sensors,
leading to different sampling instances.
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In this work, we focus on the problem of recovering missing measurements
of environmental sensing platforms using two state-of-the-art methods: Matrix
Completion (MC) and Tensor Completion (TC). In MC, the objective is to ex-
ploit inherent correlations within the data in order to recover low rank matrices
from a substantially limited number of observations. MC has been successfully
applied in an array of problems. In addition to MC, we also consider the ex-
tension of this problem to higher dimensional structural data that can be repre-
sented as tensors. The reason for exploring tensors is that two-way matrices are
unable to preserve the higher structural complexity needed for simultaneously
encoding data from a variety of sources.

2 Matrix and Tensor Completion

Given a data matrix M ∈ Rn1×n2 , the goal of Matrix Completion is to recover
all its entries from a partially observed fraction of them. More formally, let Ω
be the set of known indices (i1, i2) corresponding to the available measurements.
The linear map A is defined as an operator setting all unknown indices to zero:

A(M) =

{
µi1i2 , if (i1i2) ∈ Ω

0, otherwise

In [1] it was shown that recovery of the missing values from a low rank matrix
X is possible by solving the rank minimization problem:

minimize
X

rank(X)

subject to A(X) = A(M) (1)

Although the rank minimization can recover the matrix, it is impractical for
real-life problems due its NP-hard nature. Fortunately, it has been shown that
the nuclear norm, i.e, the sum of the singular values, can serve as a proxy to the
rank. Thus, the optimization problem in (1) can be reformulated according to

minimize
X

‖X‖∗

subject to A(X) = A(M) (2)

From a theoretical point of view, in order for these methods to recover the desired
solution, the sampling set Ω must be chosen uniformly at random and at the
same time the data matrix M must satisfy a low coherence condition. Then,
with probability 1− n−3, the solution of (2) will converge to the solution of (1),
provided that the number of obtained samples obeys k ≥ Cn6/5rlog(n), where
n = max(n1, n2), C is an appropriate constant, and r is the matrix rank.

An alternative approach to tackle the problem of missing measurements is
via Tensor Completion. Tensors are generalizations of vectors and matrices that
encode high dimensional structural information. In this case, the aforementioned



factors leading to missing measurements within a WSN would result in an under-
sampled [n1]× [n2]× [n3] tensor X , which we wish to recover from a fraction k
of its entries being available.

Equation (2) for the matrix case (i.e., the two-order tensor) is extended to
higher-order tensors by solving the following optimization problem to estimate
the lowest-rank tensor X which agrees with the given data:

minimize
X

‖X‖∗

subject to A(X) = A(T ) (3)

where Ω is the index set (i1, i2, i3) of observed entries and the linear map A is
defined as a random projection operator keeping the entries in Ω and zeroing
out others; that is

A(T ) =

{
τi1i2i3 , if (i1i2i3) ∈ Ω

0, otherwise

However, the optimization regime now is tougher than before, as the tensor
nuclear norm is not defined as the tightest convex relaxation of the tensor rank,
as was the case with matrices. Adopting the approach proposed in [2], one can
define the tensor nuclear norm as follows:

‖X‖∗ =

n∑
i=1

αi‖X(i)‖∗

where αi’s are constants satisfying αi ≥ 0 and
∑n

i=1 αi = 1. Thus, the nuclear
norm for a general tensor case can be defined as the convex combination of
the nuclear norms of all matrices unfolded along each of its modes. Under this
definition, Eq. (3) can be written as:

minimize
X

n∑
i=1

αi‖X(i)‖∗

subject to A(X ) = A(T ) (4)

3 Experimental Evaluation

In this section, we evaluate the performance of two state-of-the-art methods for
Matrix and Tensor Completion on real environmental sensing data. For the
MC problem we chose the widely used Augmented Lagrange Multipliers (ALM)
method [3] and for the TC one the Low-rank Tensor Completion using Parallel
Matrix Factorization approach [4]. The performance is reported in terms of the
Normalized Mean Square Error (NMSE) metric.

We evaluate the performance of the MC and the TC recovery for matrices
and tensors, ranging from ”sparsely” to ”densely” sampled. To quantify this
density range, we introduce the fill-ratio f , which is defined as the number of
the non-zero elements divided by the number of all the available entries of our



[n1]×[n2] measurements matrix f = #non−zeroelements
n1×n2

. This performance metric
is computed and subsequently plotted versus different sizes of available data
revealed to the solvers. We consider two representative environmental sensing
datasets, namely an indoor SWN dataset and an outdoor WSN dataset.

3.1 Recovery of SWN Data

The SWN dataset contains measurements of water impedance (in Ohms) recorded
in 10 different channels by 5 sensors deployed in a pilot desalination plant [5].
These measurements were collected during a 3 day period, where each sensor
recorded 1 measurement per hour. In this experiment, we evaluate the per-
formance of the MC and TC method for recovery, under different fill ratios,
as shown in Figure 1. We consider two cases and associated data structures,
namely acquisition of one measurement every one and every two hours, resulting
in 50× 72 and 50× 36 matrices for MC and 5× 10× 72 and 5× 10× 36 tensors
for TC.
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Fig. 1: Normalized MSE for MC and TC as a function of the fill ratio (SWN
dataset).

We can observe in Figure 1, that increasing the fill-ratio has a dramatic effect
on the reconstruction quality. More precisely, for both one and two hour sam-
pling frequency, increasing the fill ratio leads to lower reconstruction error, as
expected. The results also demonstrate that TC achieves a lower NMSE than
MC. More importantly, the error rate of TC is monotonically decreasing, unlike
the error rate of MC which reaches a plateau. For very low fill-ratios (f < 0.2),
we observe that MC performs better than TC, a behavior which is is due to the
fact that completing a data structure becomes tougher as the dimensionality of
the structure increases.



3.2 Recovery of WSN Data

The second dataset is part of the SensorScope network project [6] where we
consider temperature data from the Grand-St-Bernard pass between Switzerland
and Italy. We selected an array of 19 sensors that provided stable results and
collected 288 measurements per day for a period of 10 days.
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Fig. 2: Normalized MSE for MC and TC as a function of the fill ratio (Sen-
sorScope dataset).

Experimental results presented in Figure 2 demonstrate that increasing the
fill-ratio leads to considerable performance gains in lower sampling regimes com-
pared to higher ones. The overall NMSE achieved by the TC approach is lower
compared to the error obtained via the MC approach, similarly to the SWN
dataset. Again, the performance gap between the two approaches is clearly in
favor of TC, both in the case of sampling per one hour and per two hours.

In addition, the NMSE achieved by TC is clearly reduced as we increase
the fill-ratio, in contrast to the MC approach where an increase in the fill-ratio
over 0.2 does not appear to have any considerable effects to its performance.
The results also highlight the fact that in this case, where the dataset was quite
larger than the one used in the first experiment, the TC approach appears to
start outperforming MC for a lower fill-ratio value regime.

To further visualize the performance of the recovery methods, Figure 3
presents ground truth and reconstructed measurements from a single day, sam-
pled at a fill-ratio f = 0.2. We observe that significant features are accurately
estimated even from such low sampling rates, justifying the potential of the
proposed methods for efficient data acquisition and transmission in WSNs.



18
16

14
12

10

Sensor ID

8
6

Fully Sampled Data from day 3

4
20

50

Measurement Instance

100

150

200

250

0

8

10

6

4

2

12

M
ea

su
re

m
en

t 
V

al
u

e

18
16

14
12

10

Sensor ID

8

MC Recovered Data [190]x[288] 

6
4

20

50

Measurement Instance

100

150

200

250

12

10

8

6

4

2

0

M
ea

su
re

m
en

t 
V

al
u

e

18
16

14
12

10

Sensor ID

8

TC Recovered Data [19]x[10]x[288] 

6
4

20

50

Measurement Instance

100

150

200

250

12

10

8

4

2

0

6

M
ea

su
re

m
en

t 
V

al
u

e

Fig. 3: Exemplary reconstruction from 20% of the measurements.

4 Conclusions

In this work, we investigated the application of Tensor and Matrix Completion
for the estimation of missing environmental sensing measurements. The exper-
imental evaluation on two distinct datasets demonstrate that both the Matrix
and Tensor Completion approaches are promising methods for achieving that
goal, while Tensor Completion can better exploit the structure and availability
of the data. Results imply that as we strive to handle higher quantities of data,
emerging correlations can be better exploited by higher-order tensors.
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