LODChain: Strengthen the Connectivity of your RDF Dataset to the Rest LOD Cloud*

Michalis Mountantonakis and Yannis Tzitzikas

Institute of Computer Science - FORTH-ICS, Greece
and Computer Science Department - University of Crete, Greece
{mountant, tzitzik}@ics.forth.gr

Abstract. It is not an easy task for a data owner to publish a dataset as Linked Data with connections to existing datasets since there are too many datasets, thus it is hard to find the related ones, to download them and to check their content (let alone to apply entity matching over them). However, the connections with other datasets are important for discoverability, browsing, and querying in general. To alleviate this problem in this paper we introduce LODChain, a service that can help a provider to strengthen the connections between his/her dataset and the rest of datasets. LODChain finds the common entities, schema elements and triples among the dataset at hand and hundreds of LOD Datasets and through equivalence reasoning it suggests to the user various inferred connections, as well as related datasets. In addition, it detects erroneous mappings, and offers various content-based dataset discovery services, for enabling the enrichment of datasets’ content. The key difference with the existing approaches is that they are metadata-based, while what we propose is data-based. We present an implementation of LODChain, and we report various experimental results over real and synthetic datasets.

Keywords: Linked Data, Connectivity, Dataset Search, Data Discovery

Resource Type: Software Service

Resource URL: https://demos.isl.ics.forth.gr/LODChain

Permanent URL: https://doi.org/10.5281/zenodo.6467419

1 Introduction

An increasing number of datasets are published through Linked Open Data (LOD) principles, i.e., over 10,000 datasets [24]. For making a new RDF dataset more discoverable and reusable, for improving its trustworthiness and for enriching its content, several tasks should be executed before its actual publishing to the web. Indeed, it is a prerequisite to discover existing datasets, to create

* This is a preprint of the paper:
Michalis Mountantonakis and Yannis Tzitzikas, “Strengthen the Connectivity of your RDF Dataset to the Rest LOD Cloud”,
International Semantic Web Conference, Accepted for publication for the Resources Track.
connections with them, through equivalence relationships such as \texttt{owl:sameAs}, to check the quality of such relationships and to create rich metadata. These tasks can be assisted at large scale through existing approaches; for discovering and exporting relevant datasets through metadata-based services like \url{http://lod-cloud.net} \cite{19} or Google Dataset Search \cite{6}, for transforming and querying data \cite{34,11}, for creating schema and instance mappings \cite{30,8}, for quality assessment \cite{48,28}, for finding all the URIs of a given entity \cite{22,39} and others.

However, the huge volume of LOD datasets makes it difficult to discover every possible relevant dataset, especially given that a) existing approaches for publishing RDF datasets do not favor their discoverability and reusability; e.g., \cite{10} states that “up till now, data consumers could, painfully, crawl or search the LOD cloud diagram for a potential dataset”, and b) Dataset Search engines rely on metadata and ignore the actual content of datasets \cite{7}. Also, even if one has discovered and fetched the content of all the datasets, it would be very costly and time consuming to find commonalities with these datasets at scale, to create mappings and to check their quality. Such Data Integration tasks usually require manual work, thus huge human effort, if applied at scale, as well as high storage and computational capacity, which can be prohibitively expensive \cite{24}.

Due to these limitations, the major target of LOD, i.e., linking and integration \cite{5}, has not been yet reached. Indeed, LOD Cloud is sparsely linked; publishers tend to connect their datasets with few and popular datasets and ontologies \cite{2,22}, and “LOD Cloud is at risk of becoming a museum for datasets” \cite{10}. Hence, there is a high need for services that can strengthen the connectivity of a dataset to the rest of LOD Cloud. To alleviate this problem, we introduce the research prototype \texttt{LODChain}, which receives a dataset, e.g., before its actual publishing, computes the transitive and symmetric closure of its \texttt{owl:sameAs} (for entities), \texttt{owl:equivalentProperty} (for properties) and \texttt{owl:equivalentClass} (for classes) relationships with hundreds of LOD datasets, i.e., those indexed by LODsyndesis KB \cite{25}, and offers connectivity and enrichment services. For a new dataset, say D_{new}, \texttt{LODChain} a) spots errors in equivalence mappings, b) infers new mappings, connections and all the common elements, e.g., entities and triples, between D_{new} and LOD datasets, c) discovers its K most relevant datasets, and d) enriches D_{new}, e.g., for offering advanced query capabilities.

Comparing to large-scale services, like LODsyndesis \cite{22,25} or LODlaundromat \cite{34}, to the best of our knowledge \texttt{LODChain} is the first service for strengthening the connectivity of an RDF dataset to the rest of LOD Cloud, at any time, even before its actual publishing. In \cite{26}, we described a preliminary version of \texttt{LODChain} providing analytics only for the entities of Cultural Heritage datasets. In this paper, we introduce the current version of \texttt{LODChain}, which also leverages the schema and the triples of a dataset of any domain and offers more connectivity analytics and services. We present use cases showcasing its impact for the discoverability, reusability and trustworthiness of a dataset, and the process of \texttt{LODChain}, including methods for computing the \texttt{owl:sameAs} closure between a new dataset and the precomputed inference (of 45 million \texttt{owl:sameAs} mappings) from hundreds of LOD datasets. Finally, we provide comparative results for the
effectiveness and the efficiency by using 5 real and 2 synthetic datasets, indicatively, we obtained at least 450% increase to the connections of real datasets.

The rest of the paper is organized as follows. §2 introduces the related work, whereas §3 presents several use cases by using the real dataset WW1LOD [18] containing historical data about World War I. §4 presents the process of LODChain, while §5 provides comparative results for its efficiency and effectiveness. Finally, §6 concludes the paper and identifies directions for future research.

2 Related Work

Several approaches have been proposed for aiding the creation, integration and publication of an RDF dataset, see a recent survey [24] for more details. Here, we focus on a) large scale services for hundreds or even thousands of RDF datasets, b) dataset search and discovery approaches and c) data enrichment approaches, which can be exploited for strengthening the connectivity of a dataset.

Large Scale Services for Multiple RDF datasets. First, LODLaundromat [34] offers data cleaning and transformation for thousands of RDF documents, whereas LOD-a-lot [11] provides a single integrated file containing the documents of LODLaundromat, for enabling their reusability and for offering more advanced query capabilities. Moreover, there are services for finding all the datasets of a given URI, e.g., WIMU [39] and LODsyndesis [23, 25], all the equivalent URIs of a given URI, such as MetaLink [3] and LODsyndesis, i.e., by computing the transitive closure of millions of owl:sameAs mappings, and approaches for detecting erroneous owl:sameAs links [40, 31]. Such services can be exploited from the publisher of a new dataset, for enriching the connectivity of their dataset, e.g., by adding inferred links, and for checking its quality.

RDF Dataset Search & Discovery. Existing services, such as LOD Cloud (http://lod-cloud.net), Google Dataset Search [7], LODatio [12] and LODAtlas [32], provide metadata-based search for discovering relevant RDF datasets, whereas [44] evaluates different snippet generation algorithms that can be used for performing RDF Dataset Search for thousands of datasets. Furthermore, [29] introduces a framework for content-based similarity dataset discovery, by using external knowledge bases (e.g., Wikidata), whereas LODsyndesis offers content-based dataset discovery for finding the most relevant datasets to a given one.

RDF Dataset Enrichment. There are several approaches introducing methods (and their importance) for enriching the content of datasets for several domains, e.g., for tourism [35, 46], for Open City Data [4] or for marine domain [37]. Additionally, one can enrich the data for a given entity, by visiting dereferenceable equivalent URIs, e.g., through services like Metalink or LODsyndesis, by using instance matching tools, e.g., Silk [42], by exploiting link-traversal queries [38], or through SPARQL queries to the endpoints of relevant datasets. A catalog of SPARQL endpoints is available from SPARQLES [41] and SpEnD [47].

Comparison with existing approaches. Concerning the mentioned works, a) the process of large-scale services (e.g., [34, 25]) is done periodically for a high number of open datasets, i.e., it is infeasible to exploit the offered services for
unpublished data or for closed linked data, as big organizations/companies maintain (e.g., [14]), b) the dataset search services (e.g., [7, 32]) are metadata-based, and c) the data enrichment approaches are either domain specific (e.g., [35, 37]), or require additional effort for discovering enriched data (e.g., [3]). On the contrary, to the best of our knowledge, LODChain is the first service that can be used by a publisher at any time, for strengthening the connectivity of a dataset (of any domain) by providing content-based connectivity analytics and enrichment to the rest of LOD datasets. Thereby, it can be used for unpublished or “closed” data, without needing to download any software or to fetch any RDF dataset.

3 Data Publishing - Typical approach versus LODChain

We define the user categories that can have access to a given RDF dataset: i) data owners (publishers), i.e., people, organizations, universities, etc., that are the creators and owners of a given dataset, ii) a special group of interest, i.e., certain individuals, e.g., people, services, within an organization, a research project, etc., iii) users (or services), i.e., any user on the web like publishers of other datasets, or services that have access or and reuse the content of a dataset. This category is a superset of the previous two, i.e., publishers and special group of interest. Fig. 1 shows the typical approach of publishing an RDF dataset. Indeed, a data owner describes the desired data in RDF format, creates mappings with usually few RDF datasets and after assessing its quality, e.g., through competency queries [45], he/she produces the final version. For achieving this target, more steps are usually required, e.g., data conversion, transformation, etc. [24]. Afterwards, the final version is published, either to an open domain (e.g., to LOD Cloud) which can be publicly accessible, discoverable and reusable from any user/service on the web (for performing an analysis, for creating an application, etc.), or to a closed domain, i.e., these benefits are provided to a special group of interest.

Concerning the process of LODChain (lower part of Fig. 1), it receives an RDF dataset, e.g., before its actual publishing, for checking and improving its connec-
Fig. 2. A scenario with 5 use cases by uploading a new dataset to LODChain.

Benefits of LODChain for Data Publishing (Use Cases). We describe use cases by following the steps of the lower side of Fig. 1. For the introduced scenario, we use the small real dataset **WW1LOD** [18]. It contains data about World War I and includes 47,616 triples and 547 sameAs mappings to 5 RDF datasets, including popular ones, such as DBpedia [16] and GeoNames (more statistics are given in §5). For checking more cases, we use a synthetic version of **WW1LOD**, say **WW1LOD_synth**, where we have added 50 erroneous owl:sameAs mappings. The scenario starts when the data owner decides to use LODChain for improving the connectivity of his dataset, before its actual publishing. We suppose that the first version of the dataset is **WW1LOD_synth** (upper left side of Fig. 2). We show how the lifecycle of **WW1LOD_synth** can be changed by using LODChain, and for each Use Case (UC) we indicate its potential impact. The use cases are also presented in an online video (https://youtu.be/Kh9751p32tM).

UC1. Error Detection and Corrections. The publisher uploads the version **WW1LOD_synth** to LODChain, which informs the publisher that there are 50 possible erroneous mappings, and provides a list containing these errors (upper side of Fig. 2). The publisher downloads the list for correcting the mappings and for creating the version **WW1LOD**. Without checking the quality of equivalence relationships, which is quite difficult at scale [24], it can result in erroneous relationships, which can negatively affect the trustworthiness of a publisher.

UC2. How connected is my dataset? The scenario continues by uploading the version **WW1LOD**. LODChain analyzes the dataset, informs the publisher...
that there are no errors, and it offers several connectivity analytics. Some of these
real results are shown in UC2 of Fig. 2, i.e., we inferred 2,172 \texttt{owl:sameAs}
relationships (397\% increase), which resulted to 25 new connections, i.e., 500\%
increase, since the initial version had only 5 connections. In Fig. 2 (and also in
Fig. 1) the inferred connections are depicted as edges/nodes with green color
and the old connections with red color, whereas the label of each edge indicates
the number of their common entities. Except for finding new connections with
popular datasets (e.g., Wikidata \cite{wikidata}, YAGO \cite{yago}), which is expected due to tran-
sitivity (they share millions of entities with DBpedia), it is feasible to discover
connections with not so popular datasets that were unknown to the publisher.
As regards dataset discovery and selection, indicatively Fig. 2 shows the best
triad of datasets offering a) the most common entities and b) the most comple-
mentary triples for \textit{WW1LOD} entities. We suppose that the publisher exports
all the inferred data and analytics for reusing them (i.e., version \textit{WW1LOD}_{enr}),
although one can decide to use any subset of these enriched data.

\textbf{UC3. Publishing the Enriched Dataset to LOD Cloud.} Suppose that
the publisher decides to upload the enriched version \textit{WW1LOD}_{enr}, including all
the inferred equivalence mappings and connectivity analytics, to LOD Cloud (see
UC3 in Fig. 2). Below, we explain the possible impact for any users' category.

\textbf{UC4. Advanced Query Capabilities, Enrichment & Verification.} We
mention the benefits of using \textsc{L0DChain} for the data owner or/and for a spe-
cial group of interest. By enriching \textit{WW1LOD} through multiple datasets, more
complex queries can be answered, such as the following: “Give me the politi-
cians that were related to first World War, they have won a Nobel prize and
optionally information for the books that they have written” (UC4 in Fig. 2).
That query requires data from several datasets, e.g., for “Theodore Roosevelt”,
which is a possible answer, the first part can be answered from \textit{WW1LOD}
(http://ldf.fi/ww1lod/96403a6a), the second (nobel prizes) from Wikidata
(https://www.wikidata.org/wiki/Q33866), and the third (books) from the
National Library of Germany (http://d-nb.info/gnd/118749633). Although
\textit{WW1LOD} was not connected to Wikidata and the National Library of Germany
(Fig. 2), \textsc{L0DChain} inferred and added these connections in the enriched version.

However, it is not always feasible to export and use all the relevant datasets
due to huge data volume, thereby, \textsc{L0DChain} also offers services for selecting the
K most relevant datasets for a desired task. For example, two possible tasks are
to find the combination of K=3 datasets providing i) “the most complementary
triples for the entities of \textit{WW1LOD}” (UC4 in Fig. 2), i.e., for data enrichment,
or ii) “the most common entities with \textit{WW1LOD}”, i.e., for data verification.
From the 30 connected datasets, there exists 4,060 combinations of 3 datasets,
thereby, it is quite expensive to check any possible combination. However, by
exploiting the precomputed results of \textsc{L0DChain}, one can find very fast the K=3
most relevant datasets for a task (e.g., UC4 in Fig. 2). These examples indicate
the impact of \textsc{L0DChain} for the dataset selection process, i.e., the K most relevant
datasets differ according to the desired needs, even for the same dataset.
LODChain: Strengthen the Connectivity of your RDF dataset

UC5. Dataset Search, Discoverability & Reusability. Here, we mention the benefits for any user/service (in case of open data). Suppose that publishers of other datasets periodically check the LOD Cloud for discovering relevant datasets to their dataset, that were recently published, or an automated service informs them when a new dataset is connected with their dataset. E.g., in UC5 of Fig. 2, the publisher of VIAF desires to find datasets having a) common entities with VIAF and b) information about World Wars, i.e., for enriching or for verifying their content. They observe that **WW1LOD** not only covers this topic, but also has 369 common entities with VIAF, thereby they decide to use it. Without **LODChain**, it would be extremely difficult for most publishers (25 out of 30) to discover that **WW1LOD** is relevant to their dataset (and to reuse it), e.g., the first version of **WW1LOD** did not have links to VIAF.

4 **LODChain: Connecting your dataset to the LOD Cloud**

First, we describe **LODsyndesis** (which is used from **LODChain**), and then the steps of **LODChain**, by showing a running example of how to strengthen the connectivity of a new dataset, i.e., \(D_{\text{new}} \) (upper left part of Fig. 3). For finding new connections for \(D_{\text{new}} \), it is prerequisite \(D_{\text{new}} \) to contain links to at least one dataset, e.g., in Fig. 3, \(D_{\text{new}} \) is connected with 2 datasets: DBpedia and Wikidata. Indeed, we do not perform instance and schema matching, but we infer new connections by computing the closure of equivalence mappings among \(D_{\text{new}} \) and the rest of LOD datasets. Finally, the data of \(D_{\text{new}} \) are saved temporarily in LODsyndesis indexes for a user session for producing the desired output.

4.1 **LODsyndesis aggregated knowledge graph**

LODChain is based on **LODsyndesis** [25], which is an Aggregated Knowledge Graph derived by aggregating the content of datasets, computing the transitive and symmetric closure of 45 million equivalence relationships, and offering semantics-aware indexes and services for over 412 million entities and 2 billion triples from 400 LOD datasets. Concerning the quality of the mentioned closure, it has been evaluated in a semi-manual way in our past work [20]. Afterwards, **LODsyndesis** keeps a unique representation for each real world entity, property and class, while also storing their provenance. The lower right side of Fig. 3 shows a graph representation of the **LODsyndesis** data about the Greek composer “Mikis Theodorakis”. **LODsyndesis** has precomputed the owl:sameAs closure for “Mikis Theodorakis” URIs, has stored their provenance, and has replaced all these URIs by a single internal URI (see the single node for M. Theodorakis). The same process has been done for all the entities (e.g., “Paris”), properties (e.g., “bornYear”) and so forth. Regarding the triples (i.e., facts), it stores at the same place in the index, all the triples of an entity occurring either as a subject or as an object, and their provenance. Thereby, triples having entities as objects are stored twice in the index. The lower right side of Fig. 3 shows the triples for M. Theodorakis and their provenance (see the bold text under each node).
Fig. 3. Running Example. The steps of LODChain for a new dataset D_{new}

4.2 The steps of LODChain

Step A. Input. LODChain supports many formats: NTriples, NQuads, RDF/XML and Turtle (by using the RDF4J library https://rdf4j.org/). The publishers just give a link of their dataset in one of these formats. They can optionally type the title and domain of their dataset and can select to perform the process only for a subset of their dataset (e.g., 10,000 triples) for having a very fast overview.

Step B. Computation of Equivalence Relationships Closure & Provenance. The objective is to detect which real world objects are a) common in D_{new} and LODsyndesis, b) unique in D_{new}, and to detect c) errors in the equivalence relationships of D_{new}. LODChain reads the triples of D_{new}, collects all the owl:sameAs, owl:equivalent Property and owl:equivalentClass relationships and partitions the URIs in three sets: entities, properties and classes.

B1. Local Computation of Closure in D_{new}. For each type of these URIs and equivalence relationships, we use the signature-based algorithm proposed in [22], for computing the transitive and symmetric closure of the equivalence relationships of D_{new}. LODChain reads the triples of D_{new}, collects all the owl:sameAs, owl:equivalent Property and owl:equivalentClass relationships and partitions the URIs in three sets: entities, properties and classes.

B2. Computation of Closure between D_{new} and LODsyndesis. Here, we merge the local “clusters” of D_{new}, with the results of the precomputed clo-
sue of LODsyndesis. We shall use $C(LOD)$ to denote the set of all the clusters of LODsyndesis (which are pairwise disjoint), and $glob(e) \in C(LOD)$ to denote the cluster of entity e in LODsyndesis, e.g., for “Mikis Theodorakis” $glob(e) = \{\text{dbp:Mikis Theodorakis}, \text{wkd:Q151976}, \text{viaf:Theodorakis}, \text{yago:M. Theodorakis}\}$ (lower left side of Fig. 3). Moreover, $prov(e)$ denotes the provenance of e in LODsyndesis, e.g., for the mentioned entity $prov(e) = \{\text{DBpedia}, \text{YAGO}, \text{Wikidata}, \text{VIAF}\}$. Each $loc(e) \in C(D_{new})$ belongs to exactly one of the three below rules:

Rule 1. No Match Between Clusters: New Entities. Here, $loc(e)$ does not match with any global cluster of LODsyndesis, thereby the corresponding entity exists only in D_{new}, i.e., for a given $loc(e) \in C(D_{new})$, $\exists glob(e') \in C(LOD)$ s.t. $loc(e) \cap glob(e') \neq \emptyset$. In such a case, we add $loc(e)$ to $C(LOD)$.

Rule 2. Single Match between Clusters: Inferring new Relationships. If a given $loc(e) \in C(D_{new})$ matches with exactly one $glob(e')$, i.e. if $\exists glob(e') \in C(LOD)$ s.t. $glob(e') \cap loc(e) \neq \emptyset$, then we assume that $e \equiv e'$, and we perform the following operation: $loc(e) \cup glob(e')$. In step B1 of Fig. 3, two URIs of the local cluster, i.e., dbp:Mikis Theodorakis and wkd:Q151976, belong also to the same global cluster in LODsyndesis (see the lower side of Fig. 3). By merging these clusters (step B2 of Fig. 3), we inferred two new owl:sameAs mappings for the URI “dnew:M. Theodorakis”, we updated its provenance, and we managed to discover two new connections for D_{new}, i.e., VIAF and YAGO.

Rule 3. Cluster Conflicts: Detecting Possible Errors. If a $loc(e) \in C(D_{new})$ matches with two or more clusters of LODsyndesis, i.e., if $\exists glob(e_1), glob(e_2) \in C(LOD)$ s.t. $glob(e_1) \cap loc(e) \neq \emptyset$, $glob(e_2) \cap loc(e) \neq \emptyset$, $glob(e_1) \neq glob(e_2)$, then this is an indication of error. For instance, suppose that we have added the following erroneous mapping in D_{new}: ⟨dnew:M. Theodorakis, owl:sameAs, dbp:Theodore Roosevelt⟩. Due to closure, in step B1 the result would be $loc(e)=\{\text{dnew:M. Theodorakis}, \text{dbp:Mikis Theodorakis}, \text{wkd:Q151976}, \text{dbp:Theodore Roosevelt}\}$. However, by proceeding to step B2, $loc(e)$ would match with two clusters of LODsyndesis, i.e., the URIs dbp:Mikis Theodorakis and dbp:Theodore Roosevelt refer to different entities and belong to different global clusters. LODChain identifies such cases and informs the user.

Algorithm for Step B2. Alg. 1 detects if there is zero, one or more global clusters, that match with the URIs of $loc(e)$, for finding common and unique entities, and errors in the owl:sameAs mappings. Alg. 1 reads each $loc(e)$ separately and iterates over all its URIs (lines 2-11). For each URI u, it performs a binary search in LODsyndesis index (see line 5), for checking if it occurs in a global cluster (i.e., if it exists in LODsyndesis). Concerning the rules, for the local clusters belonging to Rule 1, the lines 6-11 will never be executed, since there is not a global cluster containing at least one URI of $loc(e)$. On the contrary, the lines 12-15 will be executed and the entity e will be stored as unique. Regarding Rule 2, the first time that we find a URI of $loc(e)$ that belongs to a global cluster, we retrieve and store the corresponding global cluster (lines 5-7). In case of finding another URI(s) of $loc(e)$ belonging to the same global cluster, we just continue with the next URI of $loc(e)$. At the end, lines 16-19 are executed for updating the global cluster of e (i.e., $glob_{new}(e)$) and its provenance, and for
Algorithm 1: Computation of Closure between \(D_{\text{new}}\) and LODsyndesis

Input: Local Closure \(C(D_{\text{new}})\) and global closure \(C(LOD)\)

Output: The common and unique entities, and errors in owl:sameAs mappings

```plaintext
1 uniqEnt ← ∅, cmnEnt ← ∅, errors ← ∅
2 forall loc(e) ∈ C(D_{\text{new}}) do // for each local cluster
3     glob_{\text{new}}(e) ← ∅ // init. the new global cluster of e
4     forall u ∈ loc(e) do // For each URI u of local cluster
5         if u ∈ glob(e'), glob(e) ∈ C(LOD) then // If u in LODsyndesis
6             if glob_{\text{new}}(e) ≡ ∅ then // 1\textsuperscript{st} global cluster for e
7                 glob_{\text{new}}(e) ← glob(e') // Store the global cluster
8             else if glob_{\text{new}}(e) ≠ glob(e') then // 2\textsuperscript{nd} global cluster for e
9                 delete glob_{\text{new}}(e) // Delete e, matches 2 glob. clusters
10                errors ← errors ∪ \{loc(e)\} // Add loc(e) to errors
11                break and go to line 2 // Continue with the next loc(e)
12         else if glob_{\text{new}}(e) ≡ ∅ then // No global cluster found
13             glob_{\text{new}}(e) ← loc(e) // loc(e) is the global cluster of e
14             uniqEnt ← uniqEnt ∪ \{e\} // Add e to unique entities
15             prov(e) ← D_{\text{new}} // Store its provenance
16         else if glob_{\text{new}}(e) ≠ ∅ then // A single global cluster found
17             glob_{\text{new}}(e) ← glob_{\text{new}}(e) ∪ loc(e) // Update global cluster of e
18             cmnEnt ← cmnEnt ∪ \{e\} // Add e to common entities
19             prov(e) ← prov(e) ∪ \{D_{\text{new}}\} // Update its provenance
20 return cmnEnt, uniqEnt, errors
```

storing the entity as a common one. Concerning Rule 3, in case of detecting a second different global cluster that matches loc(e), lines 8-11 are executed exactly one time, loc(e) is stored as an error and we continue with the next loc(e).

Finally, Alg. 1 returns the common and unique entities, and the sameAs errors.

This algorithm reads each URI \(u\) of \(D_{\text{new}}\) once (i.e., each URI of \(D_{\text{new}}\) exists in exactly one local cluster), and then it performs a binary search for \(u\) in LODsyndesis index. Therefore, its time complexity is \(O(|U_{D_{\text{new}}}| \cdot \log(|U_{LOD}|))\), where \(U_{D_{\text{new}}}\) are all the URIs of \(D_{\text{new}}\), \(U_{LOD}\) are all the URIs in LODsyndesis, and \(\log(|U_{LOD}|)\) is the cost of the binary search in LODsyndesis. On the other hand, it keeps in memory all the updated global clusters, containing the entities of \(D_{\text{new}}\), i.e., its space complexity is \(O(\sum_{loc(e)\in C(D_{\text{new}})}|glob_{\text{new}}(e)|)\).

How to Reduce the Number of Index Reads? A limitation is that \(|U_{LOD}|\) can be huge, i.e., LODsyndesis contains more than 412 million URIs. Although we use a binary search (which is logarithmic in scale), we desire to further decrease the cost of searching to the index of LODsyndesis. For this reason, we exploit the prefixes of URIs, i.e., they usually indicate the company or university that publishes the dataset (data owner). For instance, the prefix of the URI “http://dbpedia.org/resource/Mikis_Theodorakis” is “http://dbpedia.org/”. We use the prefix index of LODsyndesis [22], which contains all the prefixes for the URIs that are indexed in LODsyndesis, for checking very fast if a URI occurs in at least one existing dataset. Indeed, we know that if the prefix of a URI does not exist in the prefix index, the URI cannot be found in LODsyndesis [22].
Algorithm 2: Merging the triples (facts) of D_{new} with LODsyndesis

Input: The common entities $cmmEnt$ and their triples in D_{new}

Output: Common and unique triples of D_{new} entities to LODsyndesis datasets

1. $uniqTriples \leftarrow \emptyset$, $cmmTriples \leftarrow \emptyset$
2. forall $e \in cmmEnt$ do // Read each common entity e
3. forall $(s, p, o) \in T(D_{new}, e)$ do // Read each triple of e in D_{new}
4. if $(s, p, o) \in T(LOD, e)$ then // If triple exists in LODsyndesis
5. $prov((s, p, o)) \leftarrow prov((s, p, o)) \cup \{D_{new}\}$ // Update provenance
6. $cmmTriples \leftarrow cmmTriples \cup \{(s, p, o)\}$ // Add to $cmmTriples$
7. else // Triple is offered only from D_{new}
8. $prov((s, p, o)) \leftarrow \{D_{new}\}$ // Store its provenance
9. $uniqTriples \leftarrow uniqTriples \cup \{(s, p, o)\}$ // Add to $uniqTriples$
10. $T(LOD, e) \leftarrow T(LOD, e) \cup \{(s, p, o)\}$ // Add to LODsyndesis
11. return $uniqTriples, cmmTriples$

How to use the Prefix Index: Since the size of the prefix index is quite small compared to the index of LODsyndesis, i.e., it contains less than 1 million prefixes, before executing the line 5 of Alg. 1, we can search if the prefix of URI u occurs in the prefix index (of LODsyndesis), and only if it is true, we can perform a binary search for u in the index of LODsyndesis. Otherwise, we just continue with the next URI. For further reducing the cost, even for searching in the prefix index, and since prefixes are highly repeated in a given dataset (e.g., in our experiments, each dataset has on average only 23.6 prefixes), we keep in memory the prefixes that we have already seen. As it is shown in §5, it can highly reduce the execution time, i.e., even more than $5\times$ for real datasets.

Step C. Merging triples of D_{new} with LODsyndesis. Here, we merge the triples for the common entities of D_{new} to LODsyndesis, for finding common and unique facts, and possibly complementary facts from other LOD datasets (data enrichment). This is performed only for the common entities (Rule 2), since for the entities belonging only to D_{new} (Rule 1), we know that all their triples are unique. We denote all triples having an entity e either as a subject or as an object, in LODsyndesis as $T(LOD, e)$ and in D_{new} as $T(D_{new}, e)$. We desire to find for each common entity e, a) the common triples in LODsyndesis, i.e., $T(LOD, e) \cap T(D_{new}, e)$, b) the unique triples of D_{new}, i.e., $T(D_{new}, e) \setminus T(LOD, e)$, and optionally c) the complementary triples to D_{new}, i.e., $T(LOD, e) \setminus T(D_{new}, e)$.

Algorithm for Step C. Alg. 2 shows how to compute the unique and common triples. It receives as input the common entities ($cmmEnt$), and $\forall e \in cmmEnt$, it accesses its entry in LODsyndesis index through a random access file mechanism. The pointer of the entry of each entity (in the index) has been obtained from the binary search of the previous step (i.e., line 5 of Alg. 1). Then, for each triple in $T(D_{new}, e)$, it checks if it occurs in LODsyndesis (lines 3-10). If it is true, we update the provenance and we store the triple as common (lines 4-6), otherwise, we add the unique triple to $T(LOD, e)$ (lines 7-10). In the worst case, i.e., all the entities of D_{new} are part of LODsyndesis, we iterate and keep in memory all the entities and triples of D_{new}, i.e., time and space complexity is $O(|cmmEnt| + |T(D_{new})|)$. For finding complementary facts, we
can extend Alg. 2 by also iterating over \(T(LOD, e) \). However, since it can be expensive, for producing connectivity analytics we can use pre-computed posting lists containing the provenance of each triple of \(e \) [25]. In step C of Fig. 3, we updated the triples and we found common, complementary and unique facts for \(D_{\text{new}} \), e.g., the fact “M. Theodorakis, bornYear, 1925” is verified from 3 other datasets, the fact “M. Theodorakis, educatedAt, Paris” is complement to \(D_{\text{new}} \) and the fact “M. Theodorakis, composer, Zorbas Dance” is offered only by \(D_{\text{new}} \).

Step D. Connectivity Analytics and Enrichment services. By using the updated (temporal) LODsyndesis indexes and specialized lattice-based algorithms (presented in [22, 25]), we provide both connectivity and dataset discovery content-based measurements (e.g., see Step D of Fig. 3). The algorithms exploit the posting lists of an index (i.e., containing information about the provenance of entities, triples, etc.) for computing content-based metrics among any combination of datasets, by solving the corresponding maximization problems [22, 25]. LODChain offers connectivity analytics and data discovery services for the input dataset, through several visualizations and HTML tables (e.g., UC2 of Fig. 2).

First, LODChain provides a list of possible errors in case of detecting erroneous \texttt{owl:sameAs} mappings (Rule 3 of step B2), that can be used for correcting the mappings. Second, a plenty of connectivity metrics are computed and visualized, i.e., a) the inferred equivalence mappings, b) common, unique and complementary elements, i.e., how many entities, schema elements and triples of \(D_{\text{new}} \) exist in \(\geq 1 \) other datasets, how many only in \(D_{\text{new}} \), and how many complementary triples exist for the entities of \(D_{\text{new}} \), c) connections of \(D_{\text{new}} \) due to closure, i.e., the datasets having common entities with \(D_{\text{new}} \) before and after the computation of closure, d) top-10 connections of \(D_{\text{new}} \) (separately for entities, schema and triples), and many others. Regarding Dataset Discovery, LODChain finds the \(K \) most relevant datasets to \(D_{\text{new}} \) with common or complementary elements. Third, it offers an enriched version of \(D_{\text{new}} \) in RDF format having: all the common elements and their provenance, the inferred \texttt{owl:sameAs} mappings, complementary triples, and rich metadata, created through VoID [1] and VoIDWH [21], that describe through triples the results of connectivity analytics.

Accessing LODChain and Sustainability Plan. LODChain is available in https://demos.isl.ics.forth.gr/LODChain and is running on a common machine with 8 cores, 8GB memory and 60GB disk space in okeanos service [13]. There is no need to download any software for using it, and sample datasets are offered in the webpage. Regarding its sustainability plan, LODChain can be used with any updated version of LODsyndesis’ indexes, thereby, one major plan is to investigate ways for aiding the update of LODsyndesis at least periodically.

5 Experimental Evaluation

The objective is to measure the efficiency of LODChain and to provide connectivity analytics. We use a common machine with 8 cores and 8GB memory, which contains the indexes of LODsyndesis. These indexes include over 2 billion triples and 412 million URIs from 400 RDF datasets, i.e., statistics are given in [24,
Concerning the datasets, we use the 5 real and 2 synthetic RDF datasets of Table 1. The real datasets include from 3K to 1.5M of triples, they contain links to few other datasets, i.e., see more statistics in §5.2, and only a few number of unique prefixes, i.e., on average 23.6 prefixes. Indeed, most of their URIs contain a prefix that cannot be found in LODsyndesis. In the worst case for real datasets, only 26.4% of URIs contain a prefix that occurs in LODsyndesis. We also use two synthetic datasets having the same number of triples, URIs and \texttt{owl:sameAs} mappings, for evaluating two cases. In the first one (HiConn), most URIs are part of LODsyndesis (highly connected), whereas in the second (LowConn), most URIs and their prefix are new (almost disconnected from LODsyndesis).

5.1 Efficiency

We measure the execution time i) for the whole process, ii) for the different steps of LODChain, and iii) by using a different number of triples for the same dataset.

Execution Time - The Gain of Prefix Index. Concerning the real datasets (first five rows of Table 2), as the size of the dataset grows, the execution time increases. However, by exploiting the prefix index, the execution time highly decreases for all the real datasets, i.e., we achieved a speedup from $1.41 \times$ to $5.44 \times$. Since these datasets contain a high percentage of URIs with new prefixes (that are not part of LODsyndesis) we managed to reduce the reads to LODsyndesis indexes (and thus the execution time). By using that approach, we needed for the first four real datasets from 5 seconds to 2.5 minutes, whereas for the largest dataset, i.e. PNLN, we needed 35 minutes. For the synthetic datasets (last two rows of Table 2), the execution time is extremely different in case of using the prefix index, although they contain the same number of triples, URIs and \texttt{owl:sameAs} mappings. For the LowConn dataset, we achieved a 31.11× speedup by exploiting the prefix index, while for the whole process 1 minute was needed, although the dataset contains 1 million triples. On the contrary, for the HiConn, which consists of the same number of triples, we needed 40 minutes to complete the process, even by using the prefix index, which is rational, since most URIs of HiConn contain a prefix that is common in LODsyndesis.

Execution time for different numbers of Triples/URIs. Fig. 4, shows the execution time for different numbers of triples (and URIs), by using the three
Table 2. Total execution time for each dataset, with and without prefix index

<table>
<thead>
<tr>
<th>Dataset</th>
<th>w/o Prefix Index</th>
<th>with Prefix Index</th>
<th>Achieved Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRC</td>
<td>7.47 s</td>
<td>5.26 s</td>
<td>1.41×</td>
</tr>
<tr>
<td>GTS</td>
<td>10.37 s</td>
<td>7.11 s</td>
<td>1.45×</td>
</tr>
<tr>
<td>WW1LOD</td>
<td>79.74 s</td>
<td>39.04 s</td>
<td>2.04×</td>
</tr>
<tr>
<td>MW</td>
<td>779.10 s</td>
<td>143.11 s</td>
<td>5.44×</td>
</tr>
<tr>
<td>PNLN</td>
<td>3,881.02 s</td>
<td>2,110.12 s</td>
<td>1.83×</td>
</tr>
<tr>
<td>LowConn</td>
<td>1,960.08 s</td>
<td>62.80 s</td>
<td>31.11×</td>
</tr>
<tr>
<td>HiConn</td>
<td>2,531.60 s</td>
<td>2,446.41 s</td>
<td>1.03×</td>
</tr>
</tbody>
</table>

Fig. 4. Execution time with different number of triples for the same dataset

Fig. 5. Execution time for the different steps for each dataset (log scale with base 10)

largest datasets (including the two synthetic datasets). We can see that as the number of triples (and URIs) grows, the execution time linearly increases, which is expected, since the time complexity of the most time consuming tasks (results are presented in the next paragraph), i.e., computation of closure and merging of triples with LODsyndesis are linearithmic and linear, respectively (see §4).

Execution time of Different Steps. Fig. 5 depicts in log scale (with base 10) the execution time of the different steps of LODChain for each single dataset and also the average time (of all the datasets) by using the approach with the prefix index. The most time-consuming task is the computation of closure among the URIs of a new dataset and LODsyndesis (i.e., global closure), e.g., for PNLN dataset, it requires the 76.4% of the time, whereas the process of merging the triples can require enough time in case of having a high number of common entities, e.g., for PNLN it requires 20.2% of the total time. On the contrary, the rest of steps are quite fast in any case, i.e., less than 50 seconds even in the worst case. In general, datasets with high connectivity require more time to be processed, i.e., for datasets having a lot of common entities with other datasets (such as PNLN), we need to access more times the indexes of LODsyndesis.

5.2 Connectivity Analytics over Real Datasets

Table 3 provides connectivity analytics for the 5 real datasets. We can see (IDs 1-3) the high increase (even 397%) in the number of owl:sameAs mappings. On the contrary, we detected only a very few number of sameAs errors (ID 4), e.g., only 0.007% for PNLN dataset. Concerning the entities, each dataset shares several common entities with existing datasets, i.e., from 5.3% to 20.1% of their
LodChain: Strengthen the Connectivity of your RDF dataset

Table 3. Connectivity Analytics for each real dataset to 400 other LOD datasets

<table>
<thead>
<tr>
<th>ID</th>
<th>Measurement</th>
<th>GR</th>
<th>GTS</th>
<th>WW1LOD</th>
<th>MW</th>
<th>PNLN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td># of owl:sameAs</td>
<td>-</td>
<td>-</td>
<td>548</td>
<td>2,172</td>
<td>26,113</td>
</tr>
<tr>
<td>2</td>
<td># of inferred owl:sameAs</td>
<td>-</td>
<td>316%</td>
<td>379%</td>
<td>217%</td>
<td>114%</td>
</tr>
<tr>
<td>3</td>
<td># of unique entities</td>
<td>441</td>
<td>902</td>
<td>10,271</td>
<td>54,089</td>
<td>297,091</td>
</tr>
<tr>
<td>4</td>
<td># of common entities</td>
<td>39</td>
<td>139</td>
<td>820</td>
<td>3,066</td>
<td>79,181</td>
</tr>
<tr>
<td>5</td>
<td># of connections before LodChain</td>
<td>2</td>
<td>9</td>
<td>26</td>
<td>26</td>
<td>33</td>
</tr>
<tr>
<td>6</td>
<td># of inferred connections</td>
<td>17</td>
<td>9</td>
<td>30</td>
<td>31</td>
<td>36</td>
</tr>
<tr>
<td>7</td>
<td># of connections after LodChain</td>
<td>19</td>
<td>21</td>
<td>66</td>
<td>19</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td># of unique properties</td>
<td>19</td>
<td>21</td>
<td>66</td>
<td>19</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td># of common properties</td>
<td>23</td>
<td>58</td>
<td>81</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>10</td>
<td>common properties percentage</td>
<td>54.7%</td>
<td>73.4%</td>
<td>55.4%</td>
<td>29.6%</td>
<td>77.7%</td>
</tr>
<tr>
<td>11</td>
<td># of unique classes</td>
<td>1</td>
<td>2</td>
<td>12</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td># of common classes</td>
<td>1</td>
<td>8</td>
<td>23</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>common classes percentage</td>
<td>50.0%</td>
<td>28.5%</td>
<td>30.6%</td>
<td>20.0%</td>
<td>100%</td>
</tr>
<tr>
<td>14</td>
<td># of unique facts</td>
<td>2,897</td>
<td>15,908</td>
<td>53,505</td>
<td>611,750</td>
<td>1,231,972</td>
</tr>
<tr>
<td>15</td>
<td># of common facts</td>
<td>0</td>
<td>25</td>
<td>368</td>
<td>7,935</td>
<td>193,248</td>
</tr>
<tr>
<td>16</td>
<td>common facts percentage</td>
<td>0%</td>
<td>0.1%</td>
<td>0.6%</td>
<td>1.4%</td>
<td>13.5%</td>
</tr>
<tr>
<td>17</td>
<td># of new facts for D_new entities</td>
<td>26,668</td>
<td>17,642</td>
<td>362,339</td>
<td>597,475</td>
<td>6,362,412</td>
</tr>
<tr>
<td>18</td>
<td>% of facts enrichment for D_new entities</td>
<td>920%</td>
<td>104%</td>
<td>64%</td>
<td>96%</td>
<td>204%</td>
</tr>
</tbody>
</table>

6 Conclusion and Future Work

Since the current way of publishing an RDF dataset does not favor its connectivity, and thus its discoverability, reusability and content enrichment, we proposed a novel service, called LodChain, for strengthening the connections of any RDF dataset (even before its actual publishing) to the rest of LOD cloud. For showcasing its potential impact, we described use cases involving different categories of users, and we detailed its process, which includes methods for computing the equivalence reasoning among the input dataset and hundreds of LOD datasets. For evaluating its impact and efficiency we used 5 real and 2 synthetic datasets; LodChain produced connectivity analytics for datasets with thousands of triples.
even in less than 1 minute, whereas the connections of real datasets increased from 450% to 1100%. As a future research, work and long-term plan, we want to a) investigate ways to parallelize LODChain (by extending the techniques of [23]), b) improve the GUI and perform a usability evaluation with dataset owners, c) support entity matching for finding connections for totally disconnected RDF datasets, and d) create an evaluation benchmark for such connection services.

Resource Availability Statement: The source code and URL of LODChain, the datasets and the experimental results are available in [27]. A tutorial video presenting LODChain is available in https://youtu.be/Kh9751p32tM.

Acknowledgments. This work has received funding from the European Union’s Horizon 2020 coordination and support action 4CH (Grant agreement No 101004468).

References

1. Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing linked datasets with the VoID vocabulary (2011)
44. Wang, X., Cheng, G., Pan, J.Z., Kharlamov, E., Qu, Y.: BANDAR: benchmarking snippet generation algorithms for (RDF) dataset search. IEEE Transactions on Knowledge and Data Engineering (2021)