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ABSTRACT

A key problem when comparing planar shapes is to
locate corresponding reference points, such as inflection
or high curvature points. High curvature points are to be
preferred, since they are psychophysically more important
and are shown to be computationally more reliable. Using
a scale-space of curves such ‘corners’ are located, and an
empirical analysis demonstrates that high curvature points
are indeed least sensitive to noise. Using reliable ‘corners’,
a shift invariant and piecewise linear alignment of shapes
is defined, and a similarity measure between two curves is
defined using lossless compression. The measure is chosen
to be proportional to the area between two shapes after
piecewise alignment and to the number of data points. The
proposed shape similarity is validated using a small shape
database.

Keywords: Scale-Space, Mean Curvature Motion, Min-
imum Description Length, Procrustes Distance, Shape Sim-
ilarity.
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Boundaries are important features, when searching for

objects in an image database [1, 2]. A boundary may be
characterized by the sequence of turns encountered as its
path is traversed, and this sequence is invariant to transla-
tion and rotation of the boundary. Hence, the shape of a
boundary is an intrinsic property with respect to a group of
transformations. Typical transformations studied in image
processing are [3]: The euclidean group, (*),+.- , of rotation,
reflection, and translation, the similarity group, /�01),+2- , of
euclidean transformations and scaling, and the affine group,3 ),+.- , of similarity transformations and scaling in two or-
thogonal directions. These groups define different notions of
shape. For example, circles of all sizes have the same shape
under the similarity and affine groups but not under the eu-
clidean group. Conversely, all ellipses are the same shape
under the affine group but not under euclidean or similarity
transformations.4

This work was funded in part by EC Contract No. ERBFMRX-
CT96-0049 (http://www.ics.forth.gr/virgo) under the
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As elaborated upon in [4, 5], each of the above groups
can be associated with a set of invariant (and semi-invariant)
functions that defines the specific notion of shape. While
such an invariant or semi-invariant function is a useful basis
for comparing shapes, a number of problems must be solved,
before a working system can be built:

1. When comparing invariant functions, the shape must
be assigned an origin for point to point comparison. To
be intrinsic the choice must be a singular point of the
invariant function. Unfortunately, for near symmetrical
shapes this is an ill-posed problem: For example, the
curvature function of a rectangle, has four global max-
ima, but an arbitrary small noise signal will result in a
curvature function with four points of high curvature,
but only one global maximum.

2. Shapes will almost never have the same circumference,
and their invariant functions must be stretched so that
they can be compared point to point. While linear
stretching is optimal when shapes differ in size, non-
linear stretching seems more appropriate in other cases.
As an example, the shapes in Figure 1 differ by a dent.
Some of the the extremal points of curvature function
A matches those of function B but their lengths differs.
Unfortunately, linearly stretching function A to match
the length of function B causes all the extremal points
to mismatch.

3. A sensible similarity measure must depend on the num-
ber of samples. For example, three points on a circle
will look more like a triangle than a circle, but when the
number samples is increased, the points will quickly be
recognized as coming from circle and not from a trian-
gle.

Finally, it is observed that curvature difference functions are
not the only sensible notion of shape differences as illustrated
in Figure 2. The two pieces appear to be different, since no
euclidean transformation can make the bent piece straight.
However, the curvature functions differ only at one point,
otherwise appearing to be rather similar.
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The euclidean or affine curvature functions are intrinsic

descriptions of shapes under euclidean or affine transfor-
mations. This implies that singular points, such as zero-
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Linear stretching of curvature function is not

optimal for all shapes. TOP: Two similar shapes. BOT-
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Two different curve pieces with curvature func-

tions only differing in one point.

crossings, extrema, etc., are intrinsic properties of shapes.
Therefore, singular points of invariant functions are ex-
cellent candidates for shape comparison. An elegant dis-
tance measure between ordered point sets is the Procrustes
distance [6]: Given two ordered point sets in the plane,��� ����� � � � )�� ������� -
�$� and  � �"!�� � , the squared Pro-
crustes distance is given by #%$ �'&)(+*-,/. �10 � �3254 , ! � 0 $ ,
where 076"0 is the length operator and

4 ,
the rotation operator.

There exists a simple, closed form solution of the minimiza-
tion [6]. Invariance under similarity, euclidean, or affine
transformation may be obtained by prior normalization.

Singular points on curves are naturally ordered (except
for a possible mirroring). However, in order to calculate the
Procrustes distance between two shapes, we need the same
number of points on each shape. Further, for similar shapes
these points should be chosen at similar positions. In the
following, we will show how a scale-space of curves can be
used to order a set of singular points according to stability,
and we will show how an increasing number of singular
points on a curve describes a decreasing number of shapes.
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Scale-space and group invariance are very much related

concepts [7]. For example, the Mean Curvature scale-space
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The fingerprint images of the evolutions in

Figure 3 MIDDLE and RIGHT respectively.

[8] is invariant under euclidean transformation and is non-
increasing in the number of extrema and inflection points
of the curvature function. Likewise, the Affine Curvature
scale-space [9] is invariant under affine transformation and
non-increasing in the number of extrema and inflection points
of the affine curvature function.

We have used the coordinate-wise implementation of
Mean Curvature scale-space [8], and extended this imple-
mentation to the Affine Curvature scale-space by replacing
euclidean arc-length with the affine arc-length. A random
shape is shown in Figure 3 together with snapshots of the
Mean Curvature and the Affine Curvature scale-spaces. It
can be verified that the shape tends to a circle in the Mean
Curvature scale-space and to an ellipse in the Affine Curva-
ture scale-space. Another way of representing the evolution
of the extreme curvature points is by the finger print images
shown in Figure 4. Some extrema survive a long time and
will henceforth be called stable extrema.

The only catastrophe that generically occurs for zero
crossings of the euclidean and affine curvature is pairwise
annihilation. The same result holds for extrema of the eu-
clidean and affine curvature, in which case the pairs are made
of a maximum and a minimum curvature extremum. These
properties are well preserved for the selected implementa-
tion of the Mean Curvature scale-space, but it has not been
possible to find a well-behaved implementation of the Affine
Curvature scale-space. It is noted that global affine invariance
can be achieved by a prior global normalization of the affine
components followed by the euclidean method presented in
the rest of this paper.

To increase localization precision, stable extrema are
tracked to zero scale. However, not all stable extrema are
equally sensitivity to noise as illustrated in Figure 5. In these
3 experiments, almost invisible noise was added to the coor-
dinate functions of the shape shown in Figure 3(LEFT), using
i.i.d. normal noise of standard deviation of 0.05. Comparing
the results, it is observed that the 4 most stable extrema are all
traced to similar part of the shape, and that some locations are
more persistent than others. Such behavior is typical. When
a curvature function locally is close to constant, the locations
of the stable extrema are very noise sensitive, regardless of
how small the noise level may be.

A notion of certainty can be obtained by examining the
curvature at a corner over scales. Since the curvature function
scales inversely proportional with length, we can compare
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A shape evolves differently in different scale-spaces. LEFT: A shape. MIDDLE: Snapshots from the Mean Curvature

evolution. RIGHT: Snapshots from the Affine Curvature evolution. Triangles denote euclidean and affine curvature extrema.
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The accuracy of a trace depends on the curvature and the neighboring structure. The shapes are given by Figure 3(LEFT)

plus normal noise of standard deviation 0.05.

curvature values of different scales by multiplying by scale,� � � &����� sign ) � )
	 -$-�� � )� - � )� -��
The parameter  denotes a parameterization of the fingerprint
line. The value � � intuitively relates to the spatial extend
of the corner [10]. In the following are corners of shapes
examined when ordered by � � .
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In this section, a study the ellipse is presented. A one

parameter family of ellipses is� ��� )� -� � )� -�� ��� 	 �! �#"%$'& )� -( & (+* )� -)� �
where ( denotes eccentricity. It follows that the major and
minor axis are given by

� 	 ( and
 �*� , the area is

� 	'	�+ inde-
pendently on ( , and that the circumference increases propor-
tional to the absolute value of ( . The ellipse has 4 curvature
extrema  � � � 	 �-, $ � + �/.0 +�� , and the curvature values in

these points are given by 1=)� � -32 �   �* ��4 � � 4 �* � . Hence,1=)� � -65   �* for ( 5 �
, and 1=)� � -72 � 	 ��8 � for ( 5 8

.

In practice, shapes will be subject to noise. A simple
model of a noise source is normal distributed noise perpen-
dicular to the curve,�:9��� )� -9� � )� -�� � � ��� )� -� � )� -��<;>= )
	 � �2- � 2 �@?� )� -� ? � )� -A� �
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Noise makes corner location more uncertain,

whereas sharpness of corners reduces uncertainty. LEFT:
the logarithmic standard deviation of the noise versus the
standard deviation of the located corner arclength. RIGHT:
the logarithmic curvature versus the standard deviation of the
located corner arclength.

where prime denotes differentiation with respect to arclength
and = )
	 � �2- is an independently and identically normal dis-
tributed stochastic source of standard deviation � . This is
similar to adding noise directly on the curvature function.

As noted above, the statistical reliability of tracing sta-
ble extrema to zero scale depends on the local structure of
a shape. In Figure 6 is shown the standard deviation of the
resulting position after tracing the 4 most stable corners to
zero scale for various values of � and C . Each data point in
the figure is based on 1000 experiments. In Figure 6(LEFT)
it is observed that the uncertainty is monotonically increas-
ing with noise, and that the low curvature points are more



noise sensitive than high curvature points. Figure 6(RIGHT)
is interpreted as follows. High curvature points tend to dom-
inate neighboring structure hence increasing certainty. In
other words, the uncertainty tends to zero as curvature tends
to infinity. In contrast, uncertainty is maximal for straight
lines and perfect circles, since they have constant curvature
functions. Thus there is a singularity at curvatures 0 and 0.1.
Finally, the uncertainty is reduced by the neighboring struc-
ture: A minimum must lie in between two maxima curvature
points. Therefore, the uncertainty is inversely proportional to
the distance of the maxima, and a minimum at approximately
curvature 0.01 is obtained.

From psychophysical experiments it is known that cor-
ners are the most important points on curves [11]. From a
statistical point of view we conclude that these are also the
most certain points on curves.�9	��1����#$���?:<����1:'� 8��.� ��� �'��:<� ���
#$�":<;#$�":<� �%&�&�� :��":

Interpretation of shapes depends on the number of data
points. As an example, consider data points sampled from a
circle. With three points, the circle cannot be distinguished
from a triangle, and in general, + points might as well come
from an + ’th ordered polygon than from a circle. Naturally,
the polygon will increasingly resemble a circle as + is in-
creased, and for some large + it seems reasonable to assume
that the points stem from a circle rather than a polygon. In
this paper, ‘reasonable’ is defined using lossless compres-
sion: In the above example, the points will be interpreted as
a circle, if this is a shortest description of the data points.

When comparing models of data in terms of minimal
compression, we must compare the coding cost of the model
and the deviation of the model from the data [12]:� ) # ��� - �	� ) � - ; � ) # 0 � - �
where # is the data set, and

�
the model parameters. The

optimal model is the one that minimizes
� ) # �
� - .

In the present case, a given shape is to be compressed
using one shape from a database. Hence, the codelength
of the model consists of identifying, which shape from the
database is being used, and how many confident points are
used in the alignment:� ) � - � 2�� $� ) number of elements in database -; � $� � ) number of confident points -��
The code is designed such that all shapes in the database are
equally probable, and coded the number of confident points
by the Universal Distribution of Integers [12],

� $� � )�� - �� ; � $� )�� - ; � $� ) � $� )�� -$- ; � � � , summing over all positive
terms.

The deviation from the model is given by the point to point
alignment. In order for the decompression to be successful,
we will need to describe how the segments of the curve in
the database are to be sampled, and what are the deviations
from these sample points:� ) # 0 � - ����� � $� � ) no. of samples in piece � -

; � $� � ) � 	�� - 2 �
�
� $����� ) � ��� # ��� �2-�� �

The deviations are coded as a two dimensional Gaussian
distribution,� ) � � � # � � � - � �� + � $�� �! � )�" � 2 � � - $ ; )�# � 2 � � - $� � $ � �
The point )�� � �
��� - is coded by the inferred point )�" ��� # � -
from the shape in the database. We have arbitrarily chosen
to compress the standard deviation with 0.1 precision.

We emphasize that in contrast to [5, 13] we do not code
the difference between two curves as the difference in their
curvature functions. This has two reasons: Firstly, taking
the difference between two curvature functions is essentially
as noisy as computing third order derivatives. Secondly, the
difference between two curvature functions does not coincide
very well with our notion of shape difference as explained in
Figure 2. $
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In the following, the algorithm for shape recognition in-

variant under euclidean transformation is presented.
Given a shape as a list of points on its boundary and a

database, the following steps are performed:
1. Compute the scale-space until only 4

curvature extrema are present.

2. Track the extrema along scale.

3. Choose the most stable extrema.

4. Find the maximum scale-normalized cur-
vature values for extrema tracked along
scale.

5. Sort the extrema at zero scale by their
maximum scale-normalized curvature.

6. For each of the ) * +�,.-�,�/
/
/ points with
highest maximum scale-normalized curva-
ture sort them according to location on
the curve.

Each subset of points constitutes a segmentation of the
boundary. Two shapes are then compared by aligning their
segmentations using Procrustes distance. To obtain invari-
ance under origin, we:
7. Generate all shifts of one subset and

calculate the Procrustes distance to the
other, and select the shift minimizing
the distance.

At this point the shape is coded relative to a shape from the
database. Since two segmentations are aligned, a piecewise
linear point to point correspondence between the boundaries
is known.
8. Generate the piecewise linear point to

point correspondence between the bound-
aries.

9. Calculate the codelength using the cor-
respondence, and minimize this code-
length with respect to translation,
rotation, and scaling.

The minimal codelength over segmentations and eu-
clidean transform is taken as the distance between the curves.
As a consequence of using non-linear stretching respecting
relative arc-length of one curve, the distance between two
curves is only symmetric when the curves have the same
segmentation and number of points. Further we note that
the distance of a shape to itself is always larger than zero.
Given + points of a shape, 0 scale-levels, and 1 stable ex-
trema, the computational complexity of the above algorithm



is
� ),+ 0 � $� ),+ 0 - ; 1 $ � $� 1 $ - . The first term is typically

the largest and refers to the scale-space computation, while
the later refers to Step 6 in the algorithm.

We have implemented a system that uses the stable points
of boundaries to perform piecewise linear stretching. This
system has been tested on a small database of 39 boundaries.
The shapes have been selected from an automatic segmen-
tation of images from the Columbia University Image Li-
brary (Coil-100)

4
. In Figure 7 a sample set of the shapes is

shown. The distance of each of these has been calculated to
the 38 other shapes, and in Figure 8 the 3 closest matches
are shown. These results were selected as a fair representa-
tive of the shape similarity ordering produced by the system.
The shapes in the left column refer to the best match in the
database. From top to bottom we see that the codelength
of the best match is increasing downwards, and observe that
this correlates well with the quality of the match. The same
observation is made for each row individually.

�"	�� ����&�9 :�;>#$�
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Shape similarity and invariance are two closely coupled

concepts, and invariant signature functions, such as the cur-
vature, are good starting points for shape comparison. In
this paper, a linear and shift invariant alignment of signature
functions has been studied with emphasis on the euclidean
group. The alignment can conveniently be performed using
singular points of the signature functions, and it has been
have demonstrated that a scale-space of curves together with
scale-selection can be used to identify stable and reliable sin-
gular points. The problem of shape comparison depends on
the number of sample points used. We have therefore de-
fined a shape distance using modeling by compression, and
the distance measure has been designed to be closely related
to the area between two curves.

Some authors have suggested to use lossy compression
algorithms that preserves ‘semantics’ in order to efficiently
compare shapes [1]. Although psychophysical experiments
on mammals may lead to a useful lossy compression al-
gorithm, these algorithms cannot easily be compared in an
objective manner. In contrast, lossless compression algo-
rithms are build with a common yardstick, in the sense that
no part of the original data is discarded. Hence, the results
can be directly compared. For example, we may determine,
if a finite sum of cosine waves is a better model of a bound-
ary than a cubic spline. By isolating the subjectivity to the
selection of a model class, we gain a framework by which
we can discuss semantics in an objective manner.% �2���.���2�'&��.;
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Some boundaries of objects (from left to right): A gum package, a reusable food container, a tube with a screw-lid, a pig.
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Shape 3 as 7, 4 knots and 4.4 bits/arc−length
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Shape 3 as 5, 4 knots and 4.9 bits/arc−length
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Shape 3 as 28, 3 knots and 6.2 bits/arc−length
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Shape 10 as 17, 3 knots and 7.7 bits/arc−length
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Shape 10 as 15, 4 knots and 8.7 bits/arc−length
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Shape 10 as 4, 4 knots and 9.0 bits/arc−length
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Shape 22 as 2, 8 knots and 8.2 bits/arc−length
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Shape 22 as 27, 4 knots and 8.4 bits/arc−length
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Shape 22 as 26, 2 knots and 8.6 bits/arc−length

−50 0 50

−40

−20

0

20

40

Pixels

P
ix

el
s

Shape 37 as 36, 2 knots and 9.5 bits/arc−length

−50 0 50
−60

−40

−20

0

20

40

60

Pixels

P
ix

el
s

Shape 37 as 15, 2 knots and 10.1 bits/arc−length
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Shape 37 as 4, 5 knots and 10.2 bits/arc−length
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Three best matches for each of the shapes in Figure 7. Best is shown in left column and worst (out of 3) in right column.


