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Abstract. A well-known ambiguity in monocular structure from motion
estimation is that 3D reconstruction is possible up to a similarity trans-
formation, i.e. an isometry composed with isotropic scaling. To raise this
ambiguity, it is commonly suggested to manually measure an absolute
distance in the environment and then use it to scale a reconstruction
accordingly. In practice, however, it is often the case that such a mea-
surement cannot be performed with sufficient accuracy, compromising
certain uses of a 3D reconstruction that require the acquisition of true
Euclidean measurements. This paper studies three alternative techniques
for obtaining estimates of the scale pertaining to a reconstruction and
compares them experimentally with the aid of real and synthetic data.
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1 Introduction

Structure from motion with a single camera aims at recovering both the 3D
structure of the world and the motion of the camera used to photograph it.
Without any external knowledge, this process is subject to the inherent scale
ambiguity [9,17,5], which consists in the fact that the recovered 3D structure
and the translational component of camera motion are defined up to an unknown
scale factor which cannot be determined from images alone. This is because if a
scene and a camera are scaled together, this change would not be discernible in
the captured images. However, in applications such as robotic manipulation or
augmented reality which need to interact with the environment using Euclidean
measurements, the scale of a reconstruction has to be known quite accurately.

Albeit important, scale estimation is an often overlooked step by structure
from motion algorithms. It is commonly suggested that scale should be estimated
by manually measuring a single absolute distance in the scene and then using
it to scale a reconstruction to its physical dimensions [5,12]. In practice, there
are two problems associated with such an approach. The first is that it favors
certain elements of the reconstruction, possibly biasing the estimated scale. The
second, and more important, is that the distance in question has to be measured
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accurately in the world and then correctly associated with the corresponding dis-
tance in the 3D reconstruction. Such a task can be quite difficult to perform and
is better suited to large-scale reconstructions for which the measurement error
can be negligible compared to the distance being measured. However, measuring
distances for objects at the centimeter scale has to be performed with extreme
care and is therefore remarkably challenging. For example, [1] observes that a
modeling error of 1mm in the scale of a coke can, gives rise to a depth estimation
error of up to 3cm at a distance of 1m from the camera, which is large enough
to cause problems to a robotic manipulator attempting to grasp the object.

This work investigates three techniques for obtaining reliable scale estimates
pertaining to a monocular 3D reconstruction and evaluates them experimen-
tally. These techniques differ in their required level of manual intervention, their
flexibility and accuracy. Section 2 briefly presents our approach for obtaining a
reconstruction whose scale is to be estimated. Scale estimation techniques are
detailed in Sections 3-5 and experimental results from their application to real
and synthetic datasets are reported in Sect. 6. The paper concludes in Sect. 7.

2 Obtaining a 3D Reconstruction

In this work, 3D reconstruction refers to the recovery of sparse sets of points
from an object’s surface. To obtain a complete and view independent represen-
tation, several images depicting an object from multiple unknown viewpoints are
acquired with a single camera. These images are used in a feature-based struc-
ture from motion pipeline to estimate the interimage camera motion and recover
a corresponding 3D point cloud [16]. This pipeline relies on the detection and
matching of SIFT keypoints across images which are then reconstructed in 3D.
The 3D coordinates are complemented by associating with each reconstructed
point a SIFT feature descriptor [11], which captures the local surface appearance
in the point’s vicinity. A SIFT descriptor is available from each image where a
particular 3D point is seen. Thus, we select as its most representative descriptor
the one originating from the image in which the imaged surface is most frontal
and close enough to the camera. This requires knowledge of the surface normal,
which is obtained by gathering the point’s 3D neighbours and robustly fitting to
them a plane. As will become clear in the following, SIFT descriptors permit the
establishment of putative correspondences between an image and an object’s 3D
geometry. Combined together, 3D points and SIFT descriptors of their image
projections constitute an object’s representation.

3 Scale Estimation from Known Object Motion

The simplest approach to estimate an object’s scale employs a single static cam-
era to acquire two views of the object in different poses with known relative
displacement. Then, the pose of the object in each view is determined. Since
the camera is static, the two poses estimated can be used to compute the ob-
ject’s displacement up to the unknown scale. The sought scale is simply the
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ratio of known over recovered displacement. To ease the task of measuring 3D
displacements, the object is placed so that it is aligned with the checkers of
a checkerboard grid. Such a guided placemement allows the distance between
the object’s locations to be known through the actual size of each checker. An
advantage of the known motion approach is that it does not involve a special
camera setup. On the other hand, it suffers from two disadvantages. First, it
relies on careful object placement on the grid and is, therefore, susceptible to
human error. Second, it treats images separately and thus does not avail any
opportunities for combining them and in so doing increase the overall accuracy.

A key ingredient of the method outlined above is the estimation of the pose of a
known object in a single image, therefore more details regarding this computation
are provided next. Given an image of the object, SIFT keypoints are detected in
it and then matched against those contained in its reconstructed representation
(cf. Sect. 2). The invariance of SIFT permits the reliable identification of features
that have undergone large affine distortions in the image. The established cor-
respondences are used to associate the 2D image locations of detected features
with the 3D coordinates of their corresponding points on the object’s surface. The
procedure adopted for point matching is the F2P strategy from [8]. Compared to
the standard test defined by the ratio of the distances to the closest and second
closest neighbors [11], F2P was found to yield fewer erroneousmatches. An impor-
tant detail concerns the quantification of distances among SIFT descriptors, which
are traditionally computed with the Euclidean (L2) norm. Considering that the
SIFT descriptor is a weighted histogram of gradient orientations, improvements
in matching are attained by substituting L2 with histogram norms such as the
Chi-squared (χ2) distance [15]. This is a histogram distance that takes into ac-
count the fact that in many natural histograms, the difference between large bins
is less important than the difference between small bins and should therefore be
reduced. Keypoint matching provides a set of 3D-2D correspondences from which
pose is estimated as explained below.

Pose estimation concerns determining the position and orientation of an object
with respect to a camera given the camera intrinsics and a set of n correspon-
dences between known 3D object points and their image projections. This prob-
lem, also known as the Perspective-n-Point (PnP) problem, is typically solved
using non-iterative approaches that involve small, fixed-size sets of correspon-
dences. For example, the basic case for triplets (n = 3, known as the P3P
problem), has been studied in [3] whereas other solutions were later proposed
in [2,7]. P3P is known to admit up to four different solutions, whereas in practice
it usually has just two. Our approach for pose estimation in a single image uses a
set of 2D-3D point correspondences to compute a preliminary pose estimate and
then refine it iteratively. This is achieved by embedding the P3P solver [3] into
a RANSAC [2] framework and computing an initial pose estimate along with
a classification of correspondences into inliers and outliers. The pose computed
by RANSAC is next refined to take into account all inlying correspondences by
minimizing a non-linear cost function corresponding to their total reprojection
error. The minimization is made more immune to noise caused by mislocalized
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image points by substituting the squared reprojection error with a robust cost
function (i.e., M-estimator). Our pose estimation approach is detailed in [10].

4 Scale Estimation from 3D Reconstruction and Absolute
Orientation

Another way of approaching the scale estimation problem is to resort to stereo.
More specifically, a strongly calibrated stereo pair is assumed and two-view tri-
angulation is employed to estimate the 3D coordinates of points on the surface
of the object. These points are then matched to points from the object’s rep-
resentation. The scale factor is estimated by finding the similarity aligning the
triangulated 3D points with their counterparts from the representation. This is
achieved by solving the absolute orientation problem, which also accounts for
the unknown scale. To safeguard against possible outliers, the calculation is em-
bedded in a RANSAC robust estimation scheme that seeks the transformation
aligning together a fraction of the available 3D matches. More details regarding
the solution of the absolute orientation problem are given next.

Starting with a stereo image pair depicting the object whose scale is to be
estimated, sparse correspondences between the two images are established. This
is achieved by detecting SIFT features in each image and then matching them
through their descriptors. For each pair of corresponding points, stereo trian-
gulation is used to estimate the 3D coordinates of the imaged world point [4].
Knowledge of the extrinsic calibration of the stereo rig permits the triangulated
points to be expressed in their true scale. Further to their matching in the stereo
images, SIFT descriptors are also matched against the descriptors stored in the
representation. In other words, three-way correspondences are established be-
tween object points in the two images and the representation. In this manner,
the triangulated points are associated with 3D points from the object’s represen-
tation. The sought scale factor is then computed by determining the similarity
between the triangulated 3D points and their counterparts, as follows.

Let {Mi} be a set of n ≥ 3 reference points from the representation expressed
in an object-centered reference frame and {Ni} a set of corresponding camera-
space triangulated points. Assume also that the two sets of points are related by
a similarity transformation as Ni = λ R Mi + t, where λ is the sought scale
factor and R, t a rotation matrix and translation vector defining an isometry. As
shown by Horn [6], absolute orientation can be solved using at least three non-
collinear reference points and singular value decomposition (SVD). The solution
proceeds by defining the centroids M and N and the locations {M′

i} and {N′
i}

of 3D points relative to them:

M =
1

n

n∑

i=1

Mi , N =
1

n

n∑

i=1

Ni , M
′
i = Mi −M , N

′
i = Ni −N.

Forming the cross-covariance matrix C as
∑n

i=1 N
′
i M

′t
i , the rotational compo-

nent of the similarity is directly computed from C’s decomposition C = U Σ Vt
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as R = V Ut. The scale factor is given by

λ =

√√√√
n∑

i=1

||M′
i||2

/ n∑

i=1

||N′
i||2 , (1)

whereas the translation follows as t = N − λ R M.
The primary advantages of this method over the one of Sect. 3 are that it does

not require a particular object positioning strategy nor the measurement of any
distances. Any object placement, provided that it is well imaged and avails suf-
ficient correspondences, is suitable for applying the method. On the other hand,
3D reconstruction of points based on binocular stereo is often error-prone [13]
and such inaccuracies can significantly affect the final estimation result.

5 Scale Estimation from Binocular Reprojection Error

Similarly to that in Sect. 4, this method also employs an extrinsically calibrated
stereo pair. Given an object’s 3D representation, its scale is determined by con-
sidering the reprojection error pertaining to the object’s projections in the two
images. Using the same coordinate system for both cameras, the reprojection er-
ror is expressed by an objective function which also includes scale in addition to
rotation and translation. Then, the object’s scale and pose are jointly estimated
by minimizing the total reprojection error in both images, as follows.

The method starts by detecting SIFT keypoints in both stereo images. Inde-
pendently for each image, the extracted keypoints are matched against the points
of the representation through their descriptors. For each image, monocular pose
estimation is carried out as described in Sect. 3 to determine the object’s pose in
it. Knowledge of the camera extrinsics allows us to express both of these poses in
the same coordinate system, for example that of the left camera. Indeed, if the
pose of the object in the left camera is defined by R and t, its pose in the right
camera equals RsR and Rst+ts, where Rs and ts correspond to the pose of the
right camera with respect to the left. Due to the stereo rig being rigid, Rs and
ts remain constant and can be estimated offline via extrinsic calibration. The
most plausible scale and left camera pose are determined via the minimization
of the cumulative reprojection error in both images. The binocular reprojection
error consists of two additive terms, one for each image. More specifically, de-
noting the intrinsics for the left and right images by KL and KR, the binocular
reprojection error for n points in the left image and m in the right is defined as:

n∑

i=1

d(KL · [λ R(r) | t] ·Mi − mL
i )

2
+

m∑

j=1

d(KR · [λ RsR(r) |Rst+ ts] ·Mj − mR
j )

2
,

(2)

where λ, t and R(r) are respectively the sought scale factor, translation vector
and rotation matrix parameterized using the Rodrigues rotation vector r, KL ·
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[λ R(r) | t] · Mi is the projection of homogeneous point Mi in the left image,
KR · [λ RsR(r) |Rst+ts] ·Mj is the projection of homogeneous point Mj in the
right image,mL

i andmR
j are respectively the 2D points corresponding to Mi and

Mj in the left and right images and d(x, y) denotes the reprojection error, i.e.
the Euclidean distance between the image points represented by vectors x and y.
The expression in (2) can be extended to an arbitrary number of cameras and is
minimized with respect to λ, r, t with the Levenberg-Marquardt non-linear least
squares algorithm, employing only the inliers of the two monocular estimations
to ensure resilience to outliers. Similarly to the monocular case, a M-estimate
of the reprojection error is minimized rather than the squared Euclidean norm.
One possible initialization is to start the minimization from the monocular pose
computed for the left camera. Still, this initialization does not treat images
symmetrically as it gives more importance to the left image. Therefore, if the
pose with respect to the left camera has been computed with less precision than
that in the right, there is a risk of the binocular refinement also converging to a
suboptimal solution. To remedy this, the refinement scheme is extended by also
using the right image as reference and refining pose in it using both cameras,
assuming a constant transformation from the left to the right camera. Then, the
pose yielding the smaller overall binocular reprojection error is selected.

This method has several attractive features: It does not require a particular
object placement strategy. There is no need for a short baseline as correspon-
dences are not established across the two views but, rather, between each indi-
vidual view and the reconstruction. Because no attempt is made to reconstruct
in 3D, the experimental setup is relieved from the constraints related to the
binocular matching of points and the inaccuracies associated with their recon-
struction. A direct consequence of this is that the two cameras may have very
different viewpoints. In fact, employing large baselines favours the method as it
better constrains the problem of scale factor estimation.

6 Experiments

Each of the three methods previously described provides a means for computing
a single estimate of the pursued scale factor through monocular or binocular
measurements. It is reasonable to expect that such estimates will be affected by
various errors, therefore basing scale estimation on a single pair of images should
be avoided. Instead, more accurate estimates can be obtained by employing
multiple images in which the object has been moved to different positions and
collecting the corresponding estimates. Then, the final scale estimate is obtained
by applying a robust location estimator such as their sample median [14]. In the
following, the methods of Sect. 3, 4 and 5 will be denoted as mono, absor and
reproj, respectively. Due to limited space, two sets of experiments are reported.

An experiment with synthetic images was conducted first, in which the base-
line of the stereo pair imaging the target object was varied. A set of images
was generated, utilizing a custom OpenGL renderer. A 1:1 model of a textured
rectangular cuboid (sized 45× 45× 90mm3), represented by a 3D triangle mesh
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(with 14433 vertices & 28687 faces), was rendered in 59 images. These images
correspond to a virtual camera (1280× 960 pixels, 22.2◦ × 16.7◦ FOV) circum-
venting the object in a full circle of radius 500mm perpendicular to its major
symmetry axis. At all simulated camera locations, the optical axis was oriented
so that it pointed towards the object’s centroid. The experiment was conducted
in 30 conditions, each employing an increasingly larger baseline. In condition n,
the ith stereo pair comprised of images i and i+n. Hence, the baseline increment
in each successive condition was ≈ 52mm. In Fig. 1(a) and (b), an image from
the experiments and the absolute error in the estimated scale factor are shown.
Notice that the plot for absor terminates early at a baseline of ≈ 209mm. This
is because as the baseline length increases, the reduction in overlap between the
two images of the stereo pair results in fewer correspondences. In conditions
of the experiment corresponding to larger baselines, some stereo pairs did not
provide enough correspondences to support a reliable estimate by absor. As a
result, the estimation error for these pairs was overly large.
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Fig. 1. Experiments. Left to right: (a) sample image from the experiment with synthetic
stereo images and (b) scale factor estimation error (in milli scale), (c) sample image
from the experiment with real images and (d) translational pose estimation error.

The three methods are compared next with the aid of real images. Consider-
ing that the task of directly using the estimated scales to assess their accuracy is
cumbersome, it was chosen to compare scales indirectly through pose estimation.
More specifically, an arbitrarily scaled model of an object was re-scaled with the
estimates provided by mono, absor and reproj. Following this, these re-scaled
models were used for estimating poses of the object as explained in Sect. 3, which
were then compared with the true poses. In this manner, the accuracy of a scale
estimate is reflected on the accuracy of the translational components of the esti-
mated poses. To obtain ground truth for object poses, a checkerboard was used
to guide the placement of the object that was systematically moved at locations
aligned with the checkers. The camera pose with respect to the checkerboard was
estimated through conventional extrinsic calibration, from which the locations of
the object on the checkerboard were transformed to the camera reference frame.
The object and the experimental setup are shown in Fig. 1(c). Note that these
presumed locations include minute calibration inaccuracies as well as human er-
rors in object placement. The object was placed and aligned upon every checker
of the 8 × 12 checkerboard in the image. The checkerboard was at a distance
of approximately 1.5m from the camera, with each checker being 32× 32mm2.
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Camera resolution was 1280× 960 pixels, and its FOV was 16◦× 21◦. The mean
translational error in these 96 trials was 1.411mm with a deviation of 0.522mm
for mono, 1.342mm with a deviation of 0.643mm for absor and 0.863mm with
a deviation of 0.344mm for reproj. The mean translational errors of the pose
estimates are shown graphically in Fig. 1(d).

7 Conclusion

The paper has presented one monocular and two binocular methods for scale
factor estimation. Binocular methods are preferable due to their flexibility with
respect to object placement. Furthermore, the binocular method of Sect. 5 is
applicable regardless of the size of the baseline and was shown to be the most
accurate, hence it constitutes our recommended means for scale estimation.
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